
Real-time
collaboration
systems, in which
participants share
multimedia
documents and
applications, have
attracted interest for
many years. The JETS
system provides a
generic multimedia
telecollaboration
framework that
enables sharing of
Java applets through
the Internet.
Experimentation
with JETS revealed
practical design and
implementation
issues, as well as the
essential require-
ments of such
systems.

T
he introduction of Java as a platform-
independent programming language
for the Internet has significantly affect-
ed related technologies. Embedding

Java applets in HTML documents means applica-
tions now go to users in the form of applets instead
of users having to find and install them. Users only
need a Java-enabled platform, such as a Web
browser, to access these applications.

This Web-based approach is sometimes referred
to as network-centric computing—users gain access to
“computing” by simply connecting to a network
and clicking on the correct link. They can then run
any application provided by the network without
having that application preinstalled on their
machines, worrying about application level plat-
forms, or considering hardware compatibility.
Superficial analysis of such a computing method
indicates that this approach has many advantages
over desktop-centric computing. Users can trans-
parently launch applications from a computer, a
network station, or even a Java-enabled Web tele-
vision in a just-as-needed, just-in-time fashion.
Also, the management and maintenance of overall
computing infrastructures will become simpler and
cheaper. System administrators will upgrade or
manage applications on a few servers as opposed to
each and every desktop machine in their system.

Today, many experts consider Java Internet
computing’s de facto programming language.

Java’s Web accessibility and platform-indepen-
dence—its most important properties—set it apart
from other type of programs. We assume that
most readers are familiar with Java applets and
refrain from discussing them further.

Almost parallel to the Java paradigm, Web-
based telecollaboration has also received much
recent attention. Although computer supported
cooperative work (CSCW) systems have existed
for a long time,1 Web-based collaboration tools
that permit sharing multimedia applications
among participants on the Internet have emerged
only recently. Microsoft NetMeeting, Vocaltec
ICP, and Netscape Collaborator, for example, are
also equipped with audioconferencing capabili-
ties. Some Java-based collaboration tools available,
like the NCSA Habanero and the Java Collabora-
tive Environment (JCE), allow sharing of basic
multimedia applications. However, few of these
tools use applets as their collaborative applications
base.

Although applets can usually be shared and
converted to applications, a fundamental differ-
ence exists between sharing applets and applica-
tions: In practice, applets can be shared through a
Java-enabled Web browser or a network station.
Not only platform-independent, this method also
requires no downloading or installation of any
specific software or application by the user. If a
user navigates to a URL and joins a session using
new applets, the browser downloads them from
the server. Furthermore, users will always have the
latest version of the applet—not the case with
applications. Stand-alone applications cannot be
shared using a Web-browser. This means that a
package must be downloaded and installed on
every user’s machine taking part in a collaboration
session—an approach very similar to non-Java
applications using collaboration. In short, Java
application sharing emphasizes Java’s portability,
whereas Java applet sharing takes a more network-
centric approach.

There are two main schools of thought for
designing telecollaboration sessions, or any multi-
user environments for that matter. One approach
uses a central server to pass information between
clients as well as provide specific services. The other
uses a noncentralized system and eliminates the
need for a server. In this article, we present a client-
server architecture for sharing Java applets. We also
discuss collaboration issues that we came across
while designing our Java-Enabled Telecollaboration
System (JETS) prototype and propose solutions
based on our experience with that prototype.

64 1070-986X/98/$10.00 © 1998 IEEE

Applet-Based
Telecollaboration:
A Network-
Centric Approach

Shervin Shirmohammadi, Jauvane C. de Oliveira,
and Nicolas D. Georganas

University of Ottawa, Canada

Feature Article

.

Collaboration architecture
Server-based and server-less collaboration have

certain trade-offs: server-based has simpler clients,
avoids complex distributed algorithms, and easi-
er implementation, while server-less has a poten-
tial increase in the maximum number of clients
and avoids an extra entity performing server
duties. In the case of Java applets, using a central-
ized approach proves more practical than using a
fully distributed architecture.

