
Collaborative Virtual Environment Standards:
A Performance Evaluation

Jauvane C. de Oliveira∗, Shervin Shirmohammadi, and Nicolas D. Georganas
Multimedia Communications Research Laboratory
School of Information Technology and Engineering

University of Ottawa, Ottawa, Canada
[jauvane | shervin | georgana]@mcrlab.uottawa.ca

∗ Sponsored by CAPES, the Brazilian Ministry of Education Agency: Bolsista da CAPES - Brasilia/Brasil

Abstract
Collaborative Virtual Environments are virtual reality
spaces that enable participants to collaborate and share
objects as if physically present in the same place. These
collaboration spaces require strict performance
characteristics. Today there are many systems developed
specifically for collaboration, including DIVE, CALVIN,
and COVEN. At the same time, some relatively new
standards that address multiuser virtual environments and
shared spaces have become available. In this paper, we're
going to evaluate available and emerging standards such
as the High Level Architecture (HLA) and Open
Community to determine if they appropriately address the
needs of such environments.

1. Introduction

Collaborative Virtual Environments (CVE) are used
for applications such as collaborative design, training, and
tele-robotics. Unlike other types of simulations, there are
not many people participating in such environment at the
same time. Typically it is expected to have about 5 to 15
people in one such session, these are engineers designing a
new engine, or new department employees virtually
training with equipment.

Today there are some dedicated systems supporting
these types of environment. The Distributed Interactive
Virtual Environment (DIVE) is an Internet-based multi-
user VR system developed at the Swedish Institute of
Computer Science which allows its participants to
navigate in 3D space and see, meet and interact with other
users and applications [5]. COVEN is a four-year
European project that was launched with the objective of
comprehensively exploring the issues in the design,
implementation and usage of multi-participant shared
virtual environments, at scientific, methodological and

technical levels [11]. CAVERN, the CAVE Research
Network, is an alliance of industrial and research
institutions equipped with immersive equipment and high-
performance computing resources all interconnected by
high-speed networks to support collaboration in design,
training, visualization, and computational steering in
virtual reality [10].

Almost in parallel, standards are being developed by
the VR/simulation community in order to facilitate the
development of CVEs in a systematic manner. As we will
see next, some of these standards/libraries are very generic
while others make certain assumptions. Also the area of
interest for each standard varies from graphics and
rendering to simulation and network communication.
Standards are necessary in order to construct a hybrid
collaborative VR system, reason why the currently
available standards have to be evaluated aiming the
identification of problems to be addressed in future
revisions of the standard or the development of new
standards. The rest of this document is organized as
follows: section 2 gives a brief introduction to some of the
CVE and related standards, section 3 introduces the
prototypes that were developed for testing, and section 4
describes the performance evaluation methods and results.

2. The Standards

The standards can be divided into two categories:
Rendering and Graphics and Communications
Middleware.

2.1 Rendering and Graphics

These standards are mainly concerned with graphics
and rendering of 3D scene graphs. They have very little or
no consideration about communication between users and
other networking related issues.

OpenGL1

OpenGL is a graphical library introduced by Silicon
Graphics Inc. (now SGI) in 1992 to allow developers to
write a single piece of code, based on the OpenGL API,
which is supposed to run in various platforms (as long as
they have an OpenGL library implementation). Since its
inception OpenGL has been controlled by an Architectural
Review Board [15] whose representatives are currently
from the following companies: 3DLabs, Compaq, Evans
& Sutherland, Hewlett-Packard, IBM, Intel, Intergraph,
NVIDIA, Microsoft, and SGI.

Most of the Computer Graphics research (and
implementation) broadly uses OpenGL which has became
a de facto standard. Virtual Reality is no exception to this
rule.

There are many options available for hardware
acceleration of OpenGL based applications. The idea is
that some complex operations may be performed by
specific hardware (an OpenGL accelerated video card
such as those based on 3DLab’s Permedia series or
Mitsubishi’s 3Dpro chipset for instance) instead of the
CPU which is not optimized for such operations. Such
acceleration allows low-end workstations to perform quite
well yet at low cost.

We will see that such is the importance of OpenGL
that both VRML and Java3D are built on top of it, i.e. if a
given workstation has hardware support for OpenGL the
VRML browser and Java3D, discussed below, will also
benefit from it.

