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Abstract 
In this paper we propose a middleware infrastructure adapted for supporting scientific visualization 
applications over a Grid environment. We instantiate a middleware system from CoDIMS, which is an 
environment for the generation of Configurable Data integration Middleware Systems. CoDIMS adaptive 
architecture is based on the integration of special components managed by a  control module that executes 
users workflows. We exemplify our proposal with a middleware system generated for computing particles 
trajectories within the constraints imposed by a Grid architecture.  

 
1. Introduction  

CoDIMS (Configurable Data Integration Middleware System) [1] is a middleware environment for the 
generation of adaptable and configurable data integration middleware systems. Data integration systems 
[2,3,4,5,6,7,8,9] were designed to provide an integrated global view of data and programs published by 
heterogeneous and distributed data sources. Applications benefit from these type of systems by 
transparently accessing published resources independently of their localization, data model and original 
data structure. 

With CoDIMS we aim at providing an architecture that can be adapted to new data integration 
application requirements, so that light weight middleware systems can be generated that conform to the 
requirements of the applications.  

In this paper we focus on the configuration of the CoDIMS environment to support the execution of 
scientific applications in a grid architecture. As an example of such applications, we consider the 
computation of particles (i.e. virtual particles) trajectories for a flow vizualization application. The 
trajectory computing problem (TCP) combines the processing of huges datasets, storing particles and 
velocity information in a time instance, with intensive calculations for the interpolation of particles 
positioning in the path.   

Our goal is to devise a middleware system to be used in experimentations with different strategies for 
the efficient computation of particles trajectory in a flow through the use of a Grid [10] infrastructure being 
developed at the LNCC (http://netra01.lncc.br). We introduce the initial design of such architecture and 
sketch a possible parallel execution engine. 

The rest of this paper is organized as follows. In Section 2 we introduce some background in data 
integration and on the fluid dynamics problem. Next, we in Section 3 we present the CoDIMS approach 
and its architecture. Section 4 presents the particles tracing problem and specify the middleware 
components that support its computation in a grid environment. Finally, Section 5 concludes and points to 
future work. 
 
2. Background and Related Work 

According to [11] and [12], database research groups must explore extensibility and componentization in 
systems development, in order to generate efficient, flexible, and lightweight systems. In the first half of 
the nineties, some important projects proposed techniques to produce extensible DBMS. EXODUS [13] 
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and GENESIS [14] were the first projects that proposed a more general approach for DBMS construction 
through DBMS generators.   

More recently, the development of software based on component [15] [16] has gained importance as a 
technique for developing flexible systems. New application requirements can be served by modifying 
existing components or by adding new ones with compatible interfaces. 

The problem of integrating heterogeneous data sources has received a great attention from the database 
community. This can be noted by the number of systems proposed, each one having a special type of 
application in view. One may want to classify these initiatives according to the type of application they 
were designed for supporting. A first category includes those systems specificaly designed to integrate data 
from different sources that are the basis for the creation and maintenance of Web sites, like Araneus [2] and 
Strudel [3]. A second category groups those systems based on mediation technique, like: TSIMMIS [4] and 
DISCO [5]. A third category are database oriented: MIRO-Web [7], Garlic [8]. Finally,  MOCHA [9] and 
LeSelect[6] are considered data integration middlewares, in the sense that they extend tradional data 
integration services with mechanisms for user defined function execution. In this scenario, user queries can 
be seen as simplified workflows over distributed and heterogeneous data and programs. 

As suggested by the above classification, these systems are designed having a specific application in 
mind. Supporting new application requirements may entail quite a strong developing effort. Systems 
directed towards supporting a wide spectrum of applications are commonly large and heavy which 
translates into execution inefficiency and complexity in use. 

