
* Jauvane C. de Oliveira is sponsored by CAPES, the Brazilian Ministry of Education Agency.
 Compulsory Statement: “Bolsista Capes - Brasilia / Brasil”

Jauvane Cavalcante de Oliveira*

A Java H.263 Decoder Implementation

Project report presented as part of the
requirements for the Image Processing
and Communication course, ELG5378,
winter 1997 term.

Prof.: Dr. Sethuraman Panchanathan

Electrical and Computer Engineering Department

UNIVERSITY OF OTTAWA

Ottawa, April 15, 1997

i

Abstract

As the result of the work done as a project for the Image Processing and Communications

course in the winter of 1997, this report describes the implementation of a Java H.263

video decoder. The Decoder allows H.263 coded video streams to be decoded and

displayed in a window on any Java enabled machine. It shows that it’s possible to create a

conferencing environment just using Java Enabled Browsers.

Keywords: ITU-T H.263, Java, ITU-T H.324, Video Codec.

ii

Table of Contents

1. INTRODUCTION..1

2. THE ITU-T H.324 RECOMMENDATION ...6
2.1. SCOPE..7
2.2. FUNCTIONAL ELEMENTS..8

3. THE ITU-T H.263 RECOMMENDATION ...11
3.1. HISTORIC...11
3.2. H.263 X H.261 ..14
3.3. THE H.263 SOURCE CODER..19

3.3.1. Prediction ...20
3.3.2. Motion compensation..20
3.3.3. Quantization ...21
3.3.4. Zig-Zag Scan...21

3.4. SEMANTIC AND SYNTAX ..22
3.4.1. Picture Layer ..22
3.4.2. Group of Block Layer ...26
3.4.3. Macroblock Layer...28
3.4.4. Block Layer...31

4. THE JAVA PARADIGM ..35
4.1. JAVA ’S ARCHITECTURE...35
4.2. APPROACHES FOR APPLICATIONS FOR THE WEB..37
4.3. JAVA ADVANTAGES AND DISADVANTAGES ...37

5. JAVA H.263 IMPLEMENTATION...39
5.1. CODEC ARCHITECTURE...39

6. CONCLUSION..45
6.1. FURTHER RECOMMENDATION AND FUTURE WORK...45

REFERENCES...47

iii

List of Figures

FIGURE 2.1: BLOCK DIAGRAM FOR H.324 MULTIMEDIA SYSTEMS ...7

FIGURE 2.2: BLOCK DIAGRAM FOR H.320 MULTIMEDIA SYSTEMS ...8

FIGURE 3.1: INTERFACE LBL-UCB/VIC ..12

FIGURE 3.2: INTERFACE INRIA/IVS ..13

FIGURE 3.3: INTERFACE PUC-RIO/TVS ...14

FIGURE 3.4: BLOCK DIAGRAM OF THE H.263 VIDEO CODEC...15

FIGURE 3.5: BLOCK DIAGRAM FOR H.261 VIDEO CODEC ..15

FIGURE 3.6: H.263 PICTURE FORMAT RESOLUTIONS ..16

FIGURE 3.7: LUMINANCE AND CHROMINANCE POSITIONS INSIDE A MACROBLOCK16

FIGURE 3.8: ARRANGEMENT OF BLOCKS IN A MACROBLOCK..17

FIGURE 3.9: SYNTAX DIAGRAM FOR VIDEO BITSTREAM ...18

FIGURE 3.10: SOURCE CODER ..19

FIGURE 3.11: ZIG-ZAG SCANNING ...21

FIGURE 3.12: PICTURE LAYER STRUCTURE..22

FIGURE 3.13: PTYTE BITS ...23

FIGURE 3.14: DBQUANT CODES AND RELATION BETWEEN QUANT AND BQUANT25

FIGURE 3.15: STRUCTURE OF GOB LAYER..26

FIGURE 3.16: STRUCTURE OF MACROBLOCK LAYER ..28

FIGURE 3.17: STRUCTURE OF BLOCK LAYER..31

FIGURE 3.18: RECONSTRUCTION LEVELS FOR INTRA-MODE DC COEFFICIENT31

FIGURE 3.19: VLC TABLE FOR TCOEF...34

FIGURE 3.20: FLC TABLE FOR RUNS AND LEVELS..34

FIGURE 4.1: THE JAVA ARCHITECTURE ...36

FIGURE 4.2: THE STEPS REQUIRED TO RUN A PROGRAM WRITTEN IN JAVA....................36

FIGURE 5.1: JAVA VIDEO CODEC ARCHITECTURE ...40

FIGURE 5.2: H.263 × H.261...43

1

Chapter I

1. Introduction

People, by their social nature, need to have interaction with others in order to be able to

acquire knowledge. With ever advancing of social structure of humanity, there is an

increased demand for communication in order to overcome the geographical distances. In

order to accommodate the need for communication, several methods were created to

facilitate that exchange, starting from the smoke signals exchanged by our ancestors till

the actual telecommunication devices, such as the telephone and the Internet.

However, when a meeting among a group of persons is required, to discuss any matter, it

is required that all of them relocate to a common place. This introduces lot of problems,

such as money spent, security problems, scheduling and other problem. As an example,

consider the world meeting ECO 92, held in Rio de Janeiro, Brazil, where the majority of

head of states met to discuss ecological issues.

With the objective to improve this scenario, several research groups began studies to

develop a set of communication services, called teleconferencing services.

Teleconferencing Services are defined [SoMB 88, Fluc 95] as a set of telecommunication

facilities that allow the participants in two or more different places, to establish a bi-

2

directional link through communication electronic devices, while sharing simultaneously

their audio-visual environment, by having the impression that they are all in the same

place.

The teleconferencing services are classified by the literature [H.200, SoMB 88, Fluc 95],

as:

• Audio Conferencing - Service where just audio and control signals are exchanged

among the participants;

• Audio-Documentational Conferencing - Service close to the Audio Conferencing

service; however, the treatment of text documents should be supported;

• Audio-Graphic Conferencing - Service that allows transmissions of audio, control,

text documents and static images;

• Freeze-Frame Videoconferencing - Service close to the Audio-Graphic

Conferencing, adding the periodic exchange of static images of the participants (a

very low frame rate video exchange should be classified as being this service);

• Tele-seminar - Service that broadcasts the events (audio and video) from a

particular place to all participants; however the return path just allows audio

signal transmission;

• Videoconferencing - Service similar to the Audio-Graphic Conferencing adding

the real time video exchange among the participants.

3

Some other audiovisual services [H.200], having similar characteristics from the

teleconferencing services share the same standards. For instance:

• Conventional Telephony - It is included to address the interoperability with the

other services;

• Videophony - Service that allows bi-directional point-to-point transmission of

audio and video between the two participants. Usually, the video quality is lower

than the Videoconferencing one;

• Tele-Surveillance - Service that allows unidirectional transmission of signals in

order to make possible the observation of some environments. At this time, there

is no standardization proposed to this service.

The videoconferencing service is worthy of special attention, since all others can be

defined as particular cases of videoconferencing, for instance the Audio-Graphic

Conferencing can be defined as a videoconferencing without video transmission.

As a result of the research developed in the previous years, some teleconferencing

prototypes, particularly videoconferencing, were introduced. However, these prototypes

present some limitations. Many of them don’t adhere to accorded standards, and are

limited to the audio and video transmission without synchronism.

In order to be able to exchange information with others, a system has to adhere to the

established standards for each media, such as audio, video, data, as well as for the

4

multimedia/hypermedia object interchange. The international standardization

organizations (ISO1 and ITU-T2) suggest H.261 [H.261] or H.263 [Draft H.263] for real

time video codification, MPEG, MPEG-2 or MPEG-4 [Fluc 95] for video

storage/retrieval, JPEG [Wall 91] for static image codification, G.711, G.722, G.728,

G.723 [G.711, G.722, G.728, Draft G.723], MHEG [MHEG 95]for

multimedia/hypermedia interchange. H.221 or H.223 [H.221, H.223] for framing, H.245

[Draft H.245] for multimedia control signaling, as well as security mechanisms [Schn

95]. A more detailed description of the videoconferencing scenario can be found in [Oliv

96].