From a network-centric point of view, remem-
ber that client machines have to download the
Java applets from a central server. This means that
a server already exists, integral to the system.
Furthermore, as part of Java’s built-in security
restrictions, applets only make network connec-
tions back to the server from which they came
and can only manipulate files on that server.
Although new releases of Java have more flexibil-
ity, letting the user give more permissions to a
Java applet, it is recommended writing applets
that can work in any environment. Hence, using a
server provides many benefits. In addition, using a
server-based approach solves many implementa-
tion issues more easily than an approach without
a central server.

Implementation issues
Figure 1 shows a simple sketch of a client-

server system. The identical applets run on differ-
ent clients. When a user interacts with the applet,
clicking a button, drawing a line on the screen, or
rotating a 3D object generates one or more events.
Each event produced at the client is sent to the
server, which multicasts it to all other clients. The
other clients then process the event as if it were
generated locally and thus recreate the original
client’s intended actions. This event broadcasting
method has proven a better approach than dis-
play broadcasting, where sharing results from
graphically displaying the applications with
which the originating user interacts.2

Two types of servers run on the central
machine: a Web server that simply sends HTML
documents with embedded applets to requesting
clients and an application server to which the
applets establish connection to telecollaborate. As
a convention, the term server in this article refers
to the second type unless otherwise stated. Many
issues arise that a multiuser collaboration envi-
ronment such as that in Figure 1 must address,
mainly latecomers, participant awareness, man-
agement, event collision, and synchronization.

Latecomers
A user joining a session already in progress

must obtain the current states of the shared appli-
cations. Using a central server, the newcomer can
receive these states in two ways. One is to play
back the sequence of events—event logging.3 This
not only requires huge buffers, but also might be
unstable because of an expired entity (a data file
being erased at some point). The other approach
keeps track of the applications’ current object state
and sends them to the newcomer.4 Java’s object
serialization can easily achieve this by transpar-
ently sending objects with their current state over
the network.5 However, this requires the server to
multicast user events, keep a copy of the applica-
tion object, and execute the received events to
keep the application’s state current.

Another interesting issue now arises. What
about user events occurring while the state is
being initialized to run in the application or be
sent to the newcomer? Two approaches can
accommodate these events. One locks the appli-
cation while a latecomer joins so that no events
will be accepted by the application until the new-
comer has successfully joined. The drawback is
that it could take a long time for the newcomer to
join, causing interruption in the session. Another
approach uses event logging to buffer events from
when the application state has been sent to the
latecomer until the latecomer is ready to partici-
pate in the session. At this point, the buffered
events are sent to the application state to keep it
fresh. The disadvantage with this approach is the
need for a buffer at the server for every latecomer.

Event collision
Event collision is not a new issue. It has exist-

ed in database management systems (DBMS) for
many years. The problem occurs when the events
of two or more users—generated at approximate-
ly the same time—affect the same data and create
unwanted results. In an on-line presentation, one

65

A
p

ril–Jun
e 1998

Event X

Event X

Event X

Client 1

Applet

Client 2

Applet

Client 3

Applet

Server

1. User interaction
 generates event 2. Event is

 multicasted
 to other
 participants

3. Event is processed by
 receivers as if
 generated locally

Figure 1. A simple

client-server

architecture for event

multicasting.

.

user might advance the
presentation to the
next slide while anoth-
er tries to annotate the
previous slide. As a
result, the annotation
might appear on the
new slide or half of it
might appear on the
previous slide with the
other half on the new
slide. As demonstrated
in Figure 2, only one of

these events should have been allowed.
Some type of access control usually addresses

event collision. Optimistic techniques, such as val-
idation, usually don’t work in situations where
many users in the session have a high degree of
interactivity.6 In validation, checking for collisions
occurs initially and after executing operations. The
assumption in optimistic approaches is that not
many user interactions occur at the same time.
Although sometimes true, this is often not the case
with telecollaboration sessions. Pessimistic tech-
niques, which perform a certain degree of checking
before executing events, seem more appropriate for
real-time telecollaboration. One of the common
pessimistic approaches is locking. When a client
wants to interact with an applet, the applet checks
with the central server to see if the shared applica-
tion is currently available. If so, it locks the appli-
cation to deny other clients availability and
performs its operations. After finishing, it releases
the lock so others can use the application. This
approach works on a first-come, first-serve basis.

