
Java Multimedia Telecollaboration
J. C. de Oliveira1,2, M. Hosseini1, S. Shirmohammadi1, F. Malric1, S. Nourian1, A. El Saddik1 & N. D. Georganas1

1 Multimedia Communications Research. Laboratory
School of Information Technology and Engineering

University of Ottawa
161 Louis Pasteur Priv.,
Ottawa, ON K1N 6N5

CANADA
+1 (613) 562-5800x6248

2 Departament of Computer Science
National Laboratory for Scientific Computation

Av. Getúlio Vargas, 333
Petrópolis, RJ 25651-070

BRAZIL
+55 (24) 2233-6022

jauvane@acm.org, [mojtaba,shervin,frank,saeid,abed,georganas]@mcrlab.uottawa.ca

ABSTRACT
This paper discusses different design possibilities of multimedia
collaborative environments. The main function of such
environments is to share multimedia resources among several
geographically distributed users. To optimize the use of
bandwidth and compensate for latency, we have chosen an
approach that sends as small amount of information as possible
for the updates, namely events. Therefore, we will describe six
different architectures to achieve such a goal. These prototypes
(jStreaming, JETS, JASMINE, JASBER and two Collaborative
Virtual Environments) are fully written in Java.

Keywords
Java, Collaboration, CSCW, Multimedia, Video Streaming,
H263, jStreaming, JETS, JASBER, JASMINE, Shared Applets,
MPEG4.

1. INTRODUCTION
Multimedia Systems have long been used for Collaboration. In
order to make better use of the web for collaboration amongst a
group of individuals, such systems had to be implemented for
various platforms. Lawrence Berkeley National Laboratory/UC
Berkeley’s VIC [5] is a good example of such an effort, as there
are several versions compiled for various flavours of Unix
(including Linux), Windows, etc. It would be beneficial to be able
to have a single build for the various platforms so that updates
would need to be made only to that code. Java [12] shows a great
potential in that respect since it provides a “Compile Once-Run
Everywhere” architecture. A comprehensive number of Operating
Systems support Java, allowing any one of those systems to
benefit from Java compliant applications. Java Applets brings
extra features such as the ability to run an Applet within a web-
browser with the executable code downloaded at run-time from a
(web) server. This allows making updates in the code in that
single location (the server) which automatically ensures that
every client will be running the exact same version of the code.
No other language allows such easy maintenance. A developer
has no longer to worry about making a new system compatible
with all previous versions in order to welcome users with non up-
to-date versions of the software.

It has been shown [1, 2, 3] that Java has a great potential for
Collaborative Multimedia Systems with acceptable performance
in rather complicated prototypes.

If a developer adheres to a subset of Java, known as
PersonalJava, one may ensure an even greater client base, as any
Java Enabled operating system is also PersonalJava enabled.
Many OS which cannot handle the complete Java set have some
PersonalJava implementation available. One such example is the
OS for the PDA market, including Windows CE on the
PocketPCs.

We have developed, at the Multimedia Communications
Research Laboratory at the University of Ottawa, a
comprehensive set of Java and PersonalJava compliant
Multimedia Systems aiming at Collaboration amongst a group of
users.

In section 2, we will introduce jStreaming, a 100% Pure Java™
Video Decoder for H.263 video streams. Section 3 introduces
JETS, a 100% Pure Java™ Java Enabled Telecollaboration
System. Section 4 presents JASMINE, which is a Java System
allowing users to transparently share any Applet. Section 5
introduces JASBER, a prototype that allows a group of users to
collaboratively browse the web. Section 6 outlines the utilization
of Java in developing Distributed Virtual Environments. Section
7 presents related work followed by the conclusion.

2. jSTREAMING
jStreaming [13] is a video decoder of standard ITU-T H.263 [4]
video streams fully written in Java. Being Java compliant allows
jStreaming to run in every single Java enabled web browser when
running as an Applet as well as any Java Enabled OS when
running as a Java Application. Figure 1 shows an Applet version
of jStreaming with a standard video stream being played.

Figure 1. jStreaming as an Applet

jStreaming's core complies with JDK 1.0.2 (the first release of
Java broadly available for the public) and, as such, is also

compliant with more recent implementations of Java (JDK 1.1.x,
1.2, 1.3, etc). Such compatibility allows jStreaming to be
deployed even by older versions of web browsers, such as
Netscape Navigator 3.0 and Microsoft Internet Explorer 3.02, etc.
Additionally, jStreaming also complies with PersonalJava, a
subset of JDK 1.1 which addresses more limited devices such as
PocketPCs and other PDAs. JStreaming hence runs smoothly on
such devices. We have achieved a 10fps playback rate, QCIF,
with a Compaq iPAQ 3670 PocketPC and we have received
reports of jStreaming achieving over 144fps under Windows.
Figure 2 shows jStreaming running in an iPAQ 3650 PocketPC
(Windows CE 3.0). In a PII 333MHz we achieved 34fps back in
1998. Native code achieves about 55-60fps in the same system.