Portability is a very common problem that occurs when a multimedia system is being

implemented. Usually, a version for each machine has to be written, and it is really hard

to manage this kind of code: for instance, imagine if after finishing the coding for ten

different machines, some improvement is going to be done in the system; unfortunately,

this modification has to be done in each of the ten codes, which is not a trivial task. Some

few years ago, Sun Microsystems introduced a new language that eliminates the

portability problem. This language, called JAVA, allows a program to be written just

once and to run on the ten machines with no modifications in the code. Because of this,

that improvement can be easily done, since there is just one code to be updated.

This project report presents an H.263 Java decoder that can be used to allow the required

standard video transmission by any Java enabled machine. This decoder was written

1 International Standardization Organization.

2 International Telecommunication Union, Telecommuncation Standardization Sector  previously CCITT.

5

during the 1997 winter term for the Image Processing and Communication course given

at the Electrical and Computer Engineering at the University of Ottawa and lectured by

Prof. Dr. Sethuraman Panchanathan.

This document is organized as follows: an overview of the ITU-T H.324 recommendation

set is presented in the second chapter. This overview addresses, but is not limited to,

H.324×H.320, H.261×H.263 (the next chapter covers this in depth), H.223×H.221,

H.245×H.242+H.230 and H.723×H.711+H.722+H.725+H.728 recommendations. The

third chapter presents an in depth analysis of the ITU-T H.263 recommendation. In the

following chapter (fourth), the Java paradigm is presented, with a discussion of its

advantages and disadvantages. Then, in chapter five, the Java H.263 Decoder is

introduced, including some evaluation of the decoder as well as a contrast between the

ITU-T H.261 and H.263 video codec recommendations. Finally, the report presents some

conclusions and the references quoted through the text.

6

Chapter II

2. The ITU-T H.324 Recommendation

In 1990 the ITU-T released the H.320 [H.320] recommendation which was updated in

1993. This recommendation defined a set of recommendations, stated also in [H.200], for

an audiovisual service implementation. This recommendation defined the H.261

recommendation to be used for video coding, G.711 compulsory and G.722, G.728

optional for audio coding, and G.221 for framing among others. However, this set of

recommendations was defined for transmissions from 64KB/sec to 2MB/sec, which is not

possible through a network like the Internet. After this first definitions, the ITU-T Study

Group 16 began developing a new set of recommendations addressing a very low bit rate

videoconferencing environment. This standardization group is still working; however

several drafts were already released and some of then, very recently some of them

evolved into recommendations. This has happened with one of the H.324 draft that

became a recommendation, but the study group already did some changes and a new draft

is now available, even though the recommendation is still in the publication process

[Draft H.324]. This section presents an overview of this recommendation based on its last

published Draft (June 11, 1996).

7

2.1. Scope

This Recommendation covers the technical requirements for very low bitrate multimedia

telephone terminals operating over the General Switched Telephone Network (GSTN), It

is easier to use this recommendation than H.320 set on the Internet, since the H.324 was

developed for low bit-rate terminals.

A diagram block for this recommendation can be seen in the Figure 2.1, where it becomes

clear the recommendation set involved in it.

Control protocol
 H.245

Scope of recommendation H.324

System control

User data applications
T.120, etc.

Audio I/O equipment

Video I/O equipment
Video codec
H.263/H.261

Audio codec
G.723

Data protocols
V.14, LAPM, etc.

Receive
path delay

Multiplex/
Demultiplex

H.223

Modem
V.34/V.8

Modem
control
V.25ter

GSTN
Network

MCU

SRP/LAPM
procedures

Figure 2.1: Block Diagram for H.324 Multimedia Systems

In order to be possible to check the differences between the H.324 and the previous H.320

recommendations, the Figure 2.2 present the same block diagram presented in the Figure

8

2.1, but for the H.320 recommendation, as one can see, the scope of the H.320

recommendation includes devices such as video and audio I/O equipment.

Video I/O equipment Video codec

Rec. H.261

Audio I/O equipment Audio codec Delay

H.200/AV.250-Series Recs.

Telematic equipment

MUX/DUX

Rec. H.221

T-Series, H.200/AV.270-Series Recs., etc.

End-to-end signaling C&I

System Control

End-to-network signaling

Recs. H.242, H.230, H.221

I.400 Series Recs.

Network
Interface

Network

MCU

Figure 2.2: Block Diagram for H.320 Multimedia Systems

2.2. Functional Elements

The scope of Recommendation H.324 is indicated by the elements within the dashed line

of Figure 2.1, which include:

• The Video Codec (H.263 or H.261) carries out redundancy reduction coding and

decoding for video streams. The H.320 recommendation just present the H.261 Video

Codec. Figure 2.3 presents the video resolutions adopted by both the H.263 and H.261

recommendations. Detailed analysis of the video codecs will be presented in the

following chapter.

9

PICTURE
FORMAT

LUMINANCE
PIXELS

 ENCODER DECODER

H.261 H.263 H.261 H.263

SQCIF 128 x 96 for
H.2633

Optional3 Required1,2 Optional3 Required1

QCIF 176 x 144 Required Required1,2 Required Required1

CIF 352 x 288 Optional Optional Optional Optional

4CIF 704 x 576 Not defined Optional Not defined Optional

16CIF 1408 x 1152 Not defined Optional Not defined Optional

NOTE 1 - Optional for H.320 interworking adapters.

NOTE 2 - Mandatory to encode one of the picture formats QCIF and SQCIF; optional to encode both formats.

NOTE 3 - H.261 SQCIF is any active size less than QCIF, filled out by a black border, coded in QCIF format.

Figure 2.3: ITU-T Picture Formats

• The Audio Codec (G.723) encodes the audio signal from the microphone for

transmission, and decodes the audio code which is output to the speaker. Optional

delay in the receiving audio path compensates for the video delay, so as to maintain

audio and video synchronization, the G.723 bitrate is as low as 5.3 or 6.5 Kbit/sec. The

H.320 recommendation accepts a whole set of audio Codecs, such as G.711 (which is

compulsory and consists on the standard 64Kbits/sec PCM), G.722, and G.728, as

presented in [H.320, H.200]. The bitrate ranges from 16Kbits/sec to 64Kbits/sec.

Reader may see, the H.324 uses a lower bitrate for audio transmission than the H.320,

the same thing occurs with the video transmission, that’s why the H.324 is more

suitable for use on the Internet, for instance.

10

• The Data Protocols support data applications such as electronic whiteboards, still

image transfer, file exchange, database access, audiographics conferencing, remote

device control, document exchange, etc. Other applications and protocols may also be

used via H.245 negotiation. The H.320 recommendation includes definition of the

Audio/Video equipment, as shown in the Figure 2.2.

• The Control Protocol (H.245) provides end-to-end signaling for proper operation of

the H.324 terminal, and signals all other end-to-end system functions, while the H.320

recommendation uses end-to-end signaling through H.242, H.230, H.221 as well.

• The Multiplex Protocol (H.223) multiplexes transmitted video, audio, data and control

streams into a single bit stream, and demultiplexes a received bit stream into various

multimedia streams. In addition, it performs logical framing, sequence numbering,

error detection, and error correction by means of retransmission, as appropriate to each

media type. The H.320 uses the H.221 Multiplex protocol, that has similar functions.

• The Modem (V.34) converts the H.223 synchronous multiplexed bit stream into an

analog signal that can be transmitted over GSTN, and converts the received analog

signal into a synchronous bit stream that is sent to the Multiplex/Demultiplex protocol

unit. V.25ter is used to provide control/sensing of the modem/network interface, when

the modem with network signaling and V.8/V.8bis functional elements is a separate

physical item, this protocol should be suppressed when on the Internet, since the H.223

stream can be transmitted directly, inside TCP packets or UDP datagrams.