DirectX

Microsoft DirectX® is a group of technologies
designed by Microsoft to allow Windows-based
computers to run and display applications rich in
multimedia elements such as full-color graphics, video, 3-
D animation, and surround sound. DirectX is an integral
part of Windows 98 and Windows 2000, as well as
Microsoft® Internet Explorer 4.0. DirectX components
may also be installed in Windows 95 as an optional
package.

DirectX allows a compliant application to run in any
Windows based system, independent of particularities of
hardware of each system. In some sense it seems similar
to OpenGL; however there is a logical limitation in
disponibility as it is a Windows specific component.
DirectX accomplishes its task via a multilayered structure.
The Foundation layer is responsible for resolving any
hardware dependent issue. DirectX also allows developers
to deploy creation and playback of multimedia content via
DirectX’s Media layer. A third layer, Component,
complets the high level protocol layer stack.

1 OpenGL™ is a registered trademark of SGI.

Some VRML browsers also provide a Direct3D based
version (as well as the common OpenGL). A good
example is blaxxun’s Contact 4.0 [17].

VRML

VRML 2.0, which is the latest version of the well-
known VRML format, is an ISO standard (ISO/IEC
14772-1:1997). Having a huge installed base, VRML 2.0
has been designed to support easy authorability,
extensibility, and capability of implementation on a wide
range of systems. It defines rules and semantics for
presentation of a 3D scene. Using any VRML 2.0
compliant browser, a user can simply use a mouse to
navigate through a virtual world displayed on the screen.
In addition, VRML provides nodes for interaction and
behavior. These nodes, such as TouchSensor and
TimeSensor, can be used to intercept certain user
interactions or other events which then can be ROUTed to
corresponding objects to perform certain operations.
Moreover, more complex actions can take place using
Script nodes which are used to write programs that run
inside the VRML world. In addition to the Script node,
VRML 2.0 specifies an External Authoring Interface
(EAI) which can be used by external applications to
monitor and control the VRML environment. These
advanced features enable a developer to create an
interactive 3D environment and bring the VRML world to
life.

Java 3D

Java3D is part of the Java Media APIs developed by
Javasoft. Providing developers with high level constructs
for creating and manipulating 3D geometry in a platform-
independent way, the Java 3D API is a set of classes for
writing three-dimensional graphics applications and 3D
applets. Since a Java3D program runs at the same level as
any other Java program/applet in the virtual machine,
controlling the virtual world becomes very easy through
calling the Java3D API from any Java program. Although
Java3D and VRML both appear to target the same
application area, they have fundamental differences.
VRML is aimed at a presentational application area and
includes some support for runtime programming
operations through its External Authoring Interface and
the Script node, as mentioned earlier. Java3D; however, is
specifically a Java language API, and is only a runtime
API. Java3D does not define a file format of its own and is
designed to provide support for applications that require
higher levels of performance and interactivity, such as
real-time games and sophisticated mechanical CAD
applications. In this sense, Java3D provides a lower-level,
underlying platform API. Many VRML implementations
can be layered on top of Java3D. In fact, it is possible to

write a VRML browser using Java3D, such as the browser
developed by VRML consortium’s Java3D and VRML
Working group [14].

2.2 Communications Middleware

Standards in this category focus on the issues
concerning connecting users together on the network to
create shared worlds. Although some of them also provide
graphical capabilities, their main target is networking,
world status updating, and object-sharing capabilities.

Living Worlds

Living Worlds (LW) [13] is a Working Group of the
VRML Consortium, supported by a large number of
organizations. The LW effort aims to define a set of
VRML 2.0 conventions that support applications which
are multiuser and interoperable. “Scene-sharing", which is
concerned with the coordination of events and actions
across the network, is one of the main elements of LW. In
short, LW is a first attempt to devise a common VRML
2.0 interface to support basic interaction in multi-user
virtual scenes and enables each participant to know that
someone has arrived, departed, sent a message or changed
something in the scene. Although LW specifies rules for
object sharing and exchanging update messages across the
network, it is not a communications middleware and the
reason it is being presented in this section is that it is also
not concerned with graphics and rendering. In fact LW
does not care about the actual technical implementation of
the communications system that enables world sharing.
Referred to as the Multi User Technology (MuTech), the
actual system that runs on the network and is responsible
for message passing among clients can be developed by
any technology as long as its interface to the VRML world
follows the LW specifications. Since currently no
implementations of LW are publicly available, it was not
used in our performance tests.

