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ABSTRACT

Genetic Algorithms (GAs) are population based stochast@rch procedures which
have been widely applied in several difficult optimizatiomipems. A common structural
optimization problem is the weight minimization of framettustures subjected to stress,
displacements, and other constraints. The constrainifscegion usually involves a simulation
(such as the solution of the discretized equilibrium egureifrom a finite element model), and
for real-world problems this simulation can be time-conswgnAs a result, the total computing
time may be too large, rendering the application of a GA imafical or even prohibitive.

To reduce the use of the expensive simulation model duriegstrarch performed by
the GA, a metamodel is introduced. Similarity based metasisofbr the objective function
as well as for the constraint violation are used, and a sgtitheanking is adopted which
does not require penalty parameters. The proposed prazésiumplemented in a binary-
coded generational GA and applied to structural optimiragiroblems involving discrete and
continuous design variables. Numerical experiments artoymeed in order to assess the
applicability and the performance of the proposed techmiqu

The results obtained show that the metamodel allows cortipngéh gains by reducing the
number of expensive simulations, significantly reducirgttital computational time.

1. INTRODUCTION

Genetic Algorithms (GAs) are population based stochast@rch procedures which
have been widely applied in several difficult optimizatiorolglems. They do not require
differentiability or continuity of the objective functigthey are less sensitive to the initialization
procedures and less prone to entrapment in local optimaedMermvGAs usually require a large
number of fitness evaluations in order to reach a satisfacolution, and when expensive
simulations are involved, that can become a serious drawtmatheir application to larger
problems.

The idea of reducing the computation time by performing (appnate) less
computationally expensive fitness function evaluationpeaped early in the evolutionary
computation literature but its actual implementation isolppem dependent and not
straightforward. The development of methodologies that @ reduce the computational cost
without substantial loss of quality in the final solution is active area of research in Genetic
and Evolutionary Computation [1-7].



A common structural optimization problem is the weight miaation of framed structures
subjected to stress, displacements and other constrairgeneral, the constraints verification
involves a simulation, performed by a simulation model. Aglation model is a computer
model (computer program), that attempts to simulate anmadisnodel of a particular system,
such as the solution of a finite element model. For some reddwproblems this simulation
can be excessively time-consuming. Due to the charadterist the constrained optimization
problem, and the number of evaluations needed by GAs, tpeiication in several cases can
be prohibitive.

To reduce computing time, the introduction of metamodelsnduthe search procedure
is proposed. Metamodels are inexpensive models (i) deriked numerical or physical
simplifications of the simulation model, (ii) constructechder less rigorous physical
assumptions, or (iii) based on a set of samples evaluated) uke simulation model. A
metamodel for the objective function and another for camstrviolation are built. The
constraints are handled here by a stochastic tournamesttisel procedure which does not
require penalty parameters. The procedure is implementadinary-coded generational GA
and the metamodels are updated at each generation by usisgrthlation model.

The procedure is applied to structural optimization proideinvolving discrete and
continuous design variables and numerical experimentparf®rmed in order to verify the
applicability and assess the performance gains of the gegptechnique.

The results obtained show that the metamodel leads to catiguel gains by reducing the
number of simulations, significantly reducing the total putational time. However, there is a
relationship between the frequency of the use of metamautthee quality of the final solution.
It is clear that, although faster, metamodels are less atetian the simulation model, and
depending on the rate of application of the metamodel, it affgct in a negative manner the
evolutionary process.

2. THE GENETIC ALGORITHM

Pioneered by John Holland [8], GAs have been widely apptiedany fields of engineering
and science. GAs differ from the traditional methods of sleand optimization, mainly by [9]:
(v) operating upon a codification of the set of parameters d@alstd the parameters themselves,
(24) maintaining a population of candidate solutiong;)(requiring only objective function
values, andif) using probabilistic transition rules.

The popularity of GAs is partially due to the facts thgtthey do not require continuity
and/or differentiability of the functions involvedji) they do not require extensive problem
(re-)formulation, {i7) are not very sensitive to the initialization procedure) they are less
prone to entrapment in local optima, and ére naturally parallel.

However, there are some drawbacks for the application of BAsal world applications.
GAs in general require a higher number of evaluations in rotdeachieve a satisfactory
solution, thus in some computationally expensive probl#graspplication of GAs can become
prohibitive.