11

Chapter III

3. The ITU-T H.263 Recommendation

3.1. Historic

In 1984, the CCITT3, began to study video transmission at m*384 Kbits/s, with

[]m∈ 1 5.. . Later, CCITT decided to include transmissions at n*64 Kbits/sec, with

[]n ∈ 1 5.. . In 1988 the CCITT published a unified standard for video transmission at p*64

Kbits/sec, where []p ∈ 1 30.. , which gives a constant bit rate from 64Kbits/sec to 1920

Kbits/sec, almost 2Mbits/sec. This standard was known as CCITT recommendation

H.261.

In 1993, the CCITT, IFRB4 and CCIR5 joined, creating the actual ITU6, where the ITU-T7

is the previous CCITT and the ITU-R8 is the IFRB and CCIR together. In the same year,

the ITU-T released a new version of its recommendation H.261. The ITU-T H.261

recommendation was used for the development of several prototypes, such as:

3 Comité Consultatif International de Télégraphique et Téléphonic

4 International Frequency Registration Board

5 Comité Consultatif International des Radio Communications

6 International Telecommunication Union

7 ITU - Standardization Sector

8 ITU - Radio Communication Sector

12

• The ViC [McJa 95], developed by Steven McCane and Van Jacobson at the

Lawrence Berkeley Laboratory and University of California, Berkeley, USA. The

system has the flexibility as goal and has implementation for the UNIX

environment. The interface, developed in Tcl/Tk, is presented in the Figure 3.1;

Figure 3.1: Interface LBL-UCB/ViC

• The IVS9 [Turl 93, Turl 94, Turl 95], developed by Thierry Turletti at the Inria,

Sophia-Antipolis, France. The System has implementation for several UNIX

based machines. The interface is presented in the Figure 3.2;

• O TVS10 [Oliv 96] was developed by myself while at the TeleMídia Laboratory,

PUC-Rio, Brazil. The interface, developed using the IUP library, is presented in

9 Inria Videoconferencing System

10 TeleMídia Videoconferencing System

13

the Figure 3.3. The IUP library was also developed at PUC-Rio [Levy 93] and

provides an easy toolkit for interface definition.

Figure 3.2: Interface Inria/IVS

All this systems have a very modest framerate, and proved that the H.261 is not adequate

to be used on the Internet, where just low bitrate is available. In the last few years, the

ITU-T began studies on Low bitrate real time video transmission. This recommendation

is still in development stage. Its first draft was published in May 2nd, 1996.

All remarks that follows in this report are based on the May 2nd, 1996 ITU-T H.263 Draft

Recommendation and 1993 ITU-T H.261 Recommendation. In the next sections, the

structure of the H.263 bitstream is presented as well as a set of characteristics of this

recommendation. Most of the time, characteristics of the H.261 recommendation are also

presented in comparison.

14

Figure 3.3: Interface PUC-Rio/TVS

3.2. H.263 x H.261

The H.263 structure is very similar to the H.261. Figure 3.4 shows the block diagram for

the H.263 codec [H.263] and the Figure 3.5 shows the same block diagram, for the H.261

codec.

As can be seen, the main difference is the presence of a transmission coder/decoder in the

H.261 recommendation, otherwise, the block diagram is the same.

15

Coding control

Source
coder

Source
decoder

Video multiplex
coder

Video multiplex
decoder

Transmission
buffer

Receiving
buffer

Coded
bitstream

Video
signal

a) Video coder

b) Video decoder

External control

Figure 3.4: Block Diagram of the H.263 Video Codec

Concerning the picture format, anticipate in Figure 2.3, the original H.261

recommendation adopts just two picture formats, namely CIF and QCIF. The H.263

adopts three more picture formats, 4CIF (defined first in the IVS prototype, see the big

image in Figure 3.2), 16CIF and SubQCIF (SQCIF), the aspect ratio is 4:3 as in a TV.

Coding Control

Source Video Multiplex
Coder

Transmission
Buffer

Transmission
Coder

Receiving
Decoder

Receiving
Buffer

Video Multiplex
Decoder

Source
Decoder

Coder

External Control

Video
signal

Coded
bit stream

Video Coder

Video Decoder

Figure 3.5: Block Diagram for H.261 Video Codec

16

Picture Format number of pixels
for luminance (dx)

number of lines for
luminance (dy)

number of pixels for
chrominance (dx/2)

number of lines for
chrominance (dy/2)

sub-QCIF 128 96 64 48

QCIF 176 144 88 72

CIF 352 288 176 144

4CIF 704 576 352 288

16CIF 1408 1152 704 576

Figure 3.6: H.263 picture format resolutions

Some extensions proposed to the H.261 codec have included the SQCIF as an QCIF

image, filling the remaining space with black, since the SQCIF is smaller than the QCIF.

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ

Χ - Luminância - Crominância

Figure 3.7: Luminance and Chrominance positions inside a Macroblock

17

Figure 3.6 presents a comparison among the five H.263 picture resolution standards,

presenting the their three components: Y, CB and CR, respectively luminance and two

different color components, whose values are in accordance with the ITU-R (previously

CCIR) Recommendation 601. The source coder operates on non-interlaced pictures at a

30,000/1001 (≈29.97) rate. The position of the luminance and chrominance samples is

presented in the Figure 3.7. The Chrominance components are sub sampled at the 4:1:1

rate, as shown in Figure 3.7, where for each four luminance components there is one

chrominance component; however, there are two of them.

Both the H.261 and H.263 codecs have a four-layer hierarchical structure. The layers are

Picture layer, Group of Blocks layer, Macroblock layer, and Block layer. Figure 3.9

shows the structure of each of these layers for the H.263 stream, Section 3.3 defines each

of those components.

A block is an 8x8 matrix of coefficients while a macroblock is a set of 6 blocks, being 4

luminance blocks and two chrominance blocks, as shown in Figure 3.8. A Group of

Blocks (GOB) is a Macroblock, and then comes the Picture when each picture is divided

into groups of blocks (GOBs).

Y

C

C

R

B

1 2

3 4

5

6

Figure 3.8: Arrangement of Blocks in a Macroblock

18

Figure 3.9: Syntax Diagram for Video Bitstream

19

H.263 defines that a group of blocks (GOB) comprises of k*16 lines, depending on the

picture format (k = 1 for sub-QCIF, QCIF and CIF; k = 2 for 4CIF; k = 4 for 16CIF). The

number of GOBs per picture is 6 for sub-QCIF, 9 for QCIF, and 18 for CIF, 4CIF and

16CIF. The GOB numbering is done by use of vertical scan of the GOBs, starting with

the upper GOB (number 0) and ending with the lower GOB.

3.3. The H.263 Source Coder

The source coder is shown in generalized form in Figure 3.10. The main elements are

prediction, block transformation and quantization.

CC

T Q

Q

T

P

p

t

qz

q

v

Video
in

To
video
multiplex
coder

T
Q
P

CC
p
t
qz
q
v

–1

–1

Transform
Quantizer
Picture Memory with motion compensated variable delay

Coding control
Flag for INTRA/INTER
Flag for transmitted or not
Quantizer indication
Quantizing index for transform coefficients
Motion vector

Figure 3.10: Source Coder

20

3.3.1. Prediction

The prediction is inter-picture and may be augmented by motion compensation. The

coding mode in which prediction is applied is called INTER; the coding mode is called

INTRA if no prediction is applied. The INTRA coding mode can be signaled at the

picture level (INTRA for I-pictures or INTER for P-pictures) or at the macroblock level

in P-pictures. In the optional PB-frames mode B-pictures are always coded in INTER

mode. The B-pictures are partly predicted bidirectionally. The Bidirectional Prediction is

optional.

3.3.2. Motion compensation

The decoder will accept one vector per macroblock or if the optional Advanced

Prediction mode is used one or four vectors per macroblock. If the PB-frames mode is

used, one additional delta vector can be transmitted per macroblock for adaptation of the

motion vectors for prediction of the B-macroblock.