Awareness
Awareness is the ability of a given participant

in a collaborative session to feel the existence and
actions of others. According to the literature, as
many as 11 different elements provide this
“feeling”:7

1. Presence: relates to who occupies the work-
space

2. Location: addresses where they are working

3. Activity level: measures activity of other par-
ticipants

4. Actions: what they are doing

5. Intentions: what they will do next

6. Changes: concerns what and where changes
have been made

7. Objects: shows what objects they are using

8. Extents: what they can see and how far they
can go

9. Abilities: what they can do

10. Influence: where they can make changes

11. Expectations: what the current participant will
do next

This issue has attracted interest for many years
in teleconferencing systems, virtual reality, and
3D simulations. In teleconferencing systems,
video is used to watch the other participants, to
be aware of their existence and actions. Awareness
in VR and 3D simulation systems usually comes
through an avatar that tries to mimic the behav-
iors and actions of its user. In non-3D environ-
ments, such as telecollaboration sessions, other
techniques are required.

To achieve awareness, a system can use explic-
it mechanisms, such as direct communication, or
indirect ones, such as simple observation of oth-
ers’ work by noticing the effect of their actions.
The use of a telepointer, like in Microsoft’s
NetMeeting, can improve this awareness. When a
user moves the mouse over an application, the
other participants screens reflect the movement.
This gives all users a clear perspective of elements
1 to 8 defined above.

However, with many users, this method needs
some enhancements. Let’s say 50 users are all
allowed to interact with the application at the
same time; naturally, there will be too many
pointers on the screen to follow. A simple solution
for this problem, the widely used locking mecha-
nism, allows only one user at a time to have access
to the application.8

Again, a central server proves beneficial for this
feature. The server can track information all par-
ticipants and relay to a newcomer, notify others
when a user leaves the session, and manage the
locking mechanism.

Management
Often overlooked by existing implementations,

a session manager proves a key component of a
functional telecollaboration system. Smooth func-
tioning requires a chairperson who controls partic-

66

IE
EE

 M
ul

ti
M

ed
ia

User X annotates
Slide 1

Slide 1

Slide 2

Slide 2

Figure 2. Event collision

(a) what user X

intended, (b) what

actually happened

because another user

changed the slide,

(c) another scenario of

what happened: half of

the annotation is on

slide 1, another half on

slide 2.

(a) (b)

(c)

.

ipants’ access rights for different applications. This
person can dynamically set individual users’ access
rights such as no-access, view-only, and view/interact.
For instance, whenever users abuse their access
rights by controlling an application longer than
allowed, the chairperson can intervene by chang-
ing the user’s access rights. Without this manage-
ment system, a noncooperative participant can
spoil a session. Although not many, some collabo-
ration and conferencing systems implement session
management. The Telemídia Videoconferencing
System (TVS), for example, implements a manage-
ment system controlling participants’ access rights
both manually and automatically.9

A central server can assist implementation of
this issue. The session manager can predetermine
users’ access rights. These rights could be catego-
rized into generic rights such as guest, member, and
assistant, or specific rights such as John Smith. The
access rights can then be associated with the client
applets by specifying them as parameters in the
applets’ HTML code, or by sending them from the
server to the client when the applet is first initial-
ized. Every time a client tries to perform a certain
interaction, the applet first checks locally to see if
the user has access rights. If not, an “access
denied” error message is returned; otherwise, the
user action executes. During the session, when a
manager changes these access rights, the server
sends these changes to the appropriate client
applet.

Synchronization
Another important aspect of collaboration is

synchronization. Typically, individual users in the
same session have different processing powers and
different network access in terms of network band-
width and latency. This creates the possibility that
the state of one copy of the application differs
from the state of another copy. Lack of synchro-
nization will lead to both temporal and applica-
tion state inconsistencies. For example, a user with
high-bandwidth access might quickly bring up an
image from a server and edit it while another user
has not even finished downloading the image.