Figure 2. jStreaming in a PocketPC and a Desktop

jStreaming provides a high-level API, which allows it to be
bundled into other prototypes (See section 3 on JETS for an
example).

jStreaming can stream video from a Multithreaded VideoServer
(also written in Java) through a simple protocol with sliding
window flow control as well as from a web server through HTTP.

Figure 3 shows the architecture of jStreaming for live streaming,
using a native code encoder. jStreaming itself is the technology
starting at the Video Server box all the way to the client
Applet/Application.

Figure 3. jStreaming’s Architecture

3 JETS 2000
JETS (Java Enabled Telecollaboration System) [7, 8, 9, 14] is a
client-server framework that permits sharing of Java applets and
applications. Since JETS uses the core Java packages, users don’t
need to install any additional Java classes on their system. This
allows any user to access JETS and share applets with a Java-
enabled browser. JETS 2000, the latest version of JETS, also
offers video-conferencing using the Java Media Framework
(JMF). Figure 4 below shows a screenshot of a sample JETS
session.

Figure 4. A sample JETS session with shared applets

and A/V conferencing.

As can be seen from the figure 4, JETS consists of many utilities
that enable multimedia viewing and sharing.

3.1. Whiteboard
The whiteboard is an interactive space where clients on a virtual
session can share ideas such as pictures, slides, text, video or
drawings. The users can annotate on these images and start a
discussion. The built-in locking mechanism of JETS is used to
forbid modification of the same object at the same time by more
than one user. Figure 5 shows JETS’ main interface consisting of
the control panel (right), a chatting dialog box (lower left) end
and the shared whiteboard area (top-left).

The simplest way of interacting on the whiteboard is through
text. Clients can use the chat area to communicate. Every other
member who has input access to the whiteboard will see the
originator of the message followed by the message itself.

Another way of interacting through the whiteboard is by drawing.
To do this, the user simply chooses a color from the color
template and draws by keeping the left mouse button down and
dragging the mouse around the screen. A user can clear all the
annotations (drawings) by pressing the "Clear" button.

Figure 5. The Whiteboard Window

A client may paste a picture found in archive by pressing the
"Image" button to the right and choosing one file in the image file

dialog box. The picture will instantly appear to all other members'
whiteboard. Any member having full access can freely comment
or draw onto the picture.

A client may also start a slide show found in archive by pressing
the "Slide" button to the right and choosing one file in the Slide
Show dialog box. Any member having full access can freely
comment or draw onto the slide show as well as go to the next or
previous slide using the appropriate VCR buttons respectively.

3.2. Shared H.263 Video Presentation
A very useful feature of JETS is the ability to play ITU-T H.263
compliant video in the whiteboard. That is accomplished using
jStreaming’s API. When a user opens a video file and starts
playing it, the video data is streamed down to all participants,
decoded in real-time (processor permitting) and displayed in their
whiteboard. Figure 6 shows a video being displayed with some
annotation drawn on top of it.

Figure 6. Video Running Within the Whiteboard

3.3. VRML Viewer
Another sample applet is a simple shared 3D viewer for VRML
files which permits real-time collaborative interaction with simple
VRML objects. The applet brings from the server simple VRML
1.0 files and displays them in wire frame mode. A user can then
collaboratively interact with the 3D object, with all the rotations,
translations and zooming reflected on all participants' screens.
Figure 7 shows the shared VRML browsing interface.

Figure 7. VRML Browser

3.4 Video Conferencing and Recording with J-
VCR
The Java Video Conference Recorder (J-VCR) tool further
enhances JETS 2000 by providing services for audio/video
conferencing, recording a session, and playback of a recorded
session. J-VCR can record the session in the Synchronous
Multimedia Integration Language (SMIL) format, which is a
World Wide Web Consortium (W3C) standard. As a result, any
SMIL-player such as RealNetwork’s RealPlayer can be used to
playback the recorded session [11].