Both horizontal and vertical components of the motion vectors have integer or half

integer values. In the default prediction mode, these values are restricted to the range

[-16,15.5] (this is also valid for the forward and backward motion vector components for

B-pictures). In the Unrestricted Motion Vector mode however, the maximum range for

vector components is [-31.5,31.5], with the restriction that only values that are within a

range of [-16,15.5] around the predictor for each motion vector component can be

reached if the predictor is in the range [-15.5,16]. If the predictor is outside [-15.5,16], all

values within the range [-31.5,31.5] with the same sign as the predictor plus the zero

value can be reached.

21

A positive value of the horizontal or vertical component of the motion vector signifies

that the prediction is formed from pixels in the referenced picture which are spatially to

the right or below the pixels being predicted.

3.3.3. Quantization

The number of quantizers is 1 for the first coefficient of INTRA blocks and 31 for all

other coefficients. Within a macroblock the same quantizer is used for all coefficients

except the first one of INTRA blocks. The decision levels are not defined. The first

coefficient of INTRA blocks is nominally the transform DC value uniformly quantized

with a step size of 8. Each of the other 31 quantizers use equally spaced reconstruction

levels with a central dead-zone around zero and with a step size of an even value in the

range 2 to 62.

3.3.4. Zig-Zag Scan

The coder takes advantage of the spatial redundancy through the use of DCT followed by

a zig-zag scan given in Figure 3.11. The coefficient 1 is the DC coefficient.

1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54

11 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64

Figure 3.11: Zig-Zag Scanning

22

3.4. Semantic and Syntax

3.4.1. Picture Layer

Data for each picture consists of a picture header followed by data for Group of Blocks,

eventually followed by an end-of-sequence code and stuffing bits. The structure was

shown in Figure 3.9 and is also presented in Figure 3.12. According to the

recommendation, the PSBI is only present if indicated by CPM. TRB and DBQUANT are

only present if PTYPE indicates ‘PB-frame’. Combinations of PSPARE and PEI may not

be present. EOS may not be present, while ESTUF may be present only if EOS is present.

PSC TR PTYPE PQUANT CPM PSBI TRB DBQUANT PEI PSPARE PEI Group of Blocks ESTUF EOS PSTUF

Figure 3.12: Picture Layer Structure

• Picture Start Code (PSC) (22 bits): PSC is a word of 22 bits. Its value is 0000 0000

0000 0000 1 00000. All picture start codes must be byte aligned. This is achieved by

inserting PSTUF before the start code such that the first bit of the start code is the first

(most significant) bit of a byte.

• Temporal Reference (TR) (8 bits): An 8-bit number which can have 256 possible

values. It is formed by incrementing its value in the previously transmitted picture

header by one plus the number of non-transmitted pictures (at 29.97 Hz) since the

previously transmitted one.

• Type Information (PTYPE) (13 bits): Information about the complete picture as

shown in Figure 3.13.

23

Bit Function
1 Always “1”, in order to avoid start code emulation.
2 Always “0”, for distinction with H.261,
3 Split screen indicator, “0” off, “1” on,
4 Document camera indicator, “0” off, “1” on,
5 Freeze Picture Release, “0” off, “1” on,

6-8 Source Format, “000” forbidden, “001” sub-QCIF, “010” QCIF, “011” CIF, “100”
4CIF, “101” 16CIF, “110” reserved, “111” reserved,

9 Picture Coding Type, “0” INTRA (I-picture), “1” INTER (P-picture),
10 Optional Unrestricted Motion Vector mode, “0” off, “1” on,
11 Optional Syntax-based Arithmetic Coding mode, “0” off, “1” on,
12 Optional Advanced Prediction mode, “0” off, “1” on,
13 Optional PB-frames mode, “0” normal I- or P-picture, “1” PB-frame.

Figure 3.13: PTYTE bits

Split screen indicator is a signal that indicates that the upper and lower half of the

decoded picture could be displayed side by side. This bit has no direct effect on the

encoding or decoding of the picture.

Freeze Picture Release is a signal from an encoder which responds to a request for

packet retransmission or fast update request and allows a decoder to exit from its

freeze picture mode and display decoded picture in the normal manner.

If bit 6-8 indicate a different source format than in the previous picture header, the

current picture has to be an I-picture.

Bit 10-13 refer to optional modes that are only used after negotiation between encoder

and decoder. If bit 9 is set to “0”, bit 13 has to be set to “0” as well.

• Quantizer Information (PQUANT) (5 bits): A fixed length codeword of 5 bits which

indicates the quantizer QUANT to be used for the picture until updated by any

24

subsequent GQUANT or DQUANT. The codewords are the natural binary

representations of the values of QUANT which, being half the step sizes, range from 1

to 31.

• Continuous Presence Multipoint (CPM) (1 bit): A codeword of 1 bit that signals the

use of the optional Continuous Presence Multipoint mode (CPM); “0” is off, “1” is on.

• Picture Sub Bitstream Indicator (PSBI) (2 bits): A fixed length codeword of 2 bits

that is only present if Continuous Presence Multipoint mode is indicated by CPM. The

codewords are the natural binary representation of the sub-bitstream number for the

picture header and all following information until the next Picture or GOB start code.

• Temporal Reference for B-pictures (TRB) (3 bits): TRB is present if PTYPE

indicates ‘PB-frame’ and indicates the number of non-transmitted pictures (at 29.97

Hz) since the last P- or I-picture and before the B-picture. The codeword is the natural

binary representation of the number of non-transmitted pictures plus one. The

maximum number of non-transmitted pictures is 6.

• Quantization information for B-pictures (DBQUANT) (2 bits): DBQUANT is

present if PTYPE indicates ‘PB-frame’. In the decoding process a quantization

parameter QUANT is obtained for each macroblock. With PB-frames QUANT is used

for the P-block, while for the B-block a different quantization parameter BQUANT is

used. QUANT ranges from 1 to 31. DBQUANT indicates the relation between

QUANT and BQUANT as defined in Figure 3.14. In this table, “/” means division by

25

truncation. BQUANT ranges from 1 to 31; if the value for BQUANT resulting from

Figure 3.14 is greater than 31, it is clipped to 31.

DBQUANT BQUANT
00 (5xQUANT)/4
01 (6xQUANT)/4
10 (7xQUANT)/4
11 (8xQUANT)/4

Figure 3.14: DBQUANT codes and relation between QUANT and BQUANT

• Extra Insertion Information (PEI) (1 bit): A bit which when set to "1" signals the

presence of the following optional data field.

• Spare Information (PSPARE) (0/8/16 . . . bits): If PEI is set to "1", then 9 bits follow

consisting of 8 bits of data (PSPARE) and then another PEI bit to indicate if a further 9

bits follow and so on. Encoders mustn’t insert PSPARE until specified by the ITU.

Decoders have to be designed to discard PSPARE if PEI is set to 1. This is defined to

allow the ITU to specify future backward compatible additions in PSPARE. If

PSPARE is followed by PEI=0, PSPARE=xx000000 is prohibited in order to avoid

start code emulation (x=don’t care, so 4 out of 256 values are prohibited).

• Stuffing (ESTUF) (Variable length): A codeword of variable length consisting of less

than 8 zero-bits. Encoders may insert this codeword directly before an EOS codeword.

If ESTUF is present, the last bit of ESTUF shall be the last (least significant) bit of a

byte, so that the start of the EOS codeword is byte aligned. Decoders have to be

designed to discard ESTUF.

26

• End Of Sequence (EOS) (22 bits): A codeword of 22 bits. Its value is 0000 0000

0000 0000 1 11111. It is up to the encoder to insert this codeword or not. EOS may be

byte aligned. This can be achieved by inserting ESTUF before the start code such that

the first bit of the start code is the first (most significant) bit of a byte.

• Stuffing (PSTUF) (Variable length): A codeword of variable length consisting of less

than 8 zero-bits. Encoders have to insert this codeword for byte alignment of the next

PSC. The last bit of PSTUF have to be the last (least significant) bit of a byte, so that

the video bitstream including PSTUF is a multiple of 8 bits from the first bit in the

H.263 bitstream. Decoders have to be designed to discard PSTUF.