The first step in a GA is to encode all the variables corresimgrto a candidate solution in
achromosome. Here we adopted the standard binary codiclgvadable is encoded in a string
of binary digits of a convenient length and these stringdfa@a concatenated to form a single
string which is an individual in the population of candidatdutions. The following step is to
randomly generate an initial population. Each individuas then an objective function value
and, in cases of constrained optimization, a measure oftr@anisviolation value associated
with it. The population is sorted according to these valuesrder to establish a “ranking”.
Individuals are then selected for reproduction in a way beter performing solutions have



a higher probability of being selected. The genetic mateoatained in the chromosome of
such “parent” individuals is then recombined and mutatgdnbans of crossover and mutation
operators, giving rise to offspring which will form a (hopéy improved) new generation of
individuals. The process is repeated for a given number oéiggions or until certain stopping
criteria are met.

The baseline GA presented here implements Gray code [18k-based selection and
elitism, where the best individual is copied into the nexteration along with one mutated
copy. The standard 2-point and uniform crossover operat@sapplied with 0.80 and 0.20
probability respectively. The mutation ragig is set to the inverse of the chromosome length.

3. THE STRUCTURAL OPTIMIZATION PROBLEM

The discrete structural optimization problem considerext ltonsists in finding the set of
areasa = {A;, As, ..., A,,} which minimizes the weight of the truss structure:
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w(a) =Y A (Z Lj> (1)
k=1 j=1
subject to the normalized displacements constraints
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where~ is the specific weight of the material,; is the length ofjth bar of the structurey;
ands; are respectively the nodal displacement of ithetranslational degree of freedom and
the stress of thgth bar, s, is the allowable stress for the material, ang,, is the maximum
displacement for each nodal point/ is the number of translational degrees of freeddmis
the total number of bars in the truss structuve, is the number of member groups which share
the same cross-sectional area, afdis the number of load cases applied to the structure.

Although the functiorw from Eq. (1) is linear, the constraints (2) and (3) are nadin
implicit functions of the design variablesand require the solution of the equilibrium equations
of the discrete model given by

K(a)ul = fl 1<I<Ny. (4)

K is the symmetric and positive definite stiffness matrix @ structure, derived from the finite
element formulation, given by

N
K = AK; (5)

]:
whereA denotes the operator used for assembling the matrix catitibk; of the jth bar,
which is a linear function od. The vector of nodal displacements is denoteaipyandf; is the

vector of applied nodal forces for tlin load condition.
For each one of the load conditions, the system is solved&displacement field

w = [K(a)] ' £, (6)



The stress in thgth bar is calculated according to Hooke’s Law
s;i = Ee(uy) (7

whereF is the Young’'s modulus andis the unit change in length of the bar.

From the displacements at the nodal points, and the stresgeselements, the constraints
can finally be checked. A feasible design satisfies the cains$r(2) and (3), and the degree of
constraint violationp(a) is measured by
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where[z], = z if x is positive, and O otherwise. Clearly, feasible designelihe constraint
violation ¢(a)=0.

To avoid introducing penalty parameters into evolutionprgcedure, constraints are
handling using the stochastic ranking procedure [11]. &ndtochastic ranking technique the
balance between the objective and penalty functions isaelithrough a ranking procedure
based on the stochastic bubble-sort algorithm. In thisegumr a probability; of using only
the objective function for comparing individuals in theeatible region of the search space is
introduced. Given any pair of two adjacent individuals, pihebability of comparing them (in
order to determine which one is fitter) according to the dibjedunction is 1 if both individuals
are feasible, ang; otherwise . The procedure provides a convenient way of balgrthe
dominance in a ranked set. The procedure is halted when mgeha the rank ordering occurs
within a complete sweep.

Algorithm 1 shows the stochastic bubble sort procedure teseathk a group of individuals.

Because one is interested at the end in feasible solutigrshould be less than 0.5, so that
there is a pressure against infeasible solutions. In tipsipéhe parameter; is set to 0.40 for
all test problems.

4. METAMODELING APPROACH

The application of GAs in real world engineering optiminatproblems often requires the
use of a simulation model to evaluate the individuals in thpysation. In many cases, each
simulation takes a considerable amount of time and thusgdtimization problems that require
a high number of evaluations, the overall computationa¢tbacomes a critical issue.