Figure 8. Access Control in JETS

3.5. Session Management
JETS implements a management system which enables
monitoring of the session. One of the session clients has to log in
as a moderator by clicking the "MOD" button to start a session
management. Once the session management has been established,
only the moderator has the right to access the shared whiteboard
and other clients have no access. Every session client can ask the
moderator for access permission by simply clicking his/her
"Access" button. The moderator might either grant or reject that
client's request. Once the moderator approves a session client’s
request, this client therefore become a session participant and
gains the right to access the shared whiteboard. Any session
participant can put his/her notation on the shared whiteboard. The
moderator has the right to revoke access privileges to any client
at any time but allowing the refused client to ask the moderator
for permission again if desired. Figure 8 shows two JETS
windows. The one in the foreground with a green “Access” icon
indicates that such client is allowed to interact with the
whiteboard. On the other hand the one in the background with a
red “Access” button indicates that such user can only see what is
being done in the whiteboard (not being able to interact any
further with it).

3.6 Architecture
From a developer’s point of view, JETS can be regarded as a set
of Application Programming Interfaces (API) that the developer
can use to build shared resources. It provides the developer with
built-in consistency, access control, and data passing.

Figure 9. Client-Server communication in JETS

JETS uses a multithreaded server as shown in figure 9, where the
main server launches a sub-server for each user joining the
session. The sub-server is responsible for processing only the
update messages or requests coming in from its own client. Once
the sub-server receives the update message, it will send it to all
other clients in the session. This will create a fast system
response, at the expense of more resources utilized due to sub-
server threads. However, usually only one client at a time can
control and interact with an application (due to floor control in
session management), and most threads will simply be waiting.
For its client-server communication, JETS uses TCP/IP and
UDP/IP sockets. In figure 9, when client 1 does some interaction
with application A, his actions are reflected to data server 1 which
runs as part of Server A for application A. Next, data server 1
relays the actions of client 1 to other clients which are listed in a
client list on Server A. Finally, application A of client 2 receives
those actions and reflects them on the screen of client 2.

3.7 Performance Evaluation
JETS can be considered a real-time tool in the sense that its
updating response time, in a network environment capable of
supporting real-time applications, is within the acceptable
parameters of human quality of service for desktop collaboration,
as we shall see. But as with any TCP based multiuser system,
there is an upper-bound to the number of simultaneous users
before those parameters are violated. This “maximum users” limit
depends on the resources utilized by the system, such as
processing power, graphics power, memory, network bandwidth
and network delay, as well as the design of the communication
part of the system.

Depending on the quality desired, the application level end-to-end
delay between two users should be less than 1000 milliseconds,
with 200 milliseconds recommended for tightly-synchronized
tasks [11]. However, these numbers are valid only if the shared
application is used in conjunction with some type of media that
provide a sense of presence such as video and audio. The reason
is that if audio or video or both are present, users have a sense of
“awareness” of each other, which in turn requires the shared
application to respond within a time that maintains that
awareness. For example, imagine three engineers who are
collaboratively designing a bridge in a live session. One of them
highlights a section of the bridge and says: “I think this part
should be redesigned”. If they are using real-time audio
conferencing (end-to-end audio delay of 100 msec), then the

delay of the shared application must comply with the above
numbers in order for the other two engineers to receive the audio
message and the event update in such a way as to maintain the
real-time quality of the session. This is usually the case in
controlled IP environments such as local networks or corporate
IP networks.

In the case of typical Internet connections, where audio and video
delays are not controllable, or in the absence of audio or video,
restrict delay parameters make little sense because the users have
no time-wise perception of one another. In such instances, when a
user receives an update message, the user has no way of knowing
when an actual action occurred. So, even a delay of 5 seconds or
more might be acceptable depending on the nature of the
application under such circumstances.

Our performance evaluations are done for a controllable
environment, where real-time characteristics are required and can
be supported.

3.7.1 Parameters of Interest
The most common parameter that measures the quality of a
collaborative application is the Client-to-Client Delay (CCD).
CCD tries to measure the average time it takes for an update
message to reach other users. It includes all layers between the
two clients, including application, transport, networking, and
physical layer delays. However, at the application level, it only
measures the time it takes for a sender to send or a receiver to
receive the update at the application layer. It does not include the
delay caused by what the application does with the update
because that is application-dependent. As an example, if one
user opens an image in a whiteboard, what we measure is
how long it takes for the “open-image” message to reach all
clients. We don’t measure how long it takes for the receivers to
actually download the image from the given URL and show it on
their screen, because we can’t control those delays with JETS
server.