3.4.2. Group of Block Layer

Data for each Group of Blocks (GOB) consists of a GOB header followed by data for

macroblocks. The structure is shown in Figure 3.9 as well as Figure 3.15. Each GOB

contains one or more rows of macroblocks. According to the H.263 recommendation,

GSTUF may be present when GBSC is present. GN, GFID and GQUANT are present

when GBSC is present. GSBI is present when Continuous Presence Multipoint mode is

on, as indicated in the Picture header.

GSTUF GBSC GN GSBI GFID GQUANT Macroblock Data

Figure 3.15: Structure of GOB layer

• Stuffing (GSTUF) (Variable length): A codeword of variable length consisting of less

than 8 zero-bits. Encoders may insert this codeword directly before an GBSC

codeword. If GSTUF is present, the last bit of GSTUF has to be the last (least

27

significant) bit of a byte, so that the start of the GBSC codeword is byte aligned.

Decoders shall be designed to discard GSTUF.

• Group of Block Start Code (GBSC) (17 bits): A word of 17 bits. Its value is 0000

0000 0000 0000 1. GOB start codes may be byte aligned. This can be achieved by

inserting GSTUF before the start code such that the first bit of the start code is the first

(most significant) bit of a byte.

• Group Number (GN) (5 bits): A fixed length codeword of 5 bits. The bits are the

binary representation of the number of the Group of Blocks. For the GOB with number

0, the GOB header including GSTUF, GBSC, GN, GSBI, GFID and GQUANT is

empty; group number 0 is used in the PSC. Group number 31 is used in the EOS and

the values from 18 to 30 are reserved for future use by the ITU.

• GOB Sub Bitstream Indicator (GSBI) (2 bits): A fixed length codeword of 2 bits

that is only present if Continuous Presence Multipoint mode is indicated by CPM. The

codewords are the natural binary representation of the sub-bitstream number for the

GOB header and all following information until the next Picture or GOB start code.

• GOB Frame ID (GFID) (2 bits): A fixed length codeword of 2 bits. GFID has to have

the same value in every GOB header of a given picture. Moreover, if PTYPE as

indicated in a picture header is the same as for the previous transmitted picture, GFID

has to have the same value as in that previous picture. However, if PTYPE in a certain

28

picture header differs from the PTYPE in the previous transmitted picture header, the

value for GFID in that picture shall differ from the value in the previous picture.

• Quantizer Information (GQUANT) (5 bits): A fixed length codeword of 5 bits

which indicates the quantizer QUANT to be used for the remaining part of the picture

until updated by any subsequent GQUANT or DQUANT. The codewords are the

natural binary representations of the values of QUANT which, being half the step

sizes, range from 1 to 31.

3.4.3. Macroblock Layer

Data for each macroblock consists of a macroblock header followed by data for blocks.

The structure is shown in Figure 3.9 as well as Figure 3.16. According to the H.263

recommendation, COD is only present in pictures for which PTYPE indicates ‘INTER’,

for each macroblock in these pictures. MCBPC is present when indicated by COD or

when PTYPE indicates ‘INTRA’. MODB is present for MB-type 0-4 if PTYPE indicates

‘PB-frame’. CBPY, DQUANT, MVD and MVD2-4 are present when indicated by

MCBPC. CBPB and MVDB are only present if indicated by MODB. Block Data is

present when indicated by MCBPC and CBPY. MVD2-4 are only present in Advanced

Prediction mode. MODB, CBPB and MVDB are only present in PB-frames mode.

COD MCBPC MODB CBPB CBPY DQUANT MVD MVD2 MVD3 MVD4 MVD
B

Block Data

Figure 3.16: Structure of macroblock layer

29

• Coded macroblock indication (COD) (1 bit): A bit which when set to "0" signals

that the macroblock is coded. If set to "1", no further information is transmitted for this

macroblock; in that case the decoder shall treat the macroblock as an INTER

macroblock with motion vector for the whole block equal to zero and with no

coefficient data. COD is only present in pictures for which PTYPE indicates ‘INTER’,

for each macroblock in these pictures.

• Macroblock type & Coded block pattern for chrominance (MCBPC) (Variable

length): A variable length codeword giving information about the macroblock type and

the coded block pattern for chrominance. MCBPC is always included in coded

macroblocks.

• Macroblock mode for B-blocks (MODB) (Variable length): MODB is present for

MB-type 0-4 if PTYPE indicates ‘PB-frame’ and is a variable length codeword

indicating whether CBPB is present (indicates that B-coefficients are transmitted for

this macroblock) and/or MVDB is present.

• Coded block pattern for B-blocks (CBPB) (6 bits): CBPB is only present in PB-

frames mode if indicated by MODB. CBPBN = 1 if any coefficient is present for B-

block N, else 0, for each bit CBPBN in the coded block pattern.

• Coded block pattern for luminance (CBPY) (Variable length): Variable length

codeword giving a pattern number signifying those Y blocks in the macroblock for

which at least one non-INTRADC transform coefficient is transmitted. CBPYN = 1 if

30

any non-INTRADC coefficient is present for block N, else 0, for each bit CBPYN in

the coded block pattern. Block numbering is given in FIGURE 5/H.263, the utmost left

bit of CBPY corresponding with block number 1.

• Quantizer Information (DQUANT) (2 bits): A two bit code to define change in

QUANT. QUANT ranges from 1 to 31; if the value for QUANT after adding the

differential value is less than 1 or greater than 31, it is clipped to 1 and 31 respectively.

• Motion vector data (MVD) (Variable length): MVD is included for all INTER

macroblocks (in PB-frames mode also for INTRA macroblocks) and consists of a

variable length codeword for the horizontal component followed by a variable length

codeword for the vertical component.

• Motion vector data (MVD 2-4) (Variable length): The three codewords MVD2-4 are

included if indicated by PTYPE and by MCBPC, and consist each of a variable length

codeword for the horizontal component followed by a variable length codeword for the

vertical component of each vector. MVD2-4 are only present when in Advanced

Prediction mode.

• Motion vector data for B-macroblock (MVDB) (Variable length): MVDB is only

present in PB-frames mode if indicated by MODB and consists of a variable length

codeword for the horizontal component followed by a variable length codeword for the

vertical component of each vector.

31

3.4.4. Block Layer

If not in PB-frames mode, a macroblock comprises four luminance blocks and one of

each of the two colour difference blocks as shown in Figure 3.7. The structure of the

block layer is shown in Figure 3.17.

INTRADC TCOEF

Figure 3.17: Structure of block layer

In PB-frames mode, a macroblock comprises twelve blocks. First the data for the six P-

blocks is transmitted as in the default H.263 mode, then the data for the six B-blocks.

INTRADC is present for every P-block of the macroblock if MCBPC indicates MB type

3 or 4. INTRADC is not present for B-blocks. TCOEF is present for P-blocks if indicated

by MCBPC or CBPY; TCOEF is present for B-blocks if indicated by CBPB.

Index FLC Reconstruction level

into inverse transform

0 0000 0001 (1) 8

1 0000 0010 (2) 16

2 0000 0011 (3) 24

. . . .

. . . .

126 0111 1111 (127) 1016

127 1111 1111 (255) 1024

128 1000 0001 (129) 1032

. . . .

. . . .

252 1111 1101 (253) 2024

253 1111 1110 (254) 2032

Figure 3.18: Reconstruction levels for INTRA-mode DC coefficient

32

• DC coefficient for INTRA blocks (INTRADC) (8 bits): A codeword of 8 bits. The

code 0000 0000 and 1000 0000 are not used, the reconstruction level of 1024 being

coded as 1111 1111 (see Figure 3.18).

• Transform coefficient (TCOEF) (Variable length): The most commonly occurring

events are coded with the variable length codes given in Figure 3.19. The last bit “s”

denotes the sign of the level, “0” for positive and “1” for negative. An EVENT is a

combination of a last non-zero coefficient indication (LAST; “0”: there are more

nonzero coefficients in this block, “1”: this is the last nonzero coefficient in this

block), the number of successive zeros preceding the coded coefficient (RUN), and the

non-zero value of the coded coefficient (LEVEL). The remaining combinations of

(LAST, RUN, LEVEL) are coded with a 22 bit word consisting of 7 bits ESCAPE, 1

bit LAST, 6 bits RUN and 8 bits LEVEL. Use of this 22-bit word for encoding the

combinations listed in Figure 3.19 is not prohibited. For the 8-bit word for LEVEL, the

codes 0000 0000 and 1000 0000 are not used. The codes for RUN and for LEVEL are

given in Figure 3.20.