Open Community

Open Community (OC) is a proposal of standard for
multiuser enabling technologies from Mitsubishi Electric
Research Laboratories. SPLINE (Scalable Platform for
Large Interactive Networked Environments) [6] is an
implementation compliant with OC which provides a
library with ANSI C and soon Java API. Such library
provides very detailed and essential services for real-time
multi-user cooperative applications. For its
communication, SPLINE uses the Interactive Sharing
Transfer Protocol (ISTP) [7] which is a hybrid protocol
supporting many modes of transportation for VR data and
information, namely:

• 1-1 Connection Subprotocol: Used to establish and
maintain a TCP connection between two ISTP
processes;

• Object State Transmission Subprotocol: Used to
communicate the state of objects from one ISTP
process to another. Such updates may be sent via 1-1
Connection or UDP Multicast (1-1 Connection is used
as a backup route);

• Streaming Audio Subprotocol: Used to stream audio
data via RTP;

• Locale-Based Communications Subprotocol: This is
the core of ISTP and supports the sharing of
information about objects in the world model; and

• Content-Based Communication Subprotocol:
Supports central server style communication of
beacon information. Beacons are tags through which
is it possible to retrieve a given object (similar to an
URL).

The last two subprotocols are build upon the other
three. ISTP does not provide video-streaming capability to
date, however such support could be provided by
extending ISTP with an extra appropriated subprotocol.

High Level Architecture (HLA)

HLA is a framework for distributed simulation systems
developed by the U.S. Defense Modeling and Simulation
Office (DMSO). HLA attempts to provide a very generic
environment that any virtual object can attach to in order
to participate in a simulation. It is a very well-thought
architecture that defines standard services and interfaces
to be used by all participants in order to support efficient
information exchange. HLA is adopted as the facility for
Distributed Simulation Systems 1.0 by the Object
Management Group (OMG) and is now in the process of
becoming an open standard through the IEEE. HLA's
Runtime Infrastructure (RTI) is a set of software
components that implement the services specifies by
HLA. Today, a few RTI implementations for different
platforms are available. For this paper, we’re using
version RTI 1.0 release 3.

Java Shared Data Toolkit (JSDT)

Although not specifically designed for 3D simulations
and virtual environments, JSDT is part of the Java Media
APIs developed by Javasoft and provides real-time
sharing of applets and/or applications. JSDT provides
many facilities such as tokens that can be used for
coordinating shared objects. It also provides different
modes of transportation including a reliable socket mode,
RMI mode which uses Remote Method Invocation, and a
multicast mode that makes use of the Lightweight Reliable
Multicast Protocol (LRMP) and is useful for shared

application with a large number of participants.

3. Prototypes

Figure 1. A Virtual ATM switch with one of its
cards pulled out, running in Netscape Navigator.

We built a few prototypes based on the above
middleware/libraries. The application of interest was a
training application where an instructor teaches one or
more trainees how to configure a specific ATM switch.
This application requires coordination of interactions with
different components of the ATM switch. In this example
the shared objects were the ATM cards that had to be
inserted or removed for configuration. A screen shot of a
sample session is shown in Figure 1. Figure 2 shows a
SPLINE session of the same prototype using OpenGL as a
rendering engine.

Figure 2: Virtual ATM Switch through SPLINE
using OpenGL for rendering

Figure 1 shows the virtual training environment
running in Netscape Navigator’s VRML 2.0 plug-in. To
join the session, participants navigate to a pre-defined
URL address. The browser then downloads the necessary
HTML files, containing the Java applets and the VRML
world. The VRML world is controlled by a Java applet
trough EAI, as explained before. Since both Open
Community and RTI 1.0 release 3 provide a C API at this
time, the Java Native Interface (JNI) was used to connect
the Java applet to the communications middleware.

