
VIRTUAL THEATER for Industrial Training: A
Collaborative Virtual Environment

J.C.OLIVEIRA1, S. SHIRMOHAMMADI1, M.HOSSEINI1, M.CORDEA1,
N.D.GEORGANAS1, E.PETRIU1 AND D.C. PETRIU2

1School of Information Technology and Engineering
2Dept. of Systems and Computer Engineering

1University of Ottawa 2Carleton University
161 Louis Pasteur Priv., Ottawa, ON K1S 5J6

CANADA
jauvane@mcrlab.uottawa.ca http://www.mcrlab.uottawa.ca

Abstract: Collaborative Virtual Environment concepts have been used in many systems in the past few years.
Applications of such technology range from military combat simulations to various civilian commercial
applications. In this paper we present a CVE prototype developed for industrial tele-training. We are showing
that users can successfully control the environment through wireless input based on video processing and
speech recognition.

Key-Words: Collaborative Virtual Environments, Virtual Reality, Collaboration, Java3D, Virtual Theater,
Multimedia, Video Processing, Industrial Training.

1 Introduction
Over the past few years, a number of interactive
virtual reality (VR) systems have been developed. A
Collaborative Virtual Environments (CVE) is a
special case of a VR system where the emphasis is
more on “collaboration between users” rather than on
simulation. CVEs are used for applications such as
collaborative design, training, telepresence, and tele-
robotics.

From an industry perspective, CVEs can be an
attractive solution for reducing training expenses [1].
Instead of working with physical objects, these are
represented by virtual objects that can then be placed
in a virtual environment accessible to many users.
The users, represented by avatars, can then
manipulate and interact with the objects as in the real
world, gaining valuable experience and training
before using the real equipment

Motivated by these advantages, we have designed
and implemented an industrial teletraining prototype.
At the request of our industrial sponsors, the
prototype has been created for training operators of
ATM switching equipment; however it can be
modified for other types of training. Such a prototype
can be fully controlled in a wireless fashion where

speech commands and user gestures are used as input,
allowing for a more comfortable interaction between
the human participants. This paper is organized as
follows. Section 2 describes the prototype and its
components, section 3 outlines the underlying
architecture, while section 4 focuses on the video
processing technique employed to track a user’s
behaviour.

2. Prototype
Our prototype is a multiuser teletraining application,
which allows users, represented by avatars, to learn
how to operate on a faulty ATM switch. The avatars
repair the switch in steps which precisely reflect
those necessary to perform the same actions in the
real world. The prototype consists of two general
modules: user interface, and network communication.
The user interface itself consists of a graphical
interface (GUI), a 3D interface (VR), and media
interfaces (speech recognition, voice streaming, head
tracking). Figure 1 shows the user interface of the
prototype.

The upper right area of the interface, which takes
the largest part, is the 3D environment. On the left

and below the 3D environment are the controls used
by the trainees to interact with objects and navigate in
the environment. At the top left is the head-tracking
facility which will be discussed in more detail later in
section 3.6 and 4. Below the head-tracking window is
a utility panel that is used for different purposes as
discussed later. There is also a chat space where
users can exchange textual messages. In order to
avoid navigation problems with inexperienced users,
it is possible to view the world from a set of
predefined camera views as shown in Figure 2a.

Figure 1. Training Application’s Interface

A user is able to approach and verify the
operation of the switch and its cards, remove a faulty
card and put it on the repair table, and replace it by
installing a new card into the switch. Other parties
will be able to watch that user’s avatar taking such
actions. All of the above actions can be performed by
directly navigating in the scene and manipulating
objects with the mouse or by selecting the action in a
menu as shown in Figure 2b. Figure 3 shows a
sequence of screenshots illustrating the execution of
the previously mentioned steps performed by a trainer
and watched by a trainee.

a b

Figure 2. Camera View/Action Choice Menu

As can be seen from figure 3, a trainee can adjust
his/her viewpoint to whichever angle/position that is
more suitable to watch the actions. These adjustments
can be done quickly by choosing the appropriate
views from the camera view menu. When the trainer
selects a new view of the World the trainees get the
same view as well. That was implemented based on
feedback from users and trainers, which is aimed at
enhancing trainee’s experience by viewing the actions
through the best angle suggested by the trainer. A
trainee may change the view if he/she so desires.

Figure 3. Replacing a Faulty Card.

In addition to receiving help from the trainer, a
user can also view video segments showing the
correct procedure for performing certain actions. The
utility panel is used to display the video clips as
shown in Figure 4b. If chosen by the trainer, the
video will be displayed in every participant’s screen.