Hence, a synchronization scheme is crucial in a
collaboration space. Such a synchronization
scheme must support timeliness, causality, and
state awareness to insure consistency among par-
ticipants—not a trivial task.10 In the above exam-
ple, you could implement a mechanism so that no
one can start editing until all participants have
downloaded the image. Obviously, this will not
be very efficient in a case where every user has a

1.5-megabit per second (Mbps) network access
except for one participant who has a 28.8-kilobit
per second (Kbps) network access. Another
approach is to have the editing process of the
faster stations buffered and played back for a slow-
er station once the image has been downloaded.
However, this approach will not give users of
slower stations a fair chance to participate in the
editing process. A central server could be used in
both of the above approaches for different tasks.
These tasks could include tracking image down-
loading, buffering the editing process, and play-
ing it back for the slower stations.

Prototype implementation
To implement the above collaboration tech-

niques, we developed the JETS system. JETS is a
groupware toolkit, written fully in Java, that offers
an API developers can use to create multimedia
applets for collaboration. The API consists of
mostly server side classes that provide the neces-
sary functionality and services for collaboration.
Except for synchronization, JETS supports all of
the issues previously described to some extent. In
essence, JETS uses the client-server architecture
shown in Figure 1. It uses a series of semaphores
on the server to provide locking and also provides
support for latecomers through object state
updates sent to the new client by the server. In
addition to these services, JETS includes some
basic Java applets specifically designed for collab-
oration. Figure 3 shows a typical JETS session run-
ning in the Netscape Navigator browser.

67

A
p

ril–Jun
e 1998

Figure 3. Screen shot of

JETS running in the

Netscape Navigator.

.

Whiteboard
Besides serving as a window for shared color

drawings, the whiteboard can bring up images in
JPEG or GIF format from the Web server and dis-
play them. Users can annotate these images and
start a discussion. The built-in locking mechanism
of JETS forbids simultaneous modification of an
object by more than one user. As seen in Figure 4,
the whiteboard facilitates user conversations by
having a shared chat space participants can use to
exchange textual massages— particularly useful
where audio access is not available.

Figure 5 shows the whiteboard as an online
presentation tool capable of displaying slides
brought from the Web server. These can be
PowerPoint slides saved in HTML format or sim-

ple sequences of images. Participants can annotate
these slides in the same way as the images.

Shared video
A very useful feature of JETS is its ability to play

International Telecommunications Union
Standard (ITU-T) H.263 compliant video in the
whiteboard.11 The video must be stored on the
Web server to work correctly. When a user opens
and starts playing a video file, the video data
streams down to all participants, decoded in real
time (processor permitting), and displayed in their
whiteboard. Users can also play the video frame
by frame as well as annotate a frozen frame
(shown in Figure 6). When we first decided to
write the H.263 video decoder in Java, we expect-

68

IE
EE

 M
ul

ti
M

ed
ia

Figure 4. The

whiteboard and its

features.

Figure 5. Presentation

slides running in the

whiteboard.

.

ed slow performance because of Java’s perfor-
mance problems. However, we obtained up to 25
frames per second (fps) for a quarter common
intermediate format (QCIF) video with the white-
board running in Netscape Communicator 4.04.
(We ran the test on a 200-MHz Pentium Pro with
64 Mbytes of RAM running Windows NT 4.0.)

VRML viewer
Another applet, a simple shared 3D viewer for

VRML files, permits real-time collaborative inter-
action with simple VRML objects. The applet
brings VRML 1.0 files from the server and displays
them in wireframe mode (Figure 7). A user can
then collaboratively interact with the 3D scene—
with all the rotations, moving, and zooming
reflected on all participants’ screens. The JETS
VRML server tracks the object state, making it pos-
sible for latecomers to be updated with the state
of the current session in progress.

Session management
We also implemented a management system to

enable session monitoring. Like other JETS applets,
the management applets connect to a server pro-
gram on the central server. However, the manage-
ment applets are not shared and don’t use event
multicasting. Each client has a session bar that dis-
plays the client’s access rights for each application.
When a client first tries to join the session, a log-
in menu will ask the client’s user name and pass-
word for the session (Figure 8a, next page).

Using the session chair applet, the chairperson
can extract specific information about partici-
pants. This information includes how many users
have logged in, who has what type of access to
which application, and so on

On the session bar, colored buttons indicates
the type of access for each application: red for no
access, yellow for view-only access, and green for
view/interact access. The client has no access to an
application with a red button. This can change on
user’s request with the chairperson’s approval. In

69

A
p

ril–Jun
e 1998

Figure 6. H.263 shared

video displayed in the

whiteboard.

