
Implementation and Management of Web-Based Collaboration
Using Java

 Shervin Shirmohammadi, Jauvane C. de Oliveira, and Nicolas D. Georganas
Multimedia Communications Research Laboratory
School of Information Technology and Engineering

University of Ottawa, Canada

Real-time collaboration systems, in which participants share multimedia documents and

applications in real time, have been a subject of interest for many years. Although

computer supported cooperative work (CSCW) systems have existed for a long time [1],

Web-based collaboration tools, such as Microsoft NetMeeting, have started to emerge

relatively recently. Moreover, there has been much advancement in Internet-related

technologies lately. Among these, Java applets seem to have introduced the most exciting

notion: platform-independent applications provided by the network. To run applets, users

only have to make sure they have a Java-enabled Web browser on their platform.

From CSCW point of view, the next step in the evolution of applets is their real-time

sharing among many users. Although applets can usually be converted to applications

and be shared using conventional techniques, there is a fundamental difference between

sharing applets and applications. In practice, applets can be shared through a Web

browser or a network station. This is not only platform-independent but also requires no

downloading and installation of the specific application on the user side. A user simply

navigates to a given URL and joins a session. Furthermore, users will always have the

latest version of the applet. This is not the case with applications. Applications cannot be

shared using a Web-browser. This means that a package must be downloaded and

installed on the machine of every user who wants to take part in the collaboration session;

an approach which is very similar to collaboration using non-Java applications. Hence,



the emphasis in the application sharing method is the portability feature of Java, whereas

the applet sharing method is more a network-centric approach.

Today, there are some experimental Java-based collaboration tools available, such as the

NCSA Habanero and the Java Collaborative Environment (JCE), which allow sharing of

basic multimedia applications; however, very few of these tools use applets as their base

for collaborative applications.

There are many issues that such collaboration systems must address. Consider figure 1

which shows a simple sketch of a client-server collaboration system. When one user

interacts with the applet, by for example clicking a button, one or more events are

generated. Each event is sent to the server, which multicasts it to all other clients. The

other clients then process the event as if it was generated locally and therefore recreate

the intended actions of the original client. Another approach is to multicast screen shots

of the application instead of the events; however, the literature [11] shows that in general,

event broadcasting is more efficient than display broadcasting.

applet

applet

applet

server
event X

event X

event X
user interaction
generates event

event is processed by receivers
as if generated locally

event is multicasted
to other participants

client 1

client 2

client 3

3

1
2

Figure 1. A simple client-server architecture for event-multicasting

The main challenges created by such system are latecomers, participants’ awareness,

management, event collision, and synchronization.

Latecomers: The problem here is as follows: when a user joins a session already in



progress, the user must be presented with the current states of the shared applications.

Awareness: Awareness is the ability of a given participant of a collaborative session to

have feeling of both existence and actions of the others. There are as many as eleven

different elements that provide such “feeling” [5].

Management: Often overlooked by existing implementations, a session manager is a key

component of a functional telecollaboration system. There is a need for a chairperson

who controls participants’ access rights for different applications. This person can

dynamically set individual user’s access rights such as no-access, view-only, and

view/interact.

Event Collision: The problem occurs when the events of two or more users which are

generated at approximately the same time affect the same data and create unwanted

results.

Slide 1

A B

Slide 1

A B

Slide 2

Slide 2

a b

c

User X annotates

Figure 2. Event collision a)what user X intended b)what actually happened because another user changed
the slide c)another scenario of what happened: half of the annotation is on slide 1, the other half on slide 2

For instance in an on-line presentation, one user might advance the presentation to the

next slide while another is trying to annotate on the previous slide. As a result, the

annotation might appear on the new slide, or half of it might appear on the previous slide

and the other half on the new slide. This situation is depicted in figure 2. Event collision



is usually addressed by some type of pessimistic access control such as locking.

Synchronization: Typically, individual users in the same session have different

processing powers and different network access in terms of network bandwidth and

network latency. This creates the possibility that the state of one copy of the application

is different form the state of another copy. Lack of synchronization will lead to both

temporal and application state inconsistencies.