Another use for the utility panel is the secondary-
view feature, where a user can simultaneously watch
the current actions from an alternative point of view
as shown in Figure 4a.

Figure 4. Utility Panel functionality:
a) secondary view (top) b) video clips (bottom)

In addition to the above explained interfaces, the
prototype offers voice recognition technology

whereby the user simply enters commands by talking
into the computer's microphone. In this case, the user
may simply say pre-defined commands such as “Go
to the table” for the avatar to perform, or may change
views by saying “Table Top View”, and so on.

3. Architecture
Rather than developing the system from scratch, we
decided to make use of a wide spectrum of available
technologies, reuse software packages, and
concentrate our efforts in integrating them. Hence,
the system brings together a large number of
components and technologies, namely for 2D
graphics and interface design, 3D rendering, multi-
user communications, voice recognition, audio and
video streaming, and head tracking. In this section we
will briefly describe the prototype architecture and
the role of each component.

Figure 5 presents the system architecture
including all of the components.

Sp
ee

ch
R

ec
og

ni
tio

n

V
oi

ce
St

re
am

in
g

V
isu

al
R

en
de

rin
g

V
id

eo
D

ec
od

er

H
ea

d
Tr

ac
ki

ng

Control

Communication

Figure 5. System Architecture.

3.1 Communication
The communication layer is responsible for all
exchange of information amongst users. There are
three components in this layer: directory server,
control communication, and media communication
layers.

The directory server is an entity which holds
information about the participants in a session; the
directory server is also responsible for checking on
the status of every participant through alive bits.

Figure 6. Control Packet Format.
The control communication layer is responsible

for all communication with exception of audio data.
Packet have the format shown in Figure 6, where the

field command indicates what kind of information
lies within the packet.

The directory server has been written in ANSI C
and the client side of the control communication in
C++ resulting in a Dynamically-Linked Library
(DLL) to be loaded at run time. There are IPv4 and
IPv6 implementations available so that depending on
their capabilities, a group of users can choose
whichever version they find appropriate by selecting
the corresponding DLLs and directory server. The
IPv6 implementation will eventually make use of
quality of service parameters, multicast groups and
flow labels when the users would benefit from better
behaviour of the system.

The communication layer decouples all
networking issues from the upper layers. The native-
platform communication DLL is loaded into the Java
environment using Java Native Interface (JNI).
Incoming messages are sent to the Java core via
callback of Java methods from the native code.

3.2 Rendering & Interface
For the GUI part, we used JavaSwing, which is a set
of high-level graphics APIs for more advanced and
sophisticated graphical components. Java technology
was chosen due to its easy utilization of high-level
APIs. When designing the 3D interface, we examined
both Java3D and various VRML browsers. Other
works have shown that Java3D is faster, easier to
control and manipulate, and more interactive than the
interface offered by VRML browsers [2]. Java3D
also eliminates certain complexities that are inherent
to using VRML along with its Java External
Authoring Interface, Web browser and VRML
browser. On the other hand Java3D has no specific
file format and a developer must convert 3D
descriptions of other famous formats to Java3D code.

Our prototype makes use of VRML objects
designed in PowerAnimator. In order to make such
objects treatable under Java3D a comprehensive
optimization is performed in the original VRML
objects aiming at simplifying the geometry (reducing
redundant polygons). The VRML behavior of the
objects is converted to Java3D code using VRML to
Java3D conversion tools. A view of a world created
in this manner is then presented in a Canvas3D. Hot
spots are defined in the world in order to allow the
user to interact with them in a point-and-click
fashion. User actions are sent to the communication

Command Int 1 Int 2 Str 1 Str 2 Str 3

layer, which in turn informs the other parties involved
in or affected by such actions, creating thus a
collaborative environment.

3.3 Speech Recognition
We use Microsoft Speech API (SAPI) to provide a
speaker independent recognition of pre-defined
commands described by a SAPI grammar. This way
commands such as "go to the table", "pick up the
card", are recognized by the SAPI module. An
example of SAPI code is shown below:

[<Animation>]
<Animation>=go to the "go to the" <Select3>
<Select3>=billboard "billboard"
<Select3>=switch "switch"
<Select3>=table "table"

In the above example, all the "go to the X"
commands are programmed into the SAPI engine,
where X is one of “billboard”, “switch”, or “table”.
These commands will invoke the appropriated
actions.

The speech recognition module is implemented
using ActiveX components and its integration to the
prototype is made via another native DLL loaded by
JNI. The speech recognition module works
independently from the other modules, by sending
recognized commands into the prototype via a pre-
defined local socket.