INDEX LAST RUN LEVEL BITS VLC CODE INDEX LAST RUN LEVEL BITS VLC CODE

0 0 0 1 3 10s 58 1 0 1 5 0111 s

1 0 0 2 5 1111 s 59 1 0 2 10 0000 1100 1s

2 0 0 3 7 0101 01s 60 1 0 3 12 0000 0000 101s

3 0 0 4 8 0010 111s 61 1 1 1 7 0011 11s

4 0 0 5 9 0001 1111 s 62 1 1 2 12 0000 0000 100s

5 0 0 6 10 0001 0010 1s 63 1 2 1 7 0011 10s

6 0 0 7 10 0001 0010 0s 64 1 3 1 7 0011 01s

7 0 0 8 11 0000 1000 01s 65 1 4 1 7 0011 00s

8 0 0 9 11 0000 1000 00s 66 1 5 1 8 0010 011s

9 0 0 10 12 0000 0000 111s 67 1 6 1 8 0010 010s

10 0 0 11 12 0000 0000 110s 68 1 7 1 8 0010 001s

33

INDEX LAST RUN LEVEL BITS VLC CODE INDEX LAST RUN LEVEL BITS VLC CODE

11 0 0 12 12 0000 0100 000s 69 1 8 1 8 0010 000s

12 0 1 1 4 110s 70 1 9 1 9 0001 1010 s

13 0 1 2 7 0101 00s 71 1 10 1 9 0001 1001 s

14 0 1 3 9 0001 1110 s 72 1 11 1 9 0001 1000 s

15 0 1 4 11 0000 0011 11s 73 1 12 1 9 0001 0111 s

16 0 1 5 12 0000 0100 001s 74 1 13 1 9 0001 0110 s

17 0 1 6 13 0000 0101 0000s 75 1 14 1 9 0001 0101 s

18 0 2 1 5 1110 s 76 1 15 1 9 0001 0100 s

19 0 2 2 9 0001 1101 s 77 1 16 1 9 0001 0011 s

20 0 2 3 11 0000 0011 10s 78 1 17 1 10 0000 1100 0s

21 0 2 4 13 0000 0101 0001s 79 1 18 1 10 0000 1011 1s

22 0 3 1 6 0110 1s 80 1 19 1 10 0000 1011 0s

23 0 3 2 10 0001 0001 1s 81 1 20 1 10 0000 1010 1s

24 0 3 3 11 0000 0011 01s 82 1 21 1 10 0000 1010 0s

25 0 4 1 6 0110 0s 83 1 22 1 10 0000 1001 1s

26 0 4 2 10 0001 0001 0s 84 1 23 1 10 0000 1001 0s

27 0 4 3 13 0000 0101 0010s 85 1 24 1 10 0000 1000 1s

28 0 5 1 6 0101 1s 86 1 25 1 11 0000 0001 11s

29 0 5 2 11 0000 0011 00s 87 1 26 1 11 0000 0001 10s

30 0 5 3 13 0000 0101 0011s 88 1 27 1 11 0000 0001 01s

31 0 6 1 7 0100 11s 89 1 28 1 11 0000 0001 00s

32 0 6 2 11 0000 0010 11s 90 1 29 1 12 0000 0100 100s

33 0 6 3 13 0000 0101 0100s 91 1 30 1 12 0000 0100 101s

34 0 7 1 7 0100 10s 92 1 31 1 12 0000 0100 110s

35 0 7 2 11 0000 0010 10s 93 1 32 1 12 0000 0100 111s

36 0 8 1 7 0100 01s 94 1 33 1 13 0000 0101 1000s

37 0 8 2 11 0000 0010 01s 95 1 34 1 13 0000 0101 1001s

38 0 9 1 7 0100 00s 96 1 35 1 13 0000 0101 1010s

39 0 9 2 11 0000 0010 00s 97 1 36 1 13 0000 0101 1011s

40 0 10 1 8 0010 110s 98 1 37 1 13 0000 0101 1100s

41 0 10 2 13 0000 0101 0101s 99 1 38 1 13 0000 0101 1101s

42 0 11 1 8 0010 101s 100 1 39 1 13 0000 0101 1110s

43 0 12 1 8 0010 100s 101 1 40 1 13 0000 0101 1111s

44 0 13 1 9 0001 1100 s 102 ESCAPE 7 0000 011

45 0 14 1 9 0001 1011 s

46 0 15 1 10 0001 0000 1s

47 0 16 1 10 0001 0000 0s

48 0 17 1 10 0000 1111 1s

49 0 18 1 10 0000 1111 0s

50 0 19 1 10 0000 1110 1s

51 0 20 1 10 0000 1110 0s

52 0 21 1 10 0000 1101 1s

34

INDEX LAST RUN LEVEL BITS VLC CODE

53 0 22 1 10 0000 1101 0s

54 0 23 1 12 0000 0100 010s

55 0 24 1 12 0000 0100 011s

56 0 25 1 13 0000 0101 0110s

57 0 26 1 13 0000 0101 0111s

Figure 3.19: VLC table for TCOEF

Index Run Code Index Level Code

0 0 000 000 - -128 FORBIDDEN

1 1 000 001 0 -127 1000 0001

2 2 000 010 . . .

. . . 125 -2 1111 1110

. . . 126 -1 1111 1111

63 63 111 111 - 0 FORBIDDEN

127 1 0000 0001

128 2 0000 0010

. . .

253 127 0111 1111

Figure 3.20: FLC table for RUNS and LEVELS

35

Chapter IV

4. The Java Paradigm

In 1990, Sun Microsystems began studies on development of a platform independent

object oriented language. Some few years ago, a first version of this language was

available. The language was named Java. After this two released updates, versions 1.0.2

and the newest 1.1. are mostly widely used at this moment.

4.1. Java’s Architecture

Java’s Architecture, shown in Figure 4.1, consists of a two step procedure, to run a

program: First, a programmer writes a Java source code and compiles it. The Java

compiler (javac) creates an intermediate code, called Byte Code. The Byte Code is an

intermediate code, not a specific code for a specific machine; it runs on an abstract

machine called the Java Virtual Machine (java). That’s why the code can run in any Java

enabled machine. It is sufficient for a particular machine to have a Java Virtual Machine

(JVM) implementation to run any Java code. In the second step, the user submits a

previously compiled Java Byte Code to the JVM, in order to run the application. The

JVM originally works as an interpreter. All this process is summarized in the Figure 4.2.

36

JavaJava
CodeCode

JavaJava
CompilerCompiler BytecodeBytecode JavaJava

InterpreterInterpreter
ExecuteExecute
ProgramProgram

runtimeruntime

++

JVMJVM

Figure 4.1: The Java Architecture

There are two different kinds of Java programs. The first is called a system, and works

like a standard program such as a C code, the only difference is that the system runs over

the JVM, through an interpretation procedure; the second Java program type is called

Applet, which consist of a program that runs inside a Java Enabled Browser, such as

Netscape, Microsoft Internet Explorer, or Sun’s HotJava. A Java Enabled Browser

contains an implementation of a JVM, which makes possible the execution of Java Byte

Code. An Applet has a set of restrictions that were imposed for security reasons. For

instance, an Applet is not allowed to handle any hardware device, e.g. as Hard Drive. So,

it is not possible for somebody to write a harmful Applet which would delete all files on a

Hard Disk.

import java.awt.*
import java.awt.i
import java.apple
import java.net.*;
import java.io.*;
import java.lang.

public class prog
{
 Image oImage
 boolean bSho

program.java program.class

javacjavac browserbrowser
javajava Execution

Figure 4.2: The steps required to run a program written in Java

37

The main feature of Java is the portability which makes easily possible the maintenance

of a program that is supposed to run on several different machines.