In addition, the server processing time per packet increases with
increasing number of simultaneous users. This is due to one-to-
one TCP connection-oriented nature of the system; the server
needs to send the update info to each client one by one. This
Server Processing Delay (SPD) adds to the overall end-to-end
delay of the system and must be taken into account when
calculating maximum number of users supported by the system.
Another interesting parameter is the Floor Control Delay (FCD).
This is the average time for a user to take control or be denied
taking control of an application and measures how intuitive a
system is. A system with a smaller FCD is more “natural” and
behaves more naturally than a system with a larger FCD.

3.7.2 Testing and Results
We tested CCD, SPD, and FCD of JETS over both 100Mbps
local area network (LAN) and 28.8Kbps telephone modem
access. During the testing, all machines were running their usual
background processes related to the network and the operating
system. [6].

3.7.3 CCD Test
For the CCD test, we had a “sender” applet send an event to a
“receiver” applet. Upon receiving the event, the receiver applet
extracts all necessary data from the packet, reassembles the
event, and sends the event back to the sender. The sender does

the same thing and resends the event, and so on. This is repeated
for a given duration, which was 10 minutes in our tests. The result
is shown is figure 10. The packet size is measured in number of
integers sent per packet. Typical packet sizes can be from 3
integers (draw a point with given colors) to 8 (draw line from
point A to B with given color) to larger sizes. Even though it is
very unlikely that a message of size 300 integers is sent in one
packet, we did extend our test to that limit to see the effect of
very large update messages. Figure 11 shows the same test
performed over 28.8 Kbps modem access instead of 100 Mbps
Ethernet.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Packet Size (integers)

C
C

D
 (m

se
c)

JETS Client-to-Client Delay

Figure 10. JETS CCE results (packet-based)

0 50 100 150 200 250 300
40

60

80

100

120

140

160

Packet Size (integers)

C
C

D
 (m

se
c)

JETS Clietn-to-Client Delay (28.8 Modem Access)

Figure 11. JETS CCD results over a modem line

(packet-based).

3.7.4 SPD Test
For the SPD test, we had the sender applet flood the server with
event updates. Then we had the receivers (up to 45) calculate the
average delay between receiving adjacent packets from the
server. As expected, this delay increases with increasing number
of users as seen in figure 12 for an update message of size 8
integers. Figure 13 shows the same test performed for updates of
various sizes. Note that due to floor control and moderation, no
more that one client at a time can send events to the server, a
scenario, which is typical of collaborative applications.

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7
Server Processing Delay

number of users

S
P

D
 (m

se
c)

Figure 12. JETS Server Processing Delay

0 50 100 150 200 250 300 350 400 450 5000

10

20

30

40

50

60

70

Packet Size (integers)

se
rv

er
 d

el
ay

 (m
se

c)

JETS Server Delay

25 users
10 users
5 users

Figure 13. JETS Server Processing Delay (data)

We can see that the delay increases linearly. This is due to the
fact that the server spends an equal amount of processing time
per packet per client; therefore it increases linearly with
increasing number of clients.

3.7.5 FCD Test
For the Floor Control Delay, we had a client constantly ask for
control, and release it upon receipt, for a given amount of time.
The average FCD turned out to be less than 5 msec, which
affirms the intuitiveness of the floor-control mechanism of the
system.

3.7.6 Analysis
As mentioned before, the recommended overall end-to-end delay
is less than 1000 msec, with less than 200 msec required for
closely-coupled collaboration. This delay includes the CCD, the
SPD, and the on-screen rendering/display delay corresponding to
the application's GUI. The rendering delay (RD) is not constant
and it depends on the hardware/OS/platform used.

From the CCD and SPD tests, we can approximate the overall
delay as:

delay = CCD + SPD + RD;

from Figure 12: SPD ≈ 0.142* N, where N is the number of users;
hence:

delay ≈ CCD + 0.142* N + RD

which roughly represents the delay experienced from the time a
typical event is generated due to a client's interaction until that
interaction is shown on the screen of all other clients. Figure 14
shows the achievable number of users based on the expected
overall delay, for different rendering delays (RD).

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

RD=10 msec
RD=100 msec

RD=500 msec

Maximum number of users supportable on LAN

Delay (msec)

nu
m

be
r o

f u
se

rs

Figure 14. Number of users supported by the system

Figures 15 shows the same thing with focus on tightly-
synchronized tasks (delay<200 msec).

140 150 160 170 180 190 200
0

50

100

150

200

250

300

350
Maximum number of users supportable on LAN (tightly-synchronized)

Delay (msec)

nu
m

be
r o

f u
se

rs

RD=5 msec

RD=10 msec

RD=30 msec

Figure 15. Number of Users supported by the system
(delay < 200 msec)

Finally, figure 16 illustrates the number of users supportable with
28.8 Kbps modem access.