The middleware been proposed aims at addressing scientific vizualizatoin problems. As an example of 
such applications we will consider particles tracing problems [17,18,19,20]. Such problem can be 
mathematically defined by an initial value problem [17]:  

 
dx /dt = F(x,t), x(0)=P0,    (1) 
 

where F:R3x R+ -> R, is a time-dependent vector field (velocity, for example). The solution of problem (1) 
for a set of initial conditions gives a set of integral curves which can be interpreted as the trajectory of 
massless particles upon the flow defined by the field F(x,t). Other particle tracing methods can be used 
(streamlines, streaklines, etc.) through slight modifications of the above equation [17]. 
The problem (1) in general does not have analytical solution. Thus numerical methods must be used [21]. 
These methods basically generate the particle trajectory step-by-step following some scheme for field 
interpolation inside cells[19]. 
 

Figura 1 CoDIMS: architecture overview 
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3. The CoDIMS Approach Overview 

In this section, we give an overview of the CoDIMS approach. CoDIMS is a flexible and configurable 
environment to generate middleware systems. The configuration is obtained through a Control component 
that exports the interface of integrated components and maps user request to an executable workflow of 
services. In other to flexibilize services implementation, they are implemented using the software 
engineering framework technique with hot-spots [15] to be instantiated. Through component reuse or 
adaptation of framework components the environment offers an answer for the generation of heterogeneous 
data integration systems tailored to specific application requirements. 

Figura 2 CoDIMS Components 

A data integration middleware system is responsible for providing access to data that is distributed and 
stored over heterogeneous data sources. Given this general definition, the CoDIMS approach for the 
development of data integration systems specifies some pre-defined interfaces corresponding to data 
integration middleware services (DIMS) commonly presented in this type of systems, which include: 
Metadata Manager, Query Processing, Transaction Manager, Concurrency Control, Rule Manager and 
Communication (see Figure 1). For each of these interfaces we provide different components that may be 
selected into a configured system. In addition, the environment offers a Control component that takes part 
in any configuration. 
New interfaces, corresponding to DIMS not initially previewed, can be added to the environment through 
their publication in the Control component (see section 3.2) and by providing its implementation. The 
added service is included in a workflow sequence to be evaluated by the Control in response to a 
corresponding user request. This is the strategy adopted to extend CoDIMS to support the particles tracing 
problem. 

The flexibility obtained with these techniques can be summarized as follows: 
•  DIMS components: provides data integration services fucntionality. 
•  Framework modules: provides DIMS behavior flexibility. 
•  Control component: enables DIMS integration into a configured system. 

DIMS component are described in the following section. 

3.1. System Components Description  
The CoDIMS environment includes some basic data integration functionality implemented by the so called 
predefined DIMS as well as some interfaces modeled to support DIMS integration and the Control module 
for managing such integration. In this section, we briefly describe the functionality of predefined DIMS: 
•  The Metadata Manager component is responsible for managing data source and global schema metadata. In a 

grid environment, this component transparently maps users data views to distributed data sources. User data 
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views are expressed according to a canonical data model adequate to the characteristics of supported 
applications. The set of user data views is called integrated global view. Users formulate queries over objetcs in 
the global view. The mapping of global views to physical data sources is also expressed through the Metadata 
Manager component. 

•  The Query Processing component (QPC) is the most important one in a CoDIMS middleware system. 
It provides for the efficient evaluation of queries over distributed resources within a grid environment. 
Within the grid, QPC is extended to support data distribution and query parallelism. It interfaces with 
Metadata Manager to obtain: mapping information, data sources schema, statistics and localization 
information.  

•  The Communication component is responsible for the communication between the middleware system 
and each data source. A wrapper translates local sub-queries into specific data source access method 
calls, as in others mediator systems. 

•  The Transaction Manager component is responsible for providing transaction ACID properties 
(Atomicity, Consistency, Isolation, and Durability) to applications, in cases where updates of data 
sources are allowed. This component will not take part into the grid middleware instance. 

•  The Concurrency Control component provides mechanisms for implementing the isolation of 
concurrent transactions. This component will not take part into the grid middleware instance. 

•  The Rule Manager component enriches the system with active behavior as proposed in [22]. This component 
will not take part into the grid middleware instance. 

DIMS components are integrated via the Control component that is described in the following subsection.  