In the following the metamodel concept and its relationshifh simulation models are
explained.

4.1 Simulation models

Simulation models are used to compute the system responssgonding to a given set
of design variables. A simulation model is a representaifdhe real system, constructed from
information about how the system operates [12]. Simulathmdels are not generic, each of
them strongly related to a specific physical problem.

In structural engineering, a simulation model for stressd amsplacements is often
constructed by the finite element method [13].

4.2 Metamodels

Metamodels are inexpensive models, numerical or physigabldications of the
simulation model, constructed under less rigorous physasaumptions or based on a



Algorithm 1 Stochastic Ranking Algorithm

1: procedure STOCHASTIC RANKING (I, f, ¢, A, py)
2: for j=1:)\do

3: Ij = j
4: end for

5: for j=1:)\do

6: swap « false

7 forj=1:A—1do

8: u = RANDOM(0, 1)

9: if ¢1, = ¢1,,, =00r u < p;then
10: if f[j > f[j+1 then
11: tmp = 1,4
12: ]j-l-l = Ij
13: I =tmp
14: swap < true
15: end if
16: else
17: if gb[j > ¢Ij+1 then
18: tmp = 14
19: Ij+1 = Ij
20: I; =tmp
21: swap <« true
22: end if
23: end if
24: end for
25: if not swap then
26: BREAK
27: end if

28: end for
29: end procedure

set of samples evaluated using the simulation model. Mealatacare approximations of
the input/output relations of the simulation model [14-16They aim to reduce model
complexity [17], and may be understood as surrogate evatuatodels that are built using
existing information [18].

Others techniques, specific for genetic and evolutionagprdghms, such as evaluation
relaxation [19], fitness estimation [20, 21], and genetienitance [22,23], can also be referred
to as metamodeling techniques.

The metamodel treats the simulation model as a black box [¥] simulation model’'s
input/output relation is observed, and the parameters efnetamodel are estimated. The
underlying premise of this approach is that, one can cocistiuapproximation of the analysis
codes that is much more efficient to run, and which yields aight into the functional
relationship between the input variables and the respd@5gs

For metamodels to be useful, they must represent the ingtptibrelations accurately.

An advantage of the metamodeling approach is that the mekalnsan be applied to all
types of simulation models [24], to provide an insight to thput-output behavior of the
original model, and to identify key variables. However,ahaot take advantage of the specific



structure of a given simulation model, and depending on stienation phase may take a long
computation time.
In the following, the metamodel assisted genetic algorifimaposed here is described.

4.3 Metamodel assisted genetic algorithm

In the Evolutionary Computation context, the metamodeil lnom previously evaluated
solutions in the search space, is used to predict the fitnessvo candidate solutions [26]
avoiding expensive simulations, reducing the amount ofmaational effort required.

The most simple and transparent approximation model ise¢heast neighbor (NN) model.
The approximations are built based on a Betwhich stores; individuals evaluated by the
simulation model. The approximation for this method is ¢anged as follows: given an
offspring 2", the corresponding fitness valiéz"), based on itd nearest neighbors, is given

by
k .
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andd(z", ) is the distance between the individualsandz;, and f(z") is the fitness value
to assigned”. If d(z", z*) = 0, then the fitness value of is assigned immediately td*, and

the weights are not calculated. The mettfe -) used here is the Hamming distance, that is the
number of positions for which the corresponding bits aréed#nt for two chromosomes. In
this paper the exponentis set to 2.

The convenience in using the nearest neighbor method ishtbatpproximation requires
only storing points evaluated using the simulation modethé sizen of the archived seVY is
large, then the calculation (ff(xh) from Eq. (9) takes longer, since the entire set must be sorted
to define the nearest neighbors.

To avoid the sorting step, the proposed approach consistsansing the neighbors by
means of a tournament selection, wheiiadividuals are draw randomly out of the archive
the Hamming distances are calculated and the nearest opteiexl to be a neighbor. The
procedure is repeated until all theneighbors are chosen. The procedure described above is
named k,p)-tournament approximation, and the weightsare computed according to Eq. (10).

If k=1, the algorithm assigns t(z") the fitness value of the individual nearest:toaccording
to thep-tournament.