3.4 Audio Conferencing
The audio capturing module allows participants to
enter into an audio-conferencing session. The module
is based on the Microsoft NetMeeting SDK. Due to
Soundcard limitations, this module will compete with
the voice recognition module described above. Text
chat facilities are also optionally provided and can be
used in cases where audio is not supported.

3.5 Video Player
The Video Decoder module is an H.263 Video
Decoder developed entirely in Java which is able to
receive and decode streamed video from a video
server. The video is presented in the utility panel.

3.6 Head Tracking
The head-tracking module captures the user’s head

motion wirelessly by video processing techniques
using a simple camera installed on the user's
computer. Head movements are sent to the prototype
and are used to control the corresponding avatar’s
head. The head-tracking module is implemented
using ActiveX components which generate a series of
rotation parameters which are sent to the prototype
via a JNI connection through yet another DLL. More
details are disclosed in section 4.

3.7 Control
The control layer is implicitly included in the other
layers and is composed of a set of rules which
ensures that all components work together. The
coordination of the DLLs, which enable the exchange
of data between the Java core of the prototype and the
native components, comprises the Control Layer.

4. Video Processing
Model-based video coding (MBVC) has recently
emerged as a very low bit rate video compression
method suitable for Collaborative Virtual
Environment (CVE) applications [9]. The MBVC
increases coding efficiency by using knowledge
about the scene content and describing the real world
geometry of 3D model objects. The principle of this
compression is to generate a parametric model of the
image seen at the emission end and to transmit only
the characteristic parameters that show how the
model changes in time. These differential parameters
are then used to animate the model of the image
recovered at the reception end.

The first step in a full automatic MBVC system is
the face detection allowing the identification and
location of the face in first image frames. The next
step is motion estimation encompassing global 3D-
motion recovery, local motion estimation, expression
and emotion analysis, etc. The problem is
technologically difficult, as 3D motion parameters
have to be extracted from a sequence of 2D images of
the performer’s head-and-shoulders.

In our system, we use a 3D tracking method for
the real-time measurement of six head motion
parameters, namely 3D position and orientation, and
the focal length of the camera. This method uses a 3D
wireframe head model, a 2D feature-based matching
algorithm, and an Extended Kalman Filter (EKF)
estimator. Our global motion tracking system is

meant to work in a realistic CVE without makeup on
speaker's face, with uncalibrated camera, unknown
lighting conditions and background.

The EKF converts the 2-D feature position
measurements, using a perspective camera model into
3-D estimates of the position and orientation of the
head [3, 4, 5]. The EKF recursive approach captures
both the cause-effect and the dynamic nature of the
tracking, offering also a probabilistic framework for
uncertainty representation.

The EKF procedure is applied to nonlinear
systems and consists of two stages: time updates (or
prediction) and measurement updates (or correction).
At each iteration, the filter provides an optimal
estimate of the current state using the current input
measurement, and produces an estimate of the future
state using the underlying state model. The values,
which we want to smoothen and predict
independently, are the tracker state parameters.

The EKF state and measurement equations can be
expressed as:

)()()1(kkAsks ξ+=+ (1)
)()()(kkHskm η+= (2)

where s is the state vector, m is the measurement
vector, A is the state transition matrix, H is the
Jacobian that relates state to measurement, and)(kξ
and)(kη are error terms modeled as Gaussian white
noise.

The observations are the 2D feature coordinates
(u,v), which are concatenated into a measurement
vector)(km at each time step. The observation
vector is the back-projection of the s state vector
containing the relative 3D camera-scene motion, and
the camera internal geometry, namely the focal
length. In our case the state vector is

)_,,,(lengthfocalvelocityrotationntranslatios
that contains the relative 3D camera-object
translation, rotation and their velocities, and camera
focal length.

The EKF requires a physical dynamic model of
the motion and a measurement model relating image
feature locations to motion parameters. Additionally,
a representation of the object (user's head) is required.

The dynamic model is a discrete-time Newtonian
physical model of a rigid body motion, moving with
constant velocity. The measurement model relates the
state vector s to the 2D-image location),(kk vu of

each image feature point, using a perspective
projection model.

We employ a three-parameter incremental
rotation),,(zyx ωωω , similar to that used in [4] and
[6] to estimate inter-frame rotation. The incremental
rotation computed at each frame step is combined
into a global quaternion vector),,,(3210 qqqq used in
the EKF linearization process and rotation of the 3D-
model [7].