3.1 Java3D/VRML - RTI

Technically speaking, RTI is a distributed system
comprised of two global processes, the RTI executive
(rtiexc) and the Federation Executive (fedex). rtiexec
manages the creation and destruction of the federation
executions. fedex is a global process per federation
execution that manages the joining and resigning of
federates in an execution. A Java applet is used to control
the VRML scene via EAI and to communicates with the
RTI through JNI. Different objects are used to embody a
certain entity in the virtual environment at each of the
three layers of the application – VRML, Java and RTI. At
the VRML layer, a VRML PROTOTYPE node defines the
avatar’s geometry and the animations of its
actions/gestures which are implemented by VRML
sensors, events and scripts. At the Java level, a Java object
consists of attributes like position, rotation and gesture to
describe the avatar in CVE. Finally, simulated entities in
the RTI context are represented by RTI objects. All
possible interaction between the federates of a federation
must be pre-defined in a so-called Federation Object
Model (FOM). Figure 3 illustrates the model of the
system.

Figure 3. The RTI-based hybrid system model of
the collaborative environment.

3.2 VRML - Open Community

SPLINE consists of the SPLINE Universal Server

VRML Browser

Java Applet

RTI Interface

EAI

JNI

Federation Executive (fedex)

RTI Executive (rtiexc)

Federate

WWW http server

VRML Browser

Java Applet

RTI Interface

(spurs) and the SPLINE library. spurs manages the World
Model with all its locales and enables ISTP compliant
communication by controlling limited resources such as
multicast addresses. Locales define a partition of the
World Model and a given process only receives updates
regarding objects within its own locale as well as the
immediate neighborhood locales, which is accomplished
by attributing a different multicast group for each locale.
This way the amount of information a given station has to
deal with is limited to those contained in few locales.
Locales are pretty much like federations in HLA. SPLINE
library is linked to the local client code and implements
the client side of the ISTP protocol as well all
functions/methods of the API.

Currently only an ANSI C API is available, hence the
same procedure previously mentioned for RTI has to be
followed in order to achieve rendering of VRML content
via a VRML browser; i.e., a Java Applet controlling the
VRML content via the External Authoring Interface
communicates with SPLINE's ANSI C code (linked to
SPLINE library spLib) via JNI. To keep the World Model
up to date one must call the spWMUpdate method (World
Model Update). Calling this method forces every action
performed in objects owned by the current process to be
sent to the appropriated multicast address and at the same
time every process's modification to its objects is received.
As this calling is made periodically the WM is reasonably
up to date for every process. Figure 4 shows this model.

Figure 4. The SPLINE-based hybrid system
model.

4. Performance Evaluation

In terms of a performance model, a virtual
environment can be divided into four high-level
components [8] each adding a delay to the overall system:
1) display – the “on-screen” delay created by monitors,
projectors, stereo goggles, and other displaying
equipment; 2) graphics – the delay caused by the graphics
card/drivers and other graphical component of the system;
3) simulation: the lag introduced as a result of
processing/computing performed by the core multi-user
engine hardware and software; 4) Interconnections:
networking and communication delays.

4.1 Parameters of Interest

Delay and jitter are the most important parameters in
CVEs. Among these, delay has been studied more
extensively with actual numbers available which indicate
acceptable levels. The acceptable simulation + network
delay is less than 200 msec [3], with some studies
suggesting a more restrictive 100 msec [4]. Jitter is also an
important factor, sometimes believed to be more important
than delay when it comes to coordinating collaborative
tasks [2]. But no actual numbers for it are available in
terms of what constitutes an acceptable level of jitter.

In our evaluations, we combine simulation and
network delays as the client-to-client delay (CCD). This is
the average time it takes for a given update message at one
client to be assembled by the simulation, sent over the
network, received by another client, and disassembled to
be processed by the graphics/display components of the
system - it doesn't include the rendering and graphics
delay. In the case of the RTI prototype, for example, this
delay includes all layers of Java, JNI, C++, RTI, and
physical network delays.