3.2. The Control Component  
The Control component is the essence of the CoDIMS environment. The Control stores, manages, 
validates, and verifies both Physical and Logical Configuration. Physical configuration corresponds to the 
selection of DIMS components, their customization according to application requirements, and registration 
in the catalog. The selection of DIMS components is subject to the set of offered and required operations 
that each DIMS specify. By matching the requirements of all selected DIMS in a configuration, the Control 
component validates it. 

Logical configuration referes to the execution logic that integrates DIMS components during the 
evaluation of a user request. The CoDIMS approach achieves a complete adaptability in terms of services 
to be executed in a configured system, by associating to an user request a workflow program [25] of DIMS 
invocation. New configurations require the specification of a workflow program to each of its user requests. 

During execution, the Control component automatically responds to client requests by scheduling 
DIMS services, based on its workflow, and proceeding with DIMS invocation.  

Figure 3 presents the Control component class model, its facade and its three main modules. In the 
diagram, some specific notation expresses the facade class as extensible, symbolizing its implementation as 
an OO framework and static, meaning that the module is not reconfigurable during execution. 

Figura 3 Control Component 
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The Catalog specifies the physical configuration, which registers each DIMS component present in a 
configuration, including its name and offered and requested operations. The Workflow module stores 
workflow programs associated to user requests. Finally, the Scheduler module evaluates workflow 
programs by following its execution logic and invoking DIMS services, accordingly. 

The user of the CoDIMS environment generates a configuration through a process that we present in the 
next subsection. 

3.3. The Configuration Process 
The Control, Communication, Query Processing, and Metadata Manager components must exist in all 
configurations. According to the application requirements, other components may be included. The range 
of possible configurations of CoDIMS can vary from a midlleware with the functionality of a simple 
wrapper to a complex HDBMS. In cases where a full HDBMS functionality is required the middleware 
system could incorporate the Transaction Manager and Concurrency Control components. 

The process of generating a specific configured system comprehends the following phases: 
•  Design: the system designer selects the necessary DIMS components. In this phase, new DIMS 

components may be projected or existent ones may need adaptation;  
•  Configuration: the system configurator registers the physical and logical configuration in the Control 

component. For this, two script files are executed by the operations: define-configuration and define-
workflow; 

•  Load Metadata: the application designer (database administrator) defines local, external, and global 
metadata through three scripts files to be processed by the define-metadata function.  

During the Configuration step, the Catalog module check-configuration method verifies if all the 
required services are being offered by the components interfaces that participate in the configuration. In a 
similar way, the check-operation method verifies if all operations defined in the workflow are being offered 
by the specific component. After all these phases, the system is configured and ready for client requests.  

4. A CoDIMS Configuration for the TCP in a Grid 

In this section we sketch the extension of the CoDIMS environment to support the particles trajectory 
computing problem (TCP) in a grid architecture.  

4.1. The Particle Trajectory Computing Problem 
Before discussing the middleware architecture, a more detailed presentation of the TCP problem is 

required. This work simulates virtual particles trajectories by interpolating their positions through a path 
based on velocity vectors associated to the Domain Model. Information regarding particles initial position, 
domain decomposition and fluid velocity vectors are given to the problem [19]. These information are 
modelled as relations: 

•  Particles (part-id,time-instant,point):  particles in their initial position in a time instant;  
•  Geometry (id, tetrahedron ): cell domain decomposition, modelled as tetrahedrons; 
•  Velocity (point,time-instant,velocity): fluid velocity in cell vertices;

In addition, we consider a program trajectory(particle-id, point, velocity), that computes the next position 
of a given particle, producing a tuple t (part-id,point). 

The computation of particles path consists of estimating particles positions in a path for a certain time 
interval. Each record corresponds to an instant in time and is represented by data according to the above 
schema. The TCP aims at interpolating particles position through the fluid path between record intervals.  