Figure 7. VRML viewer

displaying a wireframe

model.

.

Figure 9, when user “Dany” requests view access
to the white board, the request goes to the chair-
person. The chairperson can then grant or refuse
the access request.

The chairperson can also change a participant’s
access rights dynamically during the session with-
out the participant’s request. Furthermore, the
chairperson has the ability to finalize a partici-
pant’s access rights so that they won’t be able to
continually send requests for access.

Each user is aware of the existence of other par-
ticipants. The session bar comes with a drop-down
list that shows the current participants’ names—
reflecting the “presence” component of aware-
ness. JETS implements items 1, 3, 4, and 6
required for awareness through the participant list
and multicasting of user actions. In addition,
items 8, 9, and 10 are implemented for the chair-
person. Since the management system is not a
shared applet system, a user can chat with a spe-
cific person in the session. Figure 10 shows a per-
son-to-person chat in progress.

Another feature of the session management sys-
tem is the ability to vote on a subject. The chair-

person can permit participants to
vote on a subject indicated on the
whiteboard’s chat utility. Users vote
by pressing yes or no on a vote pop-
up menu, with the results reported to
the chairperson.

Implementation problems
The main problem we encoun-

tered during implementation was
event multicasting. We first tried to
intercept the generated events in the
handleEvent() of the applet. If caught,
the event can easily be sent to the
server as discussed earlier. However,
we noticed inconsistencies in the
applet’s event handling. Although
many events were intercepted and
received by other clients without
any problem, some events such as
typing in a text field were not han-
dled properly by the receiving
clients. We believed this to be a Java
Abstract Window Toolkit (AWT)
implementation problem by either
the Web browser or the Java
Development Kit (JDK) itself. Later,
we came across a paper by Begole et
al. that confirmed the problem and
proposed solutions that must be

considered by JavaSoft itself.2 For JETS, we emulate
event multicasting by using a message multicasting
system architecture where applets, upon user
interaction, send predefined messages to other
clients through the server.4 Since these messages
are predefined, the receiver applets can tell what
events have occurred.

Since the developer must design a predefined
messaging scheme for each applet, this creates a
problem. Consequently, this shortcoming must
be resolved by JavaSoft to allow efficient applet
sharing.

Performance analysis
We tested JETS on both local-area (LAN) and

wide-area (WAN) networks for both asynchronous
transfer mode (ATM) and regular Internet connec-
tions to evaluate system delay and response terms.
We designed a test applet to measure the effective
client-to-client delay (CCD) of the system. CCD is
an indication of the average time it takes for a byte
of data to travel from one client to another. It also
includes the delays caused by all protocol levels,
such as the application level, the transport level,

70

IE
EE

 M
ul

ti
M

ed
ia

Figure 9. During the

conference: (a) Colored

buttons indicate a

participant’s access

rights to applications.

(b) The chairperson can

respond to a

participant’s access

request.

Figure 10. Person-to-

person chatting. (a) A

user can send messages

to specific individuals in

the session. (b) The

receiver of a message

can reply or ignore it.

Figure 8. Before the

collaboration session.

(a) Client “Pete” tries to

join the session. (b) The

session chair sees that

Pete has joined, as well

as how many preinvited

people remain.
(a) (b)

(a) (b)

(a) (b)

.

and the network level. We compared the CCD
results with quality of service (QoS) parameters for
Multimedia Desktop Collaboration (MDC) pub-
lished by the Multimedia Communications
Forum.12 On LANs and ATM WANs, the JETS sys-
tem has acceptable quality in terms of user inter-
action and human perceptions. Typical CCD
values fall in the 50 to 60 millisecond range.4

Related work
As mentioned earlier, other Java collaboration

systems have emerged: the National Center for
Supercomputing Applications (NCSA) Habanero,
the Java Collaboration Environment (JCE),13 and
Java Applets Made Multiuser (JAMM).14 Among
these, JAMM more closely compares with JETS in
terms of its objective—it tries to achieve
collaboration using Java applets rather than Java
applications.