Another parameter of interest is the Ownership
Transfer Delay (OTD). Both SPLINE and RTI allow only
the owner of an object to manipulate it although everyone
is the session will be able to see those manipulations.
Ownership of an object must first be acquired in order for
someone to manipulate the object. This is similar to the
concept of floor control in conferencing [9] or 2D
collaborative applications where only one person at a time
can interact with a shared entity in order to avoid event
collision and unwanted conflicts [1]. This transfer of
ownership creates an additional delay. When the user
clicks on an object to manipulate it, the system must first
obtain ownership. This delay should be small enough to
maintain a natural feeling in the virtual world.

Both RTI and SPLINE only allow the owner of a given
object to handle it and the ownership transfer is performed
in a two steps fashion, i.e. a given process requests it and
the current owner grants it or not. In fact SPLINE allows
unidirectional transfer when the owner gives the object to
another process without that one requiring it; however this
procedure is not common and is commonly used when a
given process will end and wishes to leave in the world
some objects it owns. The ownership transfer goes
through four different queues which increase considerably
the delay. Again taking SPLINE as an example the first
queue is located at the requester’s station when the request
is enqueued to be sent in the next cycle as only when
spWMUpdate is called outcoming messages are
effectively sent. The same thing happens when the request
arrives at the current owner of the object and stays in the
queue until the next cycle, when a callback is performed
to handle the request. Once the ownership request is
granted this message has to be sent back to the requester,

VRML Browser

Java Applet

C+Spline Library

EAI

JNI

Spline Universal Server

VRML Browser

Java Applet

C+Spline Library

not before staying in two queues again in its way back. So,
the ownership transfer involves 4*queue delay +
2*communication delay + 2*processing time. Taking this
into account if spWMUpdate is set to be called every
50ms the average waiting time should be of about half of
that (25ms) in average. So, one should expect an average
100ms just concerning queueing delay.

4.2 Other parameters

There are some other parameters that affect the
performance of the overall system. We don’t measure
them in this paper either because we can't control them or
because they are not very significant. Object Insertion
Delay measures how long it takes for a newly created
object to appear on every participant’s screen. This is
however more a function of the number and size of the
attributes of the object than anything else since the object
must initially be downloaded over the network. If the
object is local, than this delay will normally be
insignificant.

Framerate measures how quickly a user can navigate
and interact with objects from a graphical stand-point. It
depends on the complexity of the virtual environment and
the hardware support: a large room with lots of texture
maps runs slower than a small room represented by
primitive objects. Subjectively, we observed that the
virtual world ran faster in the Java3D environment than in
the VRML plug-in. Again taking SPLINE as an example
the frame rate is also set via the update rate as usually at
every cycle the display is refreshed. I.e. at 100ms update
one may expect to have about 10fps, which is not
guaranteed because SPLINE runs to completion (if it
needs to take longer to finish all outstanding tasks it will
do so, reducing the “framerate”).

4.3 Testing Procedure

For the CCD test, we had an "initiator" client create an
object and perform an update on this object, such as a
rotation or translation. A second client then receives this
update and extracts its information. Then, the second
client performs a similar update on its object which is
“seen” by the initiating client. The initiating client again
performs an update on its object, and so on. This
procedure is repeated for a given number of times or
duration, which was about 5 minutes in our tests.

For the OTD tests, we had two clients obtaining and
releasing the ownership of an object consecutively and in
turn over a period of time. The average time to obtain
ownership was then calculated. The application consisted
of a couple of stations running the simulation where one
started as the owner of one of the cards in the switch. The
other client started the loop by asking for the ownership of
the card. From this point onwards the current owner

granted automatically the request in the appropriated
callback and asking for the ownership of the same card
right away. Such loop was run for a pre determined time
interval and the delay averaged afterwards.

For RTI the reliable transport mode was used.
Although slower than the "best effort" mode, reliable
transportation of update data to each client is a necessary
requirement of collaborative environments. The reason is
that during the session, any user interaction with an object
occurs in a short duration. In our example, the action of
pulling out a card from the switch occurs quickly and must
be reflected to all other users reliably. The well-known
arguments of "dead-reckoning" and "frequent sending of
position-updates" that justify best-effort communications
in other simulations do not apply to coordinating
collaborative tasks as described above. Even in the case of
multicast, reliable multicast such as LRMP must be used
for CVEs.

The ISTP protocol used in SPLINE didn't allow us to
choose a transportation mode as it automatically uses an
appropriate mode with regards to the data being sent.
However ISTP provides the necessary reliability and error
correction for its operations.