 
 
 
 
 
 

Figura 4 Interpolating particles position between instants ti and ti+δδδδt 

ti

ti+δt
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The computation of particles position in a time instant can be expresses as an SQL-like query embedded 
in a TCP procedure, such as: 

Begin TCP procedure  
     for i= 1 to number-iterations  do 

select  part-id,  trajectory(p.part-id, p.poin t,  v.velocity) 
 from Particles p, Geometryg, Velocity v 
 where 
  contains (p.poin, g.tetrahedron)  and  

  matches(g.tetrahedron, v.point, p.time-instant) 
end TCPprocedure 
The TCP procedure computes particles subsequent positions up to the number of defined iterations. The 

computation is encapsulated in an SQL-like query. The user-function contains finds a tetrahedron in 
Geometry whose region contains a virtual particle, whereas matches captures the velocity vectors according 
to tetrahedron vertexes positions. The trajectory program computes the resulting velocity vector and 
particle´s next position in the path. 

The TCP problem is an instance of a class of visualization application problems that will benefit from a 
middleware infra-structure capable of providing an efficient evaluation within a grid environment. Many 
challenges are brought by this application. Initially, we are interested in integrating the middleware within 
the Grid architecture and its standard software (Globus toolkit 3) platform. In respect to the TCP problem 
itself we will be focusing on issues related to the parallel computation of particles trajectory using available 
grid resources. In this initial prototype we will be concerned with three main issues: load balancing the 
parallel computation, managing memory resources and minimizing message exchange between nodes. 

4.2. A CoDIMS middleware for Visualization applications 
In order to deal with the issues raised by the TCP class of applications within a grid environment we 

propose a new CoDIMS middleware system configuration. The CoDIMS instance will comprehend the 
following components: Control, Metadata Manager, Query Processing, and Communication, see Figure 5. 
The Control, Metadata Manager and Communication components implement their traditional functionality, 
whereas the Query Processing component is adapted for supporting the TCP on a grid environment. It 
basically provides for parallel evaluation of particles trajectory within grid nodes. 

The generated middleware completely encapsualtes the grid environment in respect to the visualization 
application. It provides: a set of adapted components, implemented as web services[27]; flexible scheduling 
of services coordinated by the Control component and transparent access to data sources. The main 
functionality is implemented in the Query Processing component that is responsible for the efficient 
computation of particles trajectory. 

In the next section we detail the Query Processing component. 

 

Figura 5 The TCP CoDIMS architecture 
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4.2.1.  The Query Processing Component (QPC) 
The TC problem once modelled as an SQL-type query and corresponding relations allows us to use query 
processing techniques in order to cope with issues raised in section 4.1. The grid environment can be seen 
as a loosely coupled query processing system for which parallel and distributed strategies have been 
developed. In particular, one may try to use parallel query processing techniques to deal with the issues 
presented in Section 4.1. 
Before describing the techniques proposed to parallel the TCP, we will describe the modules designed to 
integrate the Query Processing component for this CoDIMS instantion. 

The Query analysis module evaluates the syntactic and semantic correctness of user requests. Data 
partitioning receives a partitioning policy; retrieves the corresponding relation fragments and stores them in 
the designated node. Finally, the Query Processing module process a query execution plan (QEP). Figure 5 
presents the configured system components: Control, Metadata Manager, Query Processing, and 
Communication.  

 
Figura 6 Physical and Logical Configuration 

On the top of Figure 6 we present the definition of the Query Processing component with its offered 
and requested operations, including their parameters. 
In the logical configuration we provide a workflow that defines services schedule. A workflow instance is 
loaded by the Control component according to user requests. Next it starts its execution following the order 
stablished by the workflow. On the bottom of Figure 6 we present a definition for the TCP workflow.  
Having given a general overview of the QPC component we present in more detail, in the next section, the 
Query Engine module. 

4.2.2.  The Query Engine Module 
The process of computing particles trajectory is modelled through a parallel query execution plan, similar 
to the ones in traditional database systems [12]. A query execution plan is evaluated by the query execution 
module. Query evaluation will include treatment for: data partitioning, data transfer and management of 
local memory. 

In respect to data distribution, a main concern is to efficiently partition and transfer the domain 
geometry dataset between grid nodes. On this matter, two main aspects are considered: the data volume 
initially transferred between the database and the processing nodes and the volume of message exchange 
during query evaluation. Secondly, regarding memory management we need also to consider out-of-core 
problems, i.e techniques to deal with data volumes that do not fit completely in main memory. 