4.2. Approaches for Applications for the Web

Until the creation of Java, when an application was available on the Internet, the user had

to find the application, download the right version for his/her machine and operating

system, if it is available, install the program, and finally, run it. Problem may occur if the

program is not available for a determined machine, for instance, a version for OS2 is

usually not available on the Internet. Now with Java, and particularly Applets, a user just

has to find the application he/she needs, click in the application’s link and the application

will run. Automatically the application will be downloaded, installed, submitted to the

JVM, and then executed. After the execution, the program will be automatically deleted.

In the next time the user runs the program, the actual version will pass through the same

process. Here we found another advantage in using Java Applets. If the programmer

updates something in the Applet, for example including a new option in it, the user will

run this new version without any necessary action from the user point of view in order to

update his/her program, which is required for the conventional program paradigm.

4.3. Java Advantages and Disadvantages

As advantages, it is possible to quote the following:

• The program is platform independent. It can even run on non PC devices, such as

Web-TV, Cellular phone PDA’s, Network Devices.

38

• It is easy to update and to maintain a program as commented before.

• The Byte Code is extremely small, hence, is downloaded quickly. The code is small

because it is not needed to link the code with libraries, since the JVM has a set of run

time libraries with everything that is needed to run a program (see Figure 4.1).

• The language itself provides support for network communication through TCP/IP.

On the other hand, it is possible to enumerate the following disadvantages:

• It runs slower than a traditional program, due to the interpreting before running step;

however, Just in Time compiling (JIT) can increase speed. That’s why a Java Applet

runs faster on Windows than on Solaris, for example, because the first uses the Just In

Time compiling technique in its browsers, while the second doesn’t do it.

• Security restrictions, such as no file manipulation, can make hard some

implementations; however it is possible to write a Java system program to run as a

server and exchange information with the Applet. The Java program is allowed to

handle devices such as Hard Disk, etc. Due to the security restrictions an Applet can

only exchange information with a server written for that Applet.

39

Chapter V

5. Java H.263 implementation

The goal of this project was to write an H.263 decoder in Java, in order to take advantage

of the portability of the language. Now, the code can be converted into an Applet, since it

does not access any device and can receive the video stream from a network connection.

In this chapter, the implementation is presented as well as some limitations of Java in bit

operations.

5.1. Codec Architecture

The Codec was planned with the architecture presented in the Figure 5.1 in mind. In some

place, a user has a video camera that provides video to a video capture board, this video

grabber provides the video stream to a small program, written in C due to performance

matter, and this program receives the video stream and codes it into an H.263 video

stream. Then, this video stream is provided to a Java Application, that works as a server

as defined in the previous chapter. This Java Server, called Java Video Server just sends

the H.263 video stream to an Applet that has required it through a network connection.

On the other side of the network a user that is running the Java Decoder Applet (JDA),

will see the video sent by the server in a window that the JDA opens to display the video.

40

Java was not developed for efficient bit handling. The performance of this decoder is

heavily damaged because of it; however, the new versions of Java will introduce some

new features that should improve the performance.

Video Destination

Java Applet
H.263 Decoder

Video Source

C H.263
Video Coder

Java
Video Server

Video Capture BoardVideo Capture Board

NetworkNetwork

Figure 5.1: Java Video Codec Architecture

In the actual decoder, a method to convert from a Byte into an Integer and from an Integer

back to Byte was required (Byte = 8 bits signaled integer; Integer 32 bits signaled

integer). The problem shown bellow, required the implementation of the following

methods:

From Byte to Integer:

• 11001100 = -52 ⇒ 11...111001100 = -52 instead of expected 00…011001100.

From Integer to Byte:

00…0010000000 = 128 ⇒ 00000000 = 0 instead of the expected 10000000.

41

int Byte2Int(byte bValue)
{

int iReturn = bValue;

return iReturn&0xff;
}

byte Int2Byte(int iValue)
{

byte bReturn=0;

iValue &= 0xff;

if(iValue==128)
{

bReturn = -128;
return bReturn;

}
return (byte) iValue;

}

Bellow, the dither method that convert the Y, Cr, Cb components used by the ITU-T

H.263 recommendation into the RGB components required to create a Java Image is

presented. Note that for each component, the above Byte2Int and Int2Byte methods have

to be performed several times, which degrades the performance substantially.

void Color32DitherImage(byte src[][], int out[])
{

byte lum[] = src[0];
byte cb[] = src[1];
byte cr[] = src[2];
int cols, iCR=0, iCB=0, iLUM=0;
int rows;

int L, CR, CB;
int row1, row2;
int lum2;
int x, y;
int cr_r;
int cr_g;
int cb_g;
int cb_b;
int cols_2;

cols = coded_picture_width;
rows = coded_picture_height;
cols_2= cols/2;
row1 = 0;
row2 = cols_2 + cols_2;
lum2 = cols_2 + cols_2;

for(y=0; y<rows; y+=2)
{

for(x=0; x<cols_2; x++)
{

int R, G, B;

42

CR = Byte2Int(cr[iCR++]);
CB = Byte2Int(cb[iCB++]);
cr_r = Cr_r_tab[CR];
cr_g = Cr_g_tab[CR];
cb_g = Cb_g_tab[CB];
cb_b = Cb_b_tab[CB];

L = L_tab[Byte2Int(lum[iLUM++])];

R = (L + cr_r);
G = (L + cr_g + cb_g);
B = (L + cb_b);

out[row1++] = (0xff<<24 | R<<16 | G<<8 | B);

L = L_tab[Byte2Int(lum[iLUM++])];

R = (L + cr_r);
G = (L + cr_g + cb_g);
B = (L + cb_b);

out[row1++] = (0xff<<24 | R<<16 | G<<8 | B);

L = L_tab [Byte2Int(lum[lum2++])];
R = (L + cr_r);
G = (L + cr_g + cb_g);
B = (L + cb_b);

out[row2++] = (0xff<<24 | R<<16 | G<<8 | B);

L = L_tab [Byte2Int(lum[lum2++])];
R = (L + cr_r);
G = (L + cr_g + cb_g);
B = (L + cb_b);

out[row2++] = (0xff<<24 | R<<16 | G<<8 | B);
}
iLUM += cols_2 + cols_2;
lum2 += cols_2 + cols_2;
row1 += cols_2 + cols_2;
row2 += cols_2 + cols_2;

}
}

Both methods Int2Byte and Byte2Int are also largely used during the decoding of the

video stream, where each byte has to be converted into an integer, that works as a buffer

with 32 bits inside.

// return next n bits (right adjusted) without advancing
int ShowBits(int piNumber)
{

int iValue;
int iByte=0;
int iCalc;

if(iInputCounter<piNumber)
FillBuffer();

43

iValue = (96 - iInputCounter)>>>3;

iByte=(Byte2Int(viInputBuffer[iValue])<<24)|(Byte2Int(viInputBuffe
r[iValue+1])<<16)|(Byte2Int(viInputBuffer[iValue+2])<<8)|Byte2Int(viInpu
tBuffer[iValue+3]);

iCalc = ((iInputCounter-1) & 7) + 25;

return (iByte>>>(iCalc-piNumber)) & viMask[piNumber];
}

Figure 5.2: H.263 × H.261

The H.263 Codec has a better performance than the H.261 Codec discussed in Chapter 2

and 3. Figure 5.2 shows a comparison between them. The performance of the decoder

written in Java is very fair, since the frame rate of just 2 frames/sec was reached. The

frame rate should be improved when the next release of Java becomes available. In future

44

a new structure called Multimedia Framework will be included which should improve the

bit operation capabilities.

The decoder has a little bit more than 3860 lines, just for comparison, this document up to

this point has 1930 lines, exactly one half of the decoder source code.