In the experiments conducted here the sipé the archive) is equal to the population size
and the tournament sizeis set to 20.

To improve the quality of the approximations in Eq. (9) thetaneodel is updated every
generation. According to sequential policy, an individisathosen to be replaced A The
policy adopted is to choose an individual according to th@lper of evaluations performed by
the simulation model. In this way, the individualsY¥hare uniformely replaced along to the
generations.

The nearest neighbor metamodel is introduced in the GA doogrto an user defined
parameterp,,,, which gives the probability of an individual to be evaluwhtaccording to
the simulation model. Ag,,, decreases, greater is the interference of the metamodel in



the evolutionary process. The number of individuals evaldidoy the metamodel is thus
proportional tap,,,,, = 1 — psm.-
The metamodel assisted genetic algorithm implementedif€isplayed in Algorithm 2.

Algorithm 2 Metamodel Assisted Genetic Algorithm

1. procedure MA-GA
2: t—0

3 Initialize the population?,
4: Evaluate each chromosome/
5: Rank the populatior®;
6: Initialize the archive) «— P,
7: whilet < maxgen do
8: repeat
9: Select 2 individuals irP,
10: Apply recombination on selected individuals
11: Apply mutation with ratep,,
12: Insert new individuals irt7;
13: until populationG; complete
14: repeat
15: r=RANDOM(0, 1)
16: if r < pg, then
17: Evaluate individual by the simulation model
18: else
19: Evaluate individual by the metamodel
20: end if
21: until all individuals in populatiorG; evaluated
22: Rank the populationr,
23: Pt+1 — Gt
24: Update)’ with the individuals evaluated by the simulation model
25: t—t+4+1

26: end while
27: end procedure

5. NUMERICAL EXPERIMENTS

In order to investigate the performance of the implementgdrahms, they are applied to
some truss weight minimization problems.

In the following, the test problems are described and thalteare discussed. The size of
the archiveV is set equal to the population size, and the tournamentsigt io 20 individuals.
The results are compared for different number of neighbrors fEq. (9) and several values of
psm- A total of 30 independent runs were performed for eachpesiem.

5.1 The 22-bar truss

The first structure considered is the plane truss shown safieatly in Fig. 1, where a
vertical loadP is applied at the rightmost node. The weight of the struasite be minimized,
and the design variables are the cross-sectional areag bfatisa = {A;, As, ..., Ag} which
are to be chosen from the 32 values in the/Set {0.1, 0.2,...,3.1, 3
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Figure 1. The 22-bar truss.

As an isostatic structure, the forces acting in each bar gcession or tension) do not
depend on the value of the cross-sectional areas adoptéalloivs that each bar should be
working at the maximum allowable stress,

Loy o bo,
if the ith bar is in compression or tension, respectively, andnd s; are the corresponding
allowable limits. The optimal design is thus a “fully stred% structure. It can also be shown
that in the structure considered (Fig. 1), all vertical esworking under the same conditions,
and that the same can be said of the diagonal bars, resuitBdesign variables. Additionally,
for the case of equal material behavior in tension and cosspR,s; = s. = Sqqm- A CONsistent
set of units is assumed and the following values are adopted:12, ands. = s; = Sqam = 25.
The exact solution for the optimization problem can be foanalytically (the minimum volume
is equal to 68.20) and controlled numerical experimentsa@mdparisons can more easily be
performed.

For this experiment, the population size was set equal t8®Qgenerations were performed
in 30 independent runs, and 5 bits were used for each one Bftaeables, resulting in a 40-bit
chromosome, and a mutation ratg = 1/40.

The results for 22-bar truss are presented in Table 1. Thérfiesshows the results obtained
using only the simulation model to evaluate the individudlse number of neighbors from
Eqg. (9), the size of the tournamemt the parameters,,, andp,,,, which control how many
individuals are evaluated using the simulation model omtie¢amodel are also displayed. In
this Table, FR denotes the number of runs (among the 30) wirictluced a feasible final
solution. Also are displayed the minimurte§t) and maximum @orst) weights found as
well as the averagei(g) and standard deviation observedd) in the 30 runs. It is important
to notice that the average is calculated considering orgyrtims which produced feasible
solutions.