The main difference between JAMM and JETS
is their collaboration enabling architectures.
JAMM uses transparent collaboration—events are
automatically intercepted and sent to the other
copies by the collaboration engine. A developer
writes a single-user applet and won’t have to
know that the applet will be a collaborative one.
This requires modification of the core JDK, which
is what the developers of JAMM have done.
Hence, in order to run JAMM, you must download
and install a modified version of the JDK. On the
other hand, JETS uses the standard JDK and can
run in any Java-enabled Web browser without
modifications. It does, however, require the devel-
oper to handle the events once intercepted (as
mentioned earlier).

Even though a transparent collaboration sys-
tem makes it easier for the developer to write typ-
ical applets, it doesn’t always work for the case of
multimedia applets. Consider the following sce-
nario for a shared video player. If we assume the
video data streams from the server to every client,
the difference in access parameters such as net-
work bandwidth and delay will give different users
different views of the video stream. If someone
presses the pause button during play, simply inter-
cepting the pause event and sending it to all
applets is not enough. When other applets receive
the pause event, they will not necessarily freeze
on the same frame as the originating one. In fact,
most likely different users will see a different
frame paused, since everyone uses an independent
version of the video player on their machines.

To avoid this problem, you must specify the
frame on which pause was pressed. In other words,

additional information must be sent
together with the event. As a result,
pure transparent collaboration tech-
niques will not suffice in such
instances. Alternatively, a secondary
system with its own communication
channels between the clients could
handle this problem. However, this
will create redundancy, since a com-
munication infrastructure for event
passing already exists. Ideally, this
should be enough to pass messages
among all copies of the applet. Subse-
quently, a collaboration system must
offer either an optional message pass-
ing mechanism or make the underly-
ing communication channels
available to the developer. JETS uses
the second solution.

One important aspect of JETS is its management
system. The JCE system also has a management
component—Session Control Manager—that lets
users join and leave a session, as well as request and
release a lock.13

Using Java for multimedia
Besides functioning as a prototype to imple-

ment and analyze our design, JETS allowed us to
gain practical experience with Java. We were able
to observe Java’s competency as both a platform
and a programming language for implementing
collaborative multimedia applets. Before con-
cluding this article, we would like to share our
observations.

Most developers know about the advantages
and disadvantages of Java as a programming frame-
work. Java’s platform independence, full object ori-
entation, portability, and network support balance
against its slow performance and security restric-
tions. We found that from a multimedia system
perspective, Java has many useful features.

One of the most useful features is the ability to
easily fetch a GIF or JPEG image from a given URL
on the Internet and display it within an applet,
without worrying about details such as file trans-
fer, image decoding, and display. This is the most
important functionality used in our whiteboard.
In addition to supporting URLs, the networking
APIs also provide some very useful features to eas-
ily create a server that listens for an incoming
client and to establish a data channel between the
server and the client for the transfer of informa-
tion. All of these tasks can be achieved with rela-
tively few lines of code in Java.

71

A
p

ril–Jun
e 1998

URLs
JAMM (Java Applets Made

Multiuser): http://simon.cs.
vt.edu/JAMM/

Javasoft (for JMF and Personal-
Java): http://www.javasoft.com

JCE (Java Collaborative
Environment): http://snad.
ncsl.nist.gov/madvtg/Java/
Java.html

JETS (Java-Enabled Telecollabo-
ration System): http://www.
mcrlab.uottawa.ca/jets

NCSA Habanero: http://www.
ncsa.uiuc.edu/SDG/Software/
Habanero/

.

The Object Serialization utility is another use-
ful feature. It allows programs to send and receive,
over the network, objects with their current state.
The process of marshaling and unmarshaling
objects is transparent to the developer. As
explained before, this is very useful in supporting
latecomers to a session already in progress.

In addition to the problem encountered dur-
ing event multicasting, another deficiency of Java
applets is their lack of built-in support to open
and save files on the server. This is important
since applet security restrictions allow no local file
reading or writing. On the other hand, files on the
server can be read using file transfer and written
using the server program. However, no built-in
mechanism exists in Java that allows a developer
to easily display the file list on the server machine,
open a file, or save a file on the server. The devel-
oper must write code to do these tasks. This is an
important issue for multimedia applets because of
the frequent need to display images, presenta-
tions, video and audio clips, and other multi-
media content stored in files.