By looking at the above graphs, we can conclude that the system
can support “many” users. Even though the plots suggest that
theoretically thousands of users can be supported, the fact is that
the actual number of users supportable is less. The reason is that
the linear behavior of the system diminishes as the number of
users increases: the performance of the machine(s) running the
server decreases substantially as we approach the limit of
maximum allowable socket connections on the equipment; also
the underlying physical network becomes slower with increasing

number of users. So the hardware/OS of the server machine and
the network either cannot support so many simultaneous users, or
their performance decreases significantly. Nevertheless, this
shows that the underlying communication module of JETS can
support small-size and medium-sized collaboration sessions of
hundreds of users, resource permitting.

300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

RD=10 msec RD=100 msec

RD=500 msec

Maximum number of users supportable on 28.8 modem

Delay (msec)
nu

m
be

r o
f u

se
rs

Figure 16. Number of users supported by the system

(modem access)

4 JASMINE
JASMINE (Java Application Sharing in Multi-user INteractive
Environments) [6] is a prototype which allows a group of users to
share almost any Java applet or application available on the
Internet. The idea is that any applet not designed to be used
collaboratively can be used as such through JASMINE.

Figure 17. JASMINE’s Architecture

JASMINE takes advantage of the many useful resources and
objects that have been developed as Java applets or applications
and which are available on the Internet. One can access these
resources by simply downloading them from different
repositories. In many instances, a group of users may wish to
share these resources in real-time, such as when an instructor
teaches remote students how to use a certain resource or explains
to them the theory behind it. JASMINE allows the sharing of
these Java applets and applications in real-time without requiring

modification of their code as well as allowing an instructor to
dynamically manage the collaborative session as detailed below.

Figure 17 illustrates the overall concept with JASMINE
framework wrapping around an applet that is to be shared (Figure
17.a). The framework listens to all events occurring in the
graphical user interface of the applet and transmits these events to
all other participants in order to be reconstructed there. The
framework captures both Java AWT-based and Swing-based
events. After capturing the event, it is sent to the communication
module where the event is sent to all other participants in the
session (Figure 17.b).

Figure 18 shows a sample JASMINE session, where arbitrary
applets and resources from the Internet have been brought into the
session dynamically. Since any Java applet or application can be
brought into the session, JASIMNE has an unlimited extendibility
with each resource enhancing JASMINE dynamically.

Figure 18. Main JASMINE Application

JASMINE also allows one to manage the session and granting
access to specific parties. Such a feature is useful for
environments where some tighter control is needed such as
teletraining where the lecturer may wish to prevent students from
changing the presentation without permission similar to the real
world moderation of a classroom or meeting. Figure 19 below
shows such features of JASMINE

As shown in Figure 19.a, an instructor who has logged into the
session with a special password can enable moderation by
pressing the moderation button. Once this button is pressed, any
participant wishing to interact with the shared applications must
ask for permission by pressing the permission button. The
moderator receives each user’s requests which can each be
granted or denied (Figure 19.b). Should the moderator decide to
grant permission, the participant sees a green light on the
permission button (Figure 19.c) and can interact with the
application. The moderator can “cut off” any participant by
pressing the cut button next to the participant’s name (Figure
19.d).

The architecture was developed aiming at enabling collaboration
via collaborative-unaware applications and applets without the
need for modifying the source code of such applets. JASMINE’s
architecture enables the use of almost all single-user applets and
applications in a collaborative way. With the popularity and

widespread use of computing environments where Java
applications and applets are running over IP, JASMINE’s
architecture helps people to collaborate in such environments
easily.

Figure 19. Moderation in JASMINE

The JASMINE client is responsible for capturing events, sending
events to the server, receiving events from the server and
reconstructing events locally. It is a Java application that consists
of four important components:

• Collaboration Manager
• Listener Adapter
• Component Adapter
• Event Adapter

The Collaboration Manager is the main component of the client
side. It is responsible for communication between clients and the
server and it provides GUI as well. The Listener Adapter
implements several AWT listeners. After catching an event, the
Listener Adapter converts the event to the remote event and
forwards it to the Collaboration Manager. The Component
Adapter maintains a list of references to the GUI components of
all applications and applets. This list is created in the same order
on each client, so each component has the same reference number
on all clients. The Event Adapter works opposite to the Listener
Adapter. It converts the remote events to local events and applies
them to corresponding components.