From the Table 1 it can be noticed that the values of the bés¢sao not suffer significant
modifications as the parametey, increases, although the average in 30 runs increasessthat i
as the number of individuals evaluated by the metamodeéasas, the evolutionary process
is affected, leading in average to worse solutions, as éggedhe same behavior is observed
when the worst values are compared, and when only 30% of theidoals are evaluated by
simulation model (in average), the final solutions have asw@rable decrease of quality, as
can be seen in the last five lines of the Table 1.

It can also observed that, for larger value®gf, the best results in terms of best, average
and standard deviation values are found for the smalleegadtk. However, for smaller values
of p,n, where more individuals are evaluated using the metamdaddler results are found
using larger values of.

Itis important to notice that, although the evolutionarggess is affected and the quality of
the solutions decreases, the introduction of the metamiegetsents substantial computational



Table 1: Results for 22-bar truss.

]

Psm

Pmm

FR

best

avg  worst

std

= = = = = =
G wN Bownek Bownek Bownek BowNnek Bownek Bowndek

[EY
o

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

1.00

0.90
0.90
0.90
0.90
0.90

0.80
0.80
0.80
0.80
0.80

0.70
0.70
0.70
0.70
0.70

0.60
0.60
0.60
0.60
0.60

0.50
0.50
0.50
0.50
0.50

0.40
0.40
0.40
0.40
0.40

0.30
0.30
0.30
0.30
0.30

0.00

0.10
0.10
0.10
0.10
0.10

0.20
0.20
0.20
0.20
0.20

0.30
0.30
0.30
0.30
0.30

0.40
0.40
0.40
0.40
0.40

0.50
0.50
0.50
0.50
0.50

0.60
0.60
0.60
0.60
0.60

0.70
0.70
0.70
0.70
0.70

30 68.20 68.33 68.80 0.25

29
30
30
30
30

30
29
30
30
30

30
30
30
30
30

30
30
30
29
29

30
30
30
29
30

28
30
30
29
30

30
29
30
30
30

68.20
68.20
68.20
68.20
68.20

68.20
68.20
68.20
68.20
68.20

68.20
68.20
68.20
68.20
68.20

68.20
68.20
68.20
68.20
68.20

68.20
68.20
68.20
68.20
68.20

68.20
68.20
68.20
68.20
68.20

70.00
68.20
68.20
68.50
68.80

68.38
68.34
68.45
68.43
68.56

68.57
68.54
68.52
68.64
68.68

68.95
68.72
68.55
68.70
68.99

69.66
69.19
69.21
69.09
68.97

71.04
70.23
69.25
69.25
69.53

73.24
70.09
69.90
69.82
70.07

78.15
71.46
71.84
71.31
71.43

69.10
69.40
69.40
69.40
72.40

70.00
70.60
70.30
70.60
70.90

70.30
70.60
70.00
71.20
72.10

72.70
71.20
71.50
71.20
70.90

75.00
79.90
71.50
73.00
71.80

86.20
73.30
72.40
71.80
73.60

103.00
76.00
78.70
75.80
78.70

0.31
0.31
0.39
0.34
0.80

0.54
0.59
0.54
0.58
0.70

0.71
0.66
0.49
0.66
0.94

1.22
1.01
0.93
0.77
0.74

1.87
2.57
0.88
1.07
0.96

3.81
1.39
1.16
1.13
1.49

8.60
2.00
2.42
1.91
2.06




savings, since an expensive simulation is replaced by asiogmputation using an ensemble
of stored values.

5.2 The 10-bar truss

This test-problem corresponds to the weight minimizatibthe classic 10-bar truss [27]
shown in the Fig. 2.

The constraints involve the stress in each member and thiadements at the nodal points.
The design variables are the cross-sectional areas of tseaba {A4;, As,..., Ax}. The
allowable stress is limited ta-25 ksi and displacements are limited to 2 in, in thandy
directions. The density of the material is 0.10 IB/itYoung modulus ist = 10* ksi and
vertical nodal loads of 100 kips are applied at nodes 2 and 4.

The values of cross-sectional areas, in square inchesp & ¢hosen from the sét= {
1.62,1.80,1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.0%,3.38, 3.47, 3.55, 3.63, 3.84, 3.87,
3.88,4.18,4.22,4.49, 4.59, 4.80,4.97,5.12,5.74, 7.22,711.50, 13.50, 13.90, 14.20, 15.50,
16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.06033resulting in 42 options for each
bar in the structure.