45

Chapter VI

6. Conclusion

The implementation of an H.263 Java Decoder as well as an architecture for exchange of

video transmission through a network was presented in this document. Due to the fact

that the decoder was written in Java, it is possible to receive the video on any machine,

such as Windows95, MacOS or Unix stations. This decoder is going to be used in the

JETS project (Java Enabled TeleColaboration System) at Multimedia Communications

Research Laboratory to create a videoconferencing environment over Java Enabled

Browsers, such as Netscape, Microsoft Internet Explorer, Sun’s HotJava, etc.

The Decoder has shown to be robust; however the frame rate needs a substantial

improvement.

6.1. Further Recommendation and Future Work

• Rewrite some parts of the Decoder Applet in order to improve the performance on not

so powerful CPU’s.

• Include the Coder/Decoder architecture in the JETS project, in order to improve the

telelearning environment (http://www.mcrlab.uottawa.ca/jets).

46

• Adapt the Coder to be used as video source, the video capture board itself, as well as

complete the communication between Coder/Decoder.

• Include some of the H.263 optional features that were not implemented in this first

prototype.

• To adapt the Java Video Server to use the RTP11 [IETF 97]for efficient multicast

transmission.

11 Real Time Protocol

47

References

[ChHa 96] Cherriman, P.; Hanzo, L. - “Robust H.263 Video Transmission over
Mobile Channels in Interference Limited Environments” - 1st IEEE Wireless Video
Communication Workshop, UK, September, 1996.

[Draft G.723] International Telecommunication Union, Telecommunication
Standardization Sector - “Dual Rate Speech Coder for Multimedia Communications
Transmitting at 5.3 & 6.3 Kbit/s” - Draft ITU-T Recommendation G.723, September
1995.

[Draft H.263] International Telecommunication Union, Telecommunication
Standardization Sector - “Line Transmission of non-Telephone Signals - Video Coding
for Low Bitrate Communications” - Draft ITU-T Recommendation H.263, July 1995.

[Draft H.223] International Telecommunication Union, Telecommunication
Standardization Sector - “Line Transmission of non-Telephone Signals - Multiplexing
Protocol for Low Bitrate Multimedia Communication” - Final Draft ITU-T
Recommendation H.223, to be published in next.

[Draft H.324] International Telecommunication Union, Telecommunication
Standardization Sector - “Line Transmission of non-Telephone Signals - Terminal for
Low Bitrate Multimedia Communication” - Draft ITU-T Recommendation H.324,
September 1995.

[Draft H.245] International Telecommunication Union, Telecommunication
Standardization Sector - “Line Transmission of non-Telephone Signals - Multimedia
Control Protocol” - Draft ITU-T Recommendation H.324, September 1995.

[F.730] International Telecommunication Union, Telecommunication
Standardization Sector - "Telematic, Data Transmission, ISDN Broadband, Universal,
Personal Communications and Teleconference Services: Operation and Quality of Service
- Videoconference Service - General" - ITU-T Recommendation F.730, August 1992

[Fluc 95] Fluckiger, F. - “Understanding Networked Multimedia - Applications
and Technology” - Prentice Hall, 1995

[G.711] Comité Consultatif International de Télégraphique et Téléphonic - “Pulse
Code Modulation (PCM) of Voice Frequencies” - CCITT Recommendation G.711, from
CCITT Blue Book.

[G.722] Comité Consultatif International de Télégraphique et Téléphonic - “7kHz
Audio-coding Within 64 kbits/s” CCITT Recommendation G.722, from CCITT Blue
Book.

[G.725] International Telecommunication Union, Telecommunication
Standardization Sector - "General Aspects of Digital Transmission Systems; Terminal
Equipment - System Aspects for the Use of the 7 kHz Audio Codec Within 64 kbit/s" -
ITU-T Recommendation G.725, 1988.

48

[G.728] International Telecommunication Union, Telecommunication
Standardization Sector - "General Aspects of Digital Transmission Systems; Terminal
Equipment - Coding of Speech at 16 kbit/s Using Low-Delay Code Excited Linear
Prediction" - ITU-T Recommendation G.728, September 1992.

[H.200] International Telecommunication Union, Telecommunication
Standardization Sector - "Line Transmission of non-Telephone Signals - Framework for
Recommendations for Audiovisual Services" - ITU-T Recommendation H.200, March
1993.

[H.221] International Telecommunication Union, Telecommunication
Standardization Sector - "Line Transmission of non-Telephone Signals - Frame Structure
for a 64 to 1920 kbit/s Channel in Audiovisual Teleservices" - ITU-T Recommendation
H.221, March 1993.

[H.230] International Telecommunication Union, Telecommunication
Standardization Sector - "Line Transmission of non-Telephone Signals - Frame
Synchronous Control and Indication Signals for Audiovisual Systems" - ITU-T
Recommendation H.230, March 1993.

[H.242] International Telecommunication Union, Telecommunication
Standardization Sector - "Line Transmission of non-Telephone Signals - System for
Establishing Communication Between Audiovisual Terminals Using Digital Channels up
to 2 Mbit/s" - ITU-T Recommendation H.242, March 1993.

[H.261] International Telecommunication Union, Telecommunication
Standardization Sector - "Line Transmission of non-Telephone Signals - Video Codec for
Audiovisual Services at p×64 Kbit/s" - ITU-T Recommendation H.261, March 1993.

[H.320] International Telecommunication Union, Telecommunication
Standardization Sector - "Line Transmission of non-Telephone Signals - Narrow-Band
Visual Telephone Systems and Terminal Equipment" - ITU-T Recommendation H.320,
March 1993.

[IETF 97] Internet Engineering Task Force Draft - “RTP Payload Format for
H.263 Video Stream” - March 1997.

[Levy 93] Levy, C.H. - “IUP/LED: Uma Ferramenta Portátil de Interface com o
Usuário” - Master Dissertation - Computer Science Department / PUC-Rio, 1993.

[Liou 91] Liou, M. - "Overview of the p×64 kbit/s video coding standard" -
Communications of the ACM, No. 4, April de 1991.

[McJa 95] McCane, S.; Jacobson, V. - “ViC: A Flexible Framework for Packet
Video” - ACM Multimedia 95, San Francisco, CA, November 1995.

[MHEG 95] MHEG - Information Technology - “Coded Representation of
Multimedia and Hypermedia Information Objects - Part 1: Base Notation”, Committee
Draft ISO/IEC, 1995.

[OlSo 96] Oliveira, J.C. de; Soares, L.F.G. - “TVS - Um Sistema de
Videoconferência com Documentos Compartilhados - Uma Visão Geral” - WoSH’96 - II

49

Workshop on Hypermedia Systems, XIV SBRC - Brazilian Symposium on Computer
networks, May 1996.

[Oliv 96] Oliveira, J. C. de - “TVS: Um Sistema de Videoconferencia” - Master
Dissertation, Computer Science Department, PUC-Rio, August de 1996.

[Schn 95] Schneier B. - “Applied Cryptography” - 2nd Edition - John Willey,
November 1995.

[SoMB 88] Soares, L.F.G.; Martins, S. de L.; Bastos, T.L.P. - "LAN Based Real
Time Audio-Graphics Conferencing System, General Overview" - CCR066 Technical
Report Rio Scientific Center-IBM Brazil, November 1988.

[STCN 92] Soares, L.F.G.; Tucherman, L.; Casanova, M.A.; Nunes, P.R.R.L. -
“Fundamentos de Sistemas Multimídia” - VIII Computer Science School, Gramado,
Brazil, 1992.

[Turl 93] Turletti, T. - "A H.261 Software Codec for Videoconferencing over the
Internet" - INRIA Research Report, # 1834, January 1993.

[Turl 94] Turletti, T. - “The INRIA Videoconferencing System (IVS)” -
ConneXions, Volume VIII, # 10, October 1994

[Turl 95] Turletti, T. - "Contrôle de Transmission pour Logiciel de
Vidéoconférence sur l'Internet" - Doctorate Thesis, L'Universite de Nice - Sophia
Antipolis, April 1995.

[Wall 91] Wallace, G.K. - “The JPEG Still Picture Compression Standard” -
Digital Equipment Corporation (Submitted for publication on December 1991 to “IEEE
Transactions on Consumer Electronics”), 1991.