Figure 20. JASMINE data flow diagram

The Figure 20 presents the date flow diagram of the client side
architecture. There are two main data paths in the system: the first
path is labeled with 1, 2, and 3. Any Java event occurring in a
Java application is caught by the Listener Adapter. If the event is
a local event, the Listener Adapter converts it to a remote event
and forwards it to the Collaboration Manager. Then the
Collaboration Manager sends the remote event to the JASMINE
server. The second path is label with 4, 5, 6, and 7. The remote
event received by the Collaboration Manager is forwarded to the
Component Adapter. The Component Adapter gets the
information about the source of the event and sends it with the
event to the Event Adapter. The Event Adapter converts the
remote event to a normal AWT event and dispatches the event to
the corresponding component.

Notice that the JASMINE server uses the same communication
techniques as the JETS server and therefore has the same type of
performance characteristics as JETS in terms of network delay
and other parameters discussed in 3.7.

5 JASBER
JASBER (JAva Shared BrowsER) allows a group of users to
share their Netscape browser. In other words, any change in the
HTML content of a given shared browser will be reflected on all
other shared browsers. Figure 21 shows JASBER’s interface.
JASBER is a client applet that communicates with a JETS server.
Once the applet is loaded, a client/server connection is
established. The user can then open a shared browser by clicking
on the appropriated button. Any change made in the HTML
content of that browser (i.e. changing the URL) will result in an
update in the HTML content of the other shared browsers that are
communicating with the server.

Figure 21. JASBER’s Interface

JASBER ensures consistency amongst the various clients through
the following procedure:

• Whenever a user loads a new web page by typing a new web
site address (URL) in the address field of the shared
browser, JASBER will detect such action and forward the
new address to the server. The server then forwards it to all
JASBER clients currently in the session. As a result all
shared browsers that are connected to the server will load the
new web page.

• Whenever a user clicks on a link and as a result changes the
current web page, all other shared browsers will be informed
as well through a similar communication scheme.

• If the user’s action causes a change of web page address in
one or more “frames” that belong to a shared web page,
JASBER will detect it and update the modified frame(s) in
all other shared browsers as well.

The JASBER Applet can be located in a single and known web
server. Once the HTML page from such server is loaded,
JASBER starts up as an Applet and opens a communication
channel to the appropriate JETS Server. Users who are interested
in a shared browsing session could simply visit the known web
server and launch the shared browser, hence joining the current
collaborative session.

JASBER is a pure Java applet and, as such, it works in any
platform with a standard Java Virtual Machine (JVM)
implementation, such as Windows, Linux, Unix, Mac, etc.

Figure 22. JASBER’s Architecture

Standard Java classes such as Vector were used for the task of
collecting the list of URLs gathered from the current browser
page. The task of client-server communication is achieved
through the use of JETS libraries, which provide a simple, yet
effective, framework for JASBER. JASBER also uses some
Netscape classes that provide means of negotiating security
permissions with the user. These Netscape classes are, however,
not compatible with browsers other than Netscape
Communicator.

As it is shown in Figure 22, JASBER consists of three main
modules. URLApp is a module that uses JETS classes to
communicate with the server. WatchBrowser is a subclass of Java
Thread and continually monitors the current URL of the shared
browser. The module that directly reads and writes to the shared
browser is BrowserControl. Since reading and changing the
properties of a broswer requires permission of the users, this
module makes use of Netscape security classes to meet such
requirements.

URLApp
Communicates changes
in URL with the server.

BrowserControl
-Reads the current URL
-Sets new URL

WatchBrowser
Continually receives URL
from BrowserControl and
compares it with previous
URL.

Start
monitoring

Get current URL

Set new
URL

URL change
observed

6 JAVA AND VIRTUAL ENVIRONMENTS
An area where Java is perhaps not thought of as a viable option is
in the development of distributed virtual environments. With the
release of Java3D API however, developers can quickly and
easily develop 3D applications and applets entirely in Java. We
have developed such an application for the purpose of remote
industrial training in a virtual setting. Two geographically distant
users engage in a session where a trainer teaches the trainee how
to install various hardware components. Java is used as the core
technology, as well as for rendering, user interface,
communication and multimedia integration. Figure 23 shows the
architecture of the application and the various Java technologies
used.

Figure 23. Java in Virtual Environment Architecture

While Java3D provides a flexible and powerful 3D rendering
API, the Java Native Interface has been used to connect our
applications with several input devices such as CyberGlove,
6DoF miniBird and Phantom haptic device. Java Media
Framework is used to integrate video and audio capabilities with
the rest of the application.