5 6 360 in

b

Figure2: The 10-bar truss.

The population size was set to 100 individuals and 900 gé&nasawere performed in 30
independent runs. Each one of the 10 variables was coded @dhits, leading to a 60-bit
chromosome. The mutation rate was equapto= 1/60. For each run, 90000 evaluations
were performed.

The Table 2 presents the results for the 10-bar truss problém first line of the Table
shows the results using only the simulation model to evaltta individuals. Again, the best,
average, worst, and standard deviation values found inQhrarss are displayed, together with
the number of neighbors and the values of,,,. FR indicates the number of runs (among the
30) which produced a feasible final solution.

The results shown in Table 2 present a similar behavior wieempared to those obtained
for the 22-bar truss problem. Here, it can also be noticetlttireavalues of the average in 30
runs increase ag,,, decreases, independent of the number of neighboralso, for larger
values ofp,,,, the best results in terms of best, average and standaratidemvalues are found
for the smaller values of, better results are found for larger valuestoivhen smaller values
of p,,, are set.

5.3 The 25-bar truss

This classical problem [27] is the weight minimization ofads with 25 bars shown in the
Fig. 3. The allowable stress for each membex,js, = 40 ksi and the displacements must not
exceedu,q, = 0.35 in, in thex andy directions. The material has a Young modulis= 107



Table 2: Results for 10-bar truss.
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5507.758
5507.539
5490.738
5490.738

5496.452

5508.265
5511.478
5499.333
5510.825
5501.639

5507.823
5504.085
5508.440
5506.981
5509.895

5517.552
5518.282
5512.095
5515.692
5510.055

5529.881
5519.181
5511.048
5521.369
5521.167

5600.230
5536.888
5518.768
5528.218
5528.106

5644.434
5556.216
5541.256
5533.438
5536.082

5702.771
5603.588
5602.149
5557.172
5546.229

5513.418

5569.510
5599.918
5537.516
5593.193
5536.965

5549.423
5545.250
5567.509
5585.147
5550.386

5650.360
5576.705
5582.307
5593.529
5549.446

5610.702
5602.136
5574.393
5582.463
5593.224

5730.343
5753.562
5588.854
5658.424
5579.044

5783.558
5677.276
5660.241
5615.039
5631.113

6056.010
5759.292
5782.929
5682.782
5632.076

8.673

19.894
28.988
13.062
25.002
14.266

16.265
15.876
22.407
20.813
15.375

32.311
26.825
23.564
25.705
17.102

29.964
26.181
22.721
26.069
30.022

69.106
51.106
24.380
36.497
28.042

69.006
49.299
41.053
35.296
39.218

118.014
63.341
67.988
44.967
40.723




psi and density of 0.10 Ib/in The loads applied in the structure are displayed in theelabl

100 in

Figure 3: The 25-bar truss.

The design variables are the cross-sectional areas whecbrganized into eight groups,
as shown in Table 4. This arrangement results in a struobytahization problem with eight
discrete variables, to be chosen from the set of 34 valuexj(iare inchesm = { 0.1, 0.2,0.3,
0.4,05,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,15181.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,
2.6,2.7,2.8,29,3.0,3.1,3.2,3.3,34

Table 3: Load case for 25-bar truss.

Node F, (kips) F, (kips) F. (kips)
1 1.00 -10.00 -10.00
2 - -10.00 -10.00
3 0.50 - -
6 0.60 - -

The population size was set to 100, and 200 generations veefermed. Five bits were
used for each one of the 8 variables, resulting on a 40-bdrmabsome, and a mutation rate
pm = 1/40. A total of 20000 evaluations are performed for each run.

The results for the 25-bar truss problem are shown in Tabléhe first line of the Table
shows the results obtained using only the simulation maeVvaluate the individuals. Again,
30 independent runs were performed for each number of neighland value of the parameter

Psm-



Table 4: Member groups for 25-bar truss.