Another promising Java technology for multi-
media is the Java Media Framework (JMF) current-
ly under development. JMF provides a
platform-independent infrastructure for synchro-
nization, control, processing, and presentation of
both stored and streaming media. The eventual
goal of JMF is to provide APIs for Player, Capture,
and Conferencing functionalities, even though
only Player APIs are currently available. In addi-
tion to lying outside the core Java API, JMF’s main
shortcoming is that current JMF Player imple-
mentations have native platform dependencies for
most of the low-level processing. Intel’s JMF imple-
mentation for Windows 95 and Windows NT uses
Microsoft’s DirectShow, for instance, but Silicon
Graphics’ JMF implementation uses its own Digi-
tal Media libraries. This means a media format
might be supported on one platform but have no
player on another platform. Since we needed sys-
tem deployment across all platforms, we did not
use JMF in our prototype. However, we are in the
process of making our H.263 decoder compatible
with JMF so that it can be integrated in any Java
environment supporting JMF.

Concluding remarks
Although fully distributed approaches could be

used to implement many of the issues discussed,
the inherent properties of Java applets make a
client-server approach more practical. These prop-
erties include a server, which is part of the system

to begin with, plus the security restrictions such
as communication channels—only allowed
between the applet and the server—and file
manipulation limitations. However, as the Java
technology progresses and legal mechanisms for
bypassing applet restrictions become more
mature, distributed approaches will become more
practical.

One of the main issues left open is synchro-
nization between clients, or interclient synchro-
nization—very important for multimedia
collaborative applets. Unlike intraclient synchro-
nization, which ensures synchronization between
multiple media on a single client, interclient syn-
chronization addresses synchronizing media
between multiple clients. As illustrated earlier in
the video decoder example, when one client press-
es the pause button during the video playback,
the video on all other clients must freeze on the
exact same frame. Taking the pause-initiating
client as the reference, some mechanism must be
developed to accommodate the clients who lag
behind and those who have already moved ahead
in the video presentation. Furthermore, this
mechanism must work in a real-time fashion. This
argument can be extended to other multimedia
applications as well.

If the current network-centric computing trend
continues, technologies such as PersonalJava will
allow access to Java applets, not only on tradi-
tional computing equipment such as PCs, but also
on Web-connected consumer devices for home,
office, and mobile use. The need to write multi-
media applets in Java will then be justified not
only by its platform independence and portabili-
ty, but also by its accessibility and the rapidly
growing number of multimedia applets.

JETS is a working example of an applet-based
multimedia collaboration system even though
still in the primitive stages of development.
Despite the performance deficiencies pointed to
by Java critics, JETS successfully demonstrates that
Java collaboration frameworks are not only possi-
ble, but can perform at acceptable levels of quali-
ty if designed correctly. MM

Acknowledgments
We thank Pierre Desmarais for implementing

the session management system. We also
acknowledge the financial assistance of the
Telelearning Network of Centers of Excellence
Canada (TL-NCE), the Ontario Graduate
Scholarship Program, and the Brazilian Ministry
of Education Agency’s CAPES scholarship.

72

IE
EE

 M
ul

ti
M

ed
ia

.

References
1. J. Grudin, “Computer-Supported Cooperative Work:

History and Focus,” Computer, Vol. 27, No. 5, May

1994, pp. 19-26.

2. J. Begole, C. Struble and C. Shaffer, “Leveraging Java

Applets: Toward Collaboration Transparency in

Java,” IEEE Internet Computing, Vol. 1, No. 2, Mar.-

Apr. 1997, pp. 57-64.

3. O. Kim et al., “Issues in Platform-Independent

Support for Multimedia Desktop Conferencing and

Application Sharing,” Proc. Seventh IFIP Conf. on High

Performance Networking (HPN’97), Chapman & Hall,

London, 1997, pp. 115-139.

4. S. Shirmohammadi and N.D. Georganas, “JETS: A

Java-Enabled Telecollaboration System,” Proc. IEEE

ICMCS, IEEE Computer Society Press, Los Alamitos,

Calif., 1997, pp. 541-547.