All the Java technologies mentioned have allowed us to develop
sophisticated distributed virtual environment applications
involving immersive and stereoscopic displays, multiple input
devices and mixed media environments (such as video inside 3D
world). Figure 24 shows a training application using a
CyberGlove to track the movements of the hand and a Phantom
for haptic feedback (both connected via JNI), JMF transmission
of trainer video and rendering it inside a Java3D scene.

The main advantage of using Java technology for the
development of distributed virtual environments has been
platform independence. This has been well illustrated during a
recent move of our PC-based solutions to SGI-based ONYX
machines. All our applications developed on Windows OS have
been easily transferred to run on the Irix platform without a need
for recompilation of the Java code. Hence we are now able to run
our distributed virtual environment applications on both
platforms. Figure 25 shows the same training application running
on SGI ONYX.

In addition to inheriting the previously mentioned beneficial
features of Java such as interoperability, the high-level
programming interface of Java3D has the added benefit of
allowing quick development of 3D applications without expertise
in the field of computer graphics. The ability to include synthetic
media (3D graphics) in Java applications and applets opens up yet

another avenue in the field of multimedia collaboration where
Java can have a significant impact.

Figure 24. Remote Training Using Multiple Input

Devices, Video and 3D Media

Figure 25. Java3D on SGI ONYX

User Interface
(Java Swing)

Rendering
(Java3D)

Multimedia Integration (JMF)

Application Core
(Java)

Communication (Java Sockets)

Input Devices
(JNI)

7 RELATED WORKS
There are many Java-based collaboration systems, none of which
offer a management or moderation feature similar to JETS or
JASMINE. Kuhmünch [18] has developed a Java Remote Control
Tool, which allows the control and synchronization of distributed
Java applications and applets. Similar to JETS, this approach uses
an API that Java applets and applications must use to become
shareable by the system. The Java Shared Data Toolkit (JSDT)
from JavaSoft is also an API-based framework. Habanero [16] is
an approach that supports the development of collaborative
environments. Habanero is in its terms a framework that helps
developers create shared applications, either by developing a new
one from scratch or by altering an existing single-user application
which has to be modified to integrate the new collaborative
functionality. Instead of using applets, which can be embedded in
almost every browser, the Habanero system uses so-called
“Happlets” which need a proprietary browser to be downloaded
and installed on the client site. Java Collaborative Environment
(JCE) has been developed at the National Institute of Standards
and Technology (NIST) coming up with an extended version of
the Java-AWT [20] called Collaborative AWT (C-AWT). In this
approach AWT-components must be replaced by the
corresponding C-AWT components.

All these approaches propose the use of an API, which has the
cost of modifying the source-code of an application, re-
implementing it or to design and implement a new application
from scratch in order to make it collaborative. Another possible
approach is the use of X Window System protocol like SharedX
[17] or technologies based on NetMeeting [19] under Windows.
However, this approach is not amenable to any group of users
because NetMeeting runs only on Windows and SharedX needs
the installation of an X Server and X Clients. Moreover
NetMeeting does not provide the moderation capabilities
presented in this work.

8 CONCLUSIONS
We have presented a number of Java based Multimedia
Collaboration Tools. jStreaming stands by itself and allows
streaming of H.263 video among Java enabled peers. JETS allows
a group of users to collaborate in a shared whiteboard, where
various medium are shared amongst the various participants of a
Jets session. One such medium is H.263 streams, where
jStreaming is used to allow the various users to share a streaming
video. JASMINE goes one step further and allows a group of
users to share almost any Java Applet or application, even those
designed without collaboration in mind. JASMINE accomplishes
collaboration without requiring any change in the Applets. Finally
JASBER allows a group of users to share a web browsing session
so that everyone can see the same content as everyone else.
JASBER makes use of a JETS server to control the consistency
among the various users. The COSMOS framework presents new
possibilities in using Java for developing Collaborative Virtual
Environments.

The set of applications presented show the great potential of the
combination of Java and the Internet for Collaborative work.

jStreaming and JETS have been certified in Sun’s 100% Pure
Java™ program as well as Novell’s “Yes” logo program. A
former version of jStreaming has been the third prize winner in
the ACM/IBM Quest for Java’97. A former version of JETS has
been a First Prize Winner in the ACM/IBM Quest for Java’98.

jStreaming and JETS have been licensed to several companies in
three countries so far. jStreaming has also led to the 2001 OCRI
Futures Award – Student Entrepreneur of the Year Award.