In this article, we present a client-server architecture for sharing Java applets. We will

show the collaboration issues that we came across while designing our Java-Enabled

Telecollaboration System (JETS) prototype and propose solutions based on our

experience with JETS applets consisting of a whiteboard, video player, 3D viewer, and

text editor. In addition, we will illustrate an applet-based management scheme that is the

result of our experimentation with JETS’ Management System.

Also, looking at other Java collaboration tools, JAMM is a system that more closely

compares with JETS since it also tries to achieve collaboration using Java applets rather

than Java applications. The main difference between JAMM and JETS is that JAMM

uses transparent collaboration, which means that the events are automatically intercepted

and sent to the other copies by the collaboration engine; whereas JETS requires the

developer to handle the events once they are intercepted.

We will show through examples that even though a transparent collaboration system

makes it easier for a developer to write typical applets, it doesn’t always work for the

case of multimedia applets. Additional information must be sent together with the event

in order to avoid lack of consistency due to the difference in access parameters such as

network bandwidth and delay.



References

1. J. Grudin, "Computer-Supported Cooperative Work: History and Focus", IEEE
Computer, Vol. 27, No. 5, pp 19-26, May 1994.

2. O. Kim, P. Kabore, J. Favereau and H. Abdel-Wahab, “Issues in Platform-Independent
Support for Multimedia Desktop Conferencing and Application Sharing”, Proceedings of
the Seventh IFIP Conference on High Performance Networking (HPN'97), White Plains,
NY, April 18 - May 2, 1997

3. S. Shirmohammadi and N. D. Georganas, “JETS: a Java-Enabled Telecollaboration
System”, Proc. IEEE ICMCS, IEEE Computer Society, Los Alamitos, Calif., 1997, pp.
541-547.

4. T. B. Downing, Rmi : Developing Distributed Java Applications With Remote Method
Invocation and Object Serialization, IDG Books Worldwide, California, 1998.

5. C. Gutwin and S. Greenberg, “Workspace Awareness for Groupware”, Proc. ACM
Computer-Human Interface (CHI ’96), ACM press, New York, 1996.

6. H. P. Dommel and J. J. Aceves, “Floor Control for Multimedia Conferencing and
Collaboration”, ACM Multimedia Systems, Vol. 5, No. 1, 1997, pp. 23-38.

7. J.C. Oliveira, "TVS - A Videoconferencing System"; Master Dissertation (in
Portuguese), Computer Science Department, Pontifical Catholic University of Rio de
Janeiro, Brazil, August 1996

8. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 2nd edition,
Benjamin/Cummings Publishing Company, California, 1994, Chapter 8.

9. W. Robbins and N. D. Georganas, “Shared Media Space Coordination: Mixed Mode
Synchrony in Collaborative Multimedia Environments”, Proc. IEEE ICMCS, IEEE
Computer Society, Los Alamitos, Calif., 1997, pp. 466-473.

10. K. Rijkse, "H.263: Video Coding for Low-Bit-Rate Communication", IEEE
Communications Magazine, December 1996.

11. J. Begole, C. Struble and C. Shaffer, “Leveraging Java Applets: Toward
Collaboration Transparency in Java”, IEEE Internet Computing, March-April 1997, pp.
57-64

12. Multimedia Communication Forum Inc., “Multimedia Communication Quality of
Service”, MMCF document MMCF/95-010, Approved Rev 1.0, September 24, 1995.

13. H. Abdel-Wahab, J. Favereau, O. Kim and P. Kabore, J. Favereau “An Internet
Collaborative environment for Sharing Java Applications” IEEE Computer Society



Workshop on Future Trends of Distributed Computing Systems (FTDCS'97), Tunis,
Tunisia, October 29 - 31, 1997

14. J. Begole, C. Struble, C. Shaffer and R. Smith, "Transparent Sharing of Java Applets:
A Replicated Approach," Proceedings of the 1997 Symposium on User Interface
Software and Technology (UIST'97), ACM Press, NY, 1997, pp. 55-64.

URLs:

JAMM (Java Applets Made Multiuser): http://simon.cs.vt.edu/JAMM/

JCE (Java Collaborative Environment): http://snad.ncsl.nist.gov/madvtg/Java/Java.html

JETS (Java-Enabled Telecollaboration System) http://www.mcrlab.uottawa.ca/jets

NSCA Habanero: http://www.ncsa.uiuc.edu/SDG/Software/Habanero/