Define Component  QueryProcessing
Offered - Operations 
analyze 
partition 
query-engine 

Requested- Operations 
meta - data, get - object - MD (int id, string MD-type, string object-name, string obj, int RC) 
Communication, exec - subquery (int id, string DS-name, string subquery, string result, int RC) 
Communication, get - next -data (int id, string DS-name, string data, int RC)

End - Component 
Define Workflow  TCPA 
Operations 

QueryProcessing (analyze);
QueryProcessing (partition)- 

QueryProcessing (query-engine, query) 
); End - Operations 

Parallel

(int id, string procedure, int RC) 
(int id, string policy, string relation, int RC) 

(int id, string op-tree, int RC )
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This first prototype solution adopts the Spatial Hash-Join(SHJ) algorithm [23] for supporting the 
evaluation of the contains user-defined function. The intuition is that we can replicate the whole domain 
geometry relation (Geometry) on each available node of the grid. The first step of the SHJ will spatialy split 
the domain geometry in b buckets, each measuring size(D)/Mi, where D is the size of the domain geometry 
representation in bytes and Mi is the size of available memory in node i (see Figure 7) minus a constant 
corresponding to the memory needed for query operators and processing tuples. 

Figura 7 First step in the Spatial Hash-Join 

Once the domain has been entirely processed by step1, the first bucket is copied to memory and step 2 
begins. In the second step, sets of particle tuple are read and placed into an input buffer. Each particle is 
then processed by the spatial hashing function according to its current position. If the produced bucket-id is 
in memory, the tuple is directly joined with the tetrahedrons in the correspondig cell. Otherwise, it is stored 
in a patricle bucket for later evaluation, (see Figure 8). In Figure 8, we observe that the trajectory user 
function is treated as an operation in the query operator tree. An interesting aspect of this SHJ 
implementation is that a tuple produced by the join is returned to the input queue until it has passed through 
a specified number of iterations. This is not standard, considering traditional hash-join algorithm [28], and 
may cause extra swapping of buckets to and from memory. 
 

 

Figura 8 Spatial Hash-Join step 2 

Our main motivation for adopting this strategy is to guarantee that a complete particle trajectory can be 
computed in a single node, eliminating inter-node communication. Furthermore, as a consequence, we can 
devise a partition policy regarding uniquely the number of particles to be processed by each grid node, 
which is the basis for a balanced execution. 

A CoDIMS configuration for supporting the TCP is being implemented at the LNCC.  

5. Conclusions and Future Work 
The Grid environment opens new opportunities for supporting large scale applications. In this paper, we 
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propose CoDIMS-Grid, which is a middleware, based on grid services and distributed database technology, 
designed for the efficient evaluation of scientific queries over the Grid. 

Our work is motivated by a particle path computation problem within the scientific visualization 
domain. The intuition is to build upon the experience on parallel and distributed query processing to offer 
efficient computation of scientific queries in the Grid environment. Particles trajectory path computation is 
modeled as a special case of the bag of tasks parallel type of problems, where for each time instant we need 
to compute a particle next position based only on its current position and a velocity vector in the flow. In 
particular, we are interested in how to parallel the computation of particles trajectory in grid nodes subject 
to: restrictions on the memory size of each node, in respect to the path geometry data, and the high cost of  
inter-node message interchange during computation. 

We extended the Hash Join algorithm to support spatial hashing functions and to allow for multiple join 
evaluations for the same tuple, according to the number of iterations. We aim also to reduce inter-node 
messaging by splitting the geometry data with a spatial hashing function and locally materializing resulting 
buckets.    

We are now implementing the first version of the CoDIMS-Grid middleware. The project opened up 
new problems to be investigated, such as: 

•  how to dynamically divide the geometry space according to the type of fluid flow; 
•  how to schedule grid nodes for parallel evaluation; 
•  how to dynamically instantiate query engine services in scheduled nodes; 
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