4.4 Results

All tests were performed on Pentium II class PCs
running Windows NT 4.0 and connected to a 100 Mbps
Ethernet. The graphics was set at 1280X1024 24bit color
screen resolution with 3D accelerator cards. All machines
were running typical operating system and networking
background processes.

As previously mentioned SPLINE allows one to set the
update rate via spWMSetDesiredInterval(). We then
performed an extensive evaluation of delays based on his
feature. The Figure 5 below shows the delays for the
various update rates. The darker area shows delays larger
than the usually acceptable 100ms [3] delay. However
some [4] suggest 200ms as a limit for the end-to-end
delay. It is important to remember that the graph of Figure
5 shows the communication delay, where additional
delays, as commented in section 4, still need to be
considered.

Regarding the four-queueing delay expected to incur in
each Ownership Transfer we have modified the simulation
to grant the ownership of the object (the card from the
switch) and ask for it immediately. I.e. both messages
were called between spWMUpdate, which makes both to
be enqueued and sent together at the next cycle, reducing
the end-to-end latency. One may argue that commonly
such requests are performed separately, which would
increase the presented delay by 2* queueing time in
average. A last remark about the graph above is that
instead of falling smoothly in the 0-25 interval the graph
should keep declining at similar rate until the minimum is

reached at about 12-15 ms refresh interval (about 66
frames per second). I.e. 1ms update certainly doesn’t
mean that 1000 frames are show every second but the
maximum possible remembering the run to completion
rule of SPLINE mentioned in section 4.2. The thin line in
the graph displays the correction according to this rule.

Figure 5: The ownership transfer delay for
SPLINE as a function of update rate

The results shown in Table 1 below shows the
remaining performance results we got from our
measurements.

Table 1. Performance results for various
middleware (All delays are in msec)

CCD Com. Delay* OTD
RTI with VRML 184 103 235
RTI with Java3D 152 103 204
JSDT - 60 5
SPLINE with VRML
100ms update

129 85 217

SPLINE with VRML
1ms update

68 12 78

* Communication Delay: this is CCD minus the delays
between the middleware and the rendering part.

The version of SPLINE used (3.0 beta 2) uses
multicast extensively, reducing delays in all operations as
the messages are sent through the appropriated multicast
group directly to all relevant participants. The latest Beta 3
does not use Multicast, as it aims to run through the
Internet as of today with many routers without multicast
support. The lack of multicast adds considerably extra
delays as ownership transfers, for instance, need to be sent
to a server and then forwarded to the destination. I.e. four
spWMUpdate cycles will be required with 8 queueing
delays. Some early evaluation has show that at 100ms
update rate (the server uses a fix 50ms update rate) there is
almost 500ms delay instead of the 150ms observed with

the multicast enabled implementation of it. This shows the
huge importance of multicast, which is be enabled in
future implementation of SPLINE.

5. Conclusion and Future Work

From our delay evaluation we showed that using
available middleware and standards-based applications, it
is feasible to construct CVEs with acceptable quality at
least for a small group of users in a controlled
environment. However as the number of users rises to
large or very large numbers it will be necessary to have
appropriated mechanisms to support them efficiently. We
are going to write a simulation tool to evaluate the
performance of the existent standards for very large
environments where bottlenecks will be identified and
avoided via a modified model suitable for such use.

By adjusting the updating rate in SPLINE, it is
possible to reduce the amount of computing and
networking resources required at the cost of higher delays
and vice-versa. SPLINE does provide the flexibility to
achieve a desired delay by allowing the designer to adjust
the updating rate. At the common 100 msec interval the
observed delay was 129 msec, which is acceptable. RTI
also exhibits acceptable performance.

JSDT seems to be the fastest at a reasonable refresh
rate; however as mentioned earlier, JSDT is not designed
for 3D virtual environments and lacks many of the
necessary services for such applications. As a result, the
developer needs to design and implement those services,
usually in an ad-hoc manner.

The delay caused by the Java applet-to-JNI-to-native
interface measured about 50 to 80 msec. An architecture
such as Java3D running on top of JSDT would eliminate
this delay and would be an alternative for time-critical and
other low-delay demanding applications.