Figure 7. Hotspot in Video and Correspondent 3D Head

4.1 EKF Initialization
The 3D-model provides the initial structure
parameters of the Kalman filter. Each 2D-feature
point),(ii vu corresponds to a structure point

),,(iiii ZYXp . As shown in Fig. 7, these),(ii vu points
are obtained by intersecting the 2D image plane with
a ray rooted in the camera’s center of projection COP
and aiming to the 3D structure point on the head
model.

Figure 8. The EKF “Boot” Algorithm

The typical point identification problem of the 3D
pose recovery from 2D images is solved in our case

Step 1. The user positions his/her face at the
center of the screen, and adjust the
matching of the live image and the
projected mesh , so that the projected
mesh covers the entire facial region.

Step 2. Left mouse click on every rigid feature
point of interest on the live image. An
automatic program function takes care to
properly align the selected live feature
point to a vertex of the projected mesh.

Step 3. Right mouse click anywhere on the
active Windows “live” image triggers the
tracking process (booting EKF module).

by identifying corresponding points in both the 2D
live image of the subject and the 3D model of the
subject’s head. In order to aid the point identification
process, we are using an augmented reality technique
by projecting in the 2D live image the 3D mesh used
to model the head. A multiple “point identification”
procedure using this augmented reality technique is
summarized in Fig. 8. At this development stage it is
still up to the user to arrange the scale matching
between the live face image and the projected mesh.

4.2 EKF Update
At each iteration, the EKF computes an estimate of
the rigid 3D motion that must probably correspond to
the motion of the 2D live image. We employ the
Kanade-Lucas-Tomasi (KLT) [8] 2D-gradient feature
tracking method, which robustly performs the
tracking reinforced by the EFK estimation output. An
estimate of motion and camera focal length is found
at each step. After the 3D-motion and focal length are
recovered, a perspective transformation will project
feature points back onto the image to determine an
estimated position of the 2D feature trackers. At the
next frame in the sequence a 2D tracking is
performed starting at this 2D estimated position. The
current matching coordinates of tracked features are
fed back into the Kalman filter as the observation
vector, and the loop continues. The feedback from
EFK is used to update the 3D-model pose parameters,
i.e. provides the 3D head tracking information.

The recovered 3D position and orientation
are propagated to the Head Modeling block of the
CVE system, which renders a new posture of the 3D-
model as illustrated in Fig. 9.

Figure 9. Tracking the head montion

5. Conclusion
We described a prototype developed for industrial
teletraining which deployed a comprehensive set of
components. Among the features in the prototype,
speech recognition and head-help to interface the

human users with the virtual environment in a way
which is more natural to users.

Acknowledgements
The authors acknowledge the research and

development contributions of François Malric,
Ramsey Hage and Pierre Desmarais, as well as the
financial assistance of Newbridge Networks and
CITO. We also acknowledge the financial assistance
of the Brazilian Ministry of Education Agency’s
CAPES scholarship, and the Natural Sciences and
Engineering Research Council of Canada (NSERC)
Scholarship Program.

References:
[1] J. Leigh, “A Review of Tele-Immersive

Applications in the CAVE Research Network”,
Procedings of the IEEE International Conference
on Virtual Reality, Texas, March 1999.

[2] J. C. de Oliveira; S. Shirmohammadi and N. D.
Georganas, “Collaborative Virtual Environments
Standards: A Performance Evaluation”, IEEE
DiS-RT’99, Greenbelt, MD, October 1999.

[3] A. Azarbayejani, T. Starner, B. Horowitz, and A.
Pentland “Visually controlled graphics”, IEEE
Trans. Pattern Analysis and Machine Intelligence,
15(6): pages 602-605, June 1993.

[4] T.J. Broida and R. Chellappa “Estimation of
object motion parameters from noisy images”,
IEEE Trans. Pattern Analysis and Machine
Intelligence, 8(1): pages 90-99, January 1986.

[5] D.B. Gennery. “Visual tracking of known 3-
dimensional object”, Int. J. of Computer Vision,
7(3), pages 243–270, 1992.

[6] A. Azarbayejani and A Pentland “Recursive
estimation of motion, structure, and focal length”,
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(6), 1995.

[7] K. Shoemake. “Quaternions”, Department of
Computer and Information Science University of
Pennsylvania Philadelphia, PA 19104.

[8] J. Shi, and C. Tomasi, “Good Features to Track”,
IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR94) Seattle, June 1994.

[9] K. Aizawa, T.S. Huang, “Model Based Image
Coding: Advanced Video Coding Techniques for
very Low Bit-Rate Applications”, Proc. IEEE,
vol. 3, No. 2, Feb. 1995.