ACKNOWLEDGEMENTS
We acknowledge the financial assistance of the Brazilian
Ministry of Education Agency’s CAPES scholarship, the Ontario
Research and Development Challenge Fund, the TeleLearning
Network of Centres of Excellence, the Communication and
Information Technology Ontario (CITO) and Newbridge
Networks/Alcatel.

REFERENCES
[1] J. C. de Oliveira; S. Shirmohammadi and N. D. Georganas,

“Collaborative Virtual Environments Standards: A
Performance Evaluation”, IEEE DiS-RT’99, Greenbelt, MD,
October 1999.

[2] J. C. de Oliveira, X. Shen and N. D. Georganas
Collaborative Virtual Environment for Industrial Training
and e-Commerce, Invited Paper, IEEE VRTS'2000
(Globecom'2000 Conference's Workshop on Application of
Virtual Reality Technologies for Future Telecommunication
Systems), San Francisco, CA, November 2000.

[3] J. C. de Oliveira, M. Hosseini, S. Shirmohammadi, M.
Cordea, E. Petriu, D. Petriu and N. D. Georganas –
“VIRTUAL THEATER for Industrial Training: A
Collaborative Virtual Environment”, Proc. 4th World Multi-
Conference on Circuits, Systems, Communications &
Computers (CSCC 2000), Vouliagmeni, Greece, July 2000.

[4] International Telecommunication Union,
Telecommunication Standardization Sector - Audiovisual
and Multimedia Systems – Infrastructure of audiovisual
services – Coding of Moving Video – “Video Coding for
low bitrate communication” – ITU-T Recommendation
H.263, February 1998.

[5] S. McCane; V. Jacobson. - "vic: A Flexible Framework for
Packet Video" – ACM Multimedia’95, San Francisco, CA,
November 1995.

[6] S. Shirmohammadi, A. El Saddik, N. D. Georganas, and R.
Steinmetz, "JASMINE: A Java Tool for Multimedia
Collaboration on the Internet", Journal of Multimedia Tools
and Applications Vol. 18, No.3, 2002

[7] S. Shirmohammadi and N. D. Georganas, JETS: Java-
Enabled TeleCollaboration System", Proc. IEEE Multimedia
Systems'97, Ottawa, June 1997.

[8] S. Shirmohammadi, J. C. Oliveira and N. D. Georganas,
"Applet-Based Telecollaboration: A Network-centric
Approach", IEEE Multimedia, Spring/Summer 1998.

[9] Multimedia Communications Research Laboratory,
“JETS2000 User Manual”, 2001

[10] V. Darlagiannis and N. D. Georganas, “Virtual
Collaboration and Media Sharing using COSMOS,” Proc.
4th WORLD MULTICONFERENCE on Circuits, Systems,
Communications & Computers (CSCC 2000), Greece, July
2000

[11] S. Shirmohammadi, L. Ding, and N.D. Georganas, "An
Approach for Recording Multimedia Collaborative Sessions:
Design and Implementation", Journal of Multimedia Tools
and Applications, Vol. 19, No.1, 2003

[12] http://www.javasoft.com
[13] http://jStreaming.com/~jauvane/H263Decoder/JDK1.1

[14] http://www.mcrlab.uottawa.ca/jets
[15] Multimedia Communication Forum Inc., “Multimedia

Communication Quality of Service”, MMCF document
MMCF/95-010, Approved Rev 1.0, September 24, 1995

[16] A. Chabert et al, “Java Object Sharing in Habanero”,
Communications of the ACM, Volume 41, No. 6, June 1998,
pp. 69-76.

[17] D. Garfinkel, B. Welti, T. Yip, “HP SharedX: A Tool for
Real-Time Collaboration”, Hewlett-Packard Journal, April
1994, pp. 23-26.

[18] C. Kuhmünch, T. Fuhrmann, G. Schöppe, “Java Teachware
- The Java Remote Control Tool and its Applications”, Proc.
ED-MEDIA/ED-TELECOM'98, Freiburg, Germany, 1998.

[19] Microsoft Corporation, “NetMeeting Resource Kit”,
<http://www.microsoft.com/windows/NetMeeting/Corp/resk
it/>, 1999, last accessed: Oct. 18, 2000.

[20] H. Abdel-Wahab et al “An Internet Collaborative
environment for Sharing Java Applications” IEEE Computer
Society Workshop on Future Trends of Distributed
Computing Systems (FTDCS'97), October 29 - 31, 1997, pp.
112-117.