Although the test results for the delay parameter are
less than the 200 msec requirement mentioned before,
there is some room for concern. Considering the fact that
the tests were performed between only 2 users and on a
local-area network with light local traffic, and that the
results are sometimes very close to the allowable
thresholds, scalability and delay for a larger number of
users connected by internetworks is questionable. Further
tests focusing on the scalability aspect of the prototypes
are required.

Another issue which shall be taken into account is that
there can be more than one object change at the same
time. In an assembling scenario, one person can be
moving parts out of the box while another is tightening the
screw between two parts, or simply moving its avatar for
one position to another. It is then necessary to measure
how many simultaneous object changes can be supported
with still acceptable delays. These changes must be

22.23 44.4
85.325

119.615
150.15

0

50

100

150

200

1 25 50 75 100

spWMUpdate Refresh Interval

C
o

m
m

u
n

ic
at

io
n

 D
el

ay

relevant to the specific collaboration of course and will be
addressed in future work. The simulation tool will allow
plenty of parallel modifications in the world, where much
detailed results will be available.

Today, computing equipment available to ordinary
users is becoming more advanced and more affordable.
This means that it will be more feasible to run CVEs on
typical computing systems. Adhering to standard enables a
broad range of collaborative application to be accessed by
the general public.

Acknowledgements

The authors acknowledge the research and
development contributions of Xiaojun Shen and Pierre
Desmarais, as well as the financial assistance of
Newbridge Networks and kind contributions of Mitsubishi
Electric Research Lab. We also acknowledge the financial
assistance of the Brazilian Ministry of Education
Agency’s CAPES scholarship, and the Natural Sciences
and Engineering Research Council of Canada (NSERC)
Scholarship Program.

References

[1] H. P. Dommel and J. J. Aceves, “Floor Control for
Multimedia Conferencing and Collaboration”, ACM
Multimedia Systems, Vol. 5, No. 1, 1997, pp. 23-38.

[2] Jason Leigh et al, “Preliminary STAR TAP Tele-Immersion
Experiments between Chicago and Singapore”, High
Performance Computing Asia Conference & Exhibition,
Singapore, 1998.

[3] K. S. Park, Effects of Network Characteristics and
Information Sharing on Human Performance in COVE,
Master's thesis, Electronic Visualization Laboratory,
University of Illinois at Chicago, 1997.

[4] Mathias M. Wloka, “Lag in Multiprocessor VR”, Presence:
Teleoperators and Virtual Environments (MIT Press), Vol.
4, No. 1, Spring 1995.

[5] Olof Hagsand, “Interactive Multi-user VEs in the DIVE
System”, IEEE Multimedia, pp. 30-39, Spring 1996.

[6] R.C. Waters and J. Barrus, “The Rise of Shared Virtual
Environments”, IEEE Spectrum, March 1997.

[7] R.C. Waters, D.B. Anderson and D.L. Schwenke, ``Design
of the Interactive Sharing Transfer Protocol'', Proc. IEEE
Sixth Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 1997.

[8] V. E. Taylor, R. Stevens, and T. Canfield, “Performance
Models of Interactive, Immersive Visualization for
Scientific Applications”, Proc. International Workshop on
High Performance Computing for Computer Graphics and

Visualization, Swansea, United Kingdom, 1995.

[9] Oliveira, J. C., “TVS: A Videoconferencing System”, M.Sc.
Thesis (in Portuguese), Computer Science Department,
Pontifical Catholic University of Rio de Janeiro, Brazil,
August 1996.

[10] CAVERN , http://www.evl.uic.edu/spiff/covr/

[11] COVEN, http://chinon.thomson-csf.fr/projects/coven/

[12] HLA, http://www.dmso.mil/hla/

[13] Living Worlds,
http://www.vrml.org/WorkingGroups/living-worlds/

[14] The Java3D and VRML Working Group,
http://www.vrml.org/WorkingGroups/vrml-java3d/

[15] OpenGL Architecture Review Board,
http://www.opengl.org

[16] Microsoft DirectX, http://www.microsoft.com/directx

[17] blaxxun Contact 4.0,
http://www.blaxxun.com/products/contact/