5. T.B. Downing, RMI: Developing Distributed Java

Applications With Remote Method Invocation and

Object Serialization, IDG Books Worldwide, Foster

City, Calif., 1998.

6. R. Elmasri and S.B. Navathe, Fundamentals of

Database Systems, 2nd ed., Benjamin/Cummings

Publishing Company, Redwood City, Calif., 1994,

pp. 555-572.

7. C. Gutwin and S. Greenberg, “Workspace Awareness

for Groupware,” Proc. ACM Computer-Human

Interface (CHI ‘96), ACM Press, New York, 1996, pp.

208-209.

8. H.P. Dommel and J.J. Aceves, “Floor Control for

Multimedia Conferencing and Collaboration,” ACM

Multimedia Systems, Vol. 5, No. 1, 1997, pp. 23-38.

9. J.C. Oliveira, TVS—A Videoconferencing System,

Master’s dissertation (in Portuguese), Computer

Science Dept., Pontifical Catholic University of Rio

de Janeiro, Brazil, Aug. 1996.

10.W. Robbins and N.D. Georganas, “Shared Media

Space Coordination: Mixed Mode Synchrony in

Collaborative Multimedia Environments,” Proc. IEEE

ICMCS, IEEE Computer Society Press, Los Alamitos,

Calif., 1997, pp. 466-473.

11.K. Rijkse, “H.263: Video Coding for Low-Bit-Rate

Communication,” IEEE Comm., Vol. 34, No. 12, Dec.

1996, pp. 42-45.

12.Multimedia Communication Forum, “Multimedia

Communication Quality of Service,” MMCF

document MMCF/95-010, Approved Rev 1.0, Sept.

24, 1995.

13.H. Abdel-Wahab et al., “An Internet Collaborative

Environment for Sharing Java Applications” IEEE

Computer Society Workshop on Future Trends of

Distributed Computing Systems (FTDCS’97), IEEE

Computer Society Press, Los Alamitos, Calif., 1997,

pp. 112-117.

14. J. Begole et al., “Transparent Sharing of Java

Applets: A Replicated Approach,” Proc. 97 Symp.

User Interface Software and Technology (UIST’97),

ACM Press, New York, 1997, pp. 55-64.

Shervin Shirmohammadi is cur-

rently pursuing a PhD at the

University of Ottawa under an

NSERC (National Sciences and

Engineering Research Council of

Canada) scholarship. He received

his BASc and MASc degrees in electrical engineering at

the University of Ottawa. His main research interests are

telecommunication software, multimedia communica-

tions, and collaborative virtual environments. See

http://www.mcrlab.uottawa.ca/~shervin.

Jauvane C. de Oliveira is current-

ly pursuing his PhD at the Uni-

versity of Ottawa. He received his

BS degree in computer science

from the Federal University of

Ceara, Brazil, and his MS degree in

computer science from the Pontifical Catholic Uni-

versity of Rio de Janeiro, Brazil. He is under CAPES schol-

arship from the Brazilian Ministry of Education. His

main research interests include teleconferencing sys-

tems, telecollaboration, real-time applications, and VR.

See http://www.mcrlab.uottawa.ca/~jauvane.

Nicolas D. Georganas is a profes-

sor at the School of Information

Technology and Engineering,

University of Ottawa. He received

his Dipl.Ing. in electrical engineer-

ing from the National Technical

University of Athens, Greece, and his PhD in electrical

engineering Summa cum Laude from the University of

Ottawa. His research interests are multimedia commu-

nications and collaborative virtual environments. He is

a Fellow of the IEEE, the Engineering Institute of

Canada, the Canadian Academy of Engineering, and the

Royal Society of Canada. See http://www.mcrlab.

uottawa.ca/~georgana.

Readers can contact Shirmohammadi at the

Multimedia Communications Research Laboratory,

School of Information Technology and Engineering,

University of Ottawa, 161 Louis Pasteur Priv., Ottawa

Ontario K1N 6N5, Canada, e-mail shervin@mcrlab.

uottawa.ca.

73

A
p

ril–Jun
e 1998

.