Group Connectivities

Al 1'2

As 1-4, 2-3, 1-5, 2-6
As 2-5,2-4,1-3,1-6
Ay 3-6, 4-5

As 3-4, 5-6

Ag 3-10, 6-7, 4-9, 5-8
Az 3-8, 4-7, 6-9, 5-10
As 3-7,4-8, 5-9, 6-10

The results displayed in Table 5 show a similar behavior asdhserved for both the 22-
bar and the 10-bar truss problems, although for this tesienothe results for smaller values of
psm are significantly worse than the results obtained with lavgdues ofp,,,,, when compared
the values of average in 30 runs, the worst solution and #relard deviation. In Table 5 that
can be seen whemn,,, = 0.40 andp,,, = 0.30.

It can be noticed that the algorithm produces satisfactolyti®ns up to a certain level
of metamodel insertion: as the metamodel insertion grawesquality of the results decrease.
However, the computational gains increase in the same wdnereTis a trade off between
the quality of the solutions found and the computation timthehe optimization procedure,
and for time-consuming problems, the use of metamodels &tearctive alternative to obtain
computational gains which allow for the solution of more @ex problems with a given
computational budget.

6. SUMMARY AND CONCLUSIONS

In this paper a metamodel-assisted genetic algorithm, lwhigplements the nearest-
neighbor approximation is presented. Essentially, theaguh consists in the correct evaluation
of only a fraction of the population. The proposed procedisreapplied to structural
optimization problems involving discrete design variable

The introduction of the nearest neighbor metamodel redtloesise of the simulation
model during the search procedure performed by the GA, aligvior computational gains.
However there is a relationship between the frequency obtiiee approximation model and
the quality in the final solutions.

From the results presented here, satisfactory solutienfoand for values op.,,, as low as
0.5, which means that the results can be trusted at a limihwhaverage 50% of the evaluations
are done using the simulation model. Besides, accordingembtained results, for smaller
values ofp,,,,, which is desirable when dealing with computationally exgee problems, larger
values ofk lead to better results.

It is clear that, although faster, metamodel evaluatioedess accurate and, depending on
the rate of application of the metamodel during the searcbamture, it may affect in a negative
manner, leading to unsatisfactory solutions.

Although implemented here in a binary-coded GA, the prooesiucan be easily
implemented in a real-coded GA, where a wide range of appratton techniques exist, and
may potentially lead to better results. The procedure ptesehere make use only of stored
instances, and due to the features of the approximatiomigaeds, it is possible to approximate



Table 5: Results for 25-bar truss.

S

Psm

Pmm

FR

best

avg worst

std

= = = = = =
G wN Bownek Bownek Bownek BowNnek Bowndek Bowndek

[EY
o

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

20
20
20
20
20

1.00

0.90
0.90
0.90
0.90
0.90

0.80
0.80
0.80
0.80
0.80

0.70
0.70
0.70
0.70
0.70

0.60
0.60
0.60
0.60
0.60

0.50
0.50
0.50
0.50
0.50

0.40
0.40
0.40
0.40
0.40

0.30
0.30
0.30
0.30
0.30

0.00

0.10
0.10
0.10
0.10
0.10

0.20
0.20
0.20
0.20
0.20

0.30
0.30
0.30
0.30
0.30

0.40
0.40
0.40
0.40
0.40

0.50
0.50
0.50
0.50
0.50

0.60
0.60
0.60
0.60
0.60

0.70
0.70
0.70
0.70
0.70

30

30
30
30
30
30

30
30
30
30
30

30
30
30
30
30

30
30
30
30
30

30
30
30
30
30

30
29
30
30
30

30
30
30
30
30

484.854

484.854
484.854
484.854
484.854
484.854

484.854
484.854
484.854
485.049
485.049

485.574
484.854
484.854
484.854
484.854

484.854
485.049
484.854
484.854
484.854

485.049
484.854
484.854
485.380
484.854

485.049
484.854
485.380
485.049
485.049

485.769
485.380
485.049
485.049
484.854

485.780

485.920
486.004
485.835
486.087
485.886

486.412
486.022
486.329
486.131
486.220

487.150
486.534
486.180
487.658
486.857

487.259
487.123
487.084
488.113
488.157

489.772
487.840
488.122
488.899
489.032

492.527
491.293
491.477
491.582
490.049

495.835
493.638
493.489
492.811
492.309

488.443

489.885
491.385
488.769
490.140
488.438

489.165
489.691
491.114
488.574
489.413

497.880
492.496
489.938
501.313
493.529

491.260
490.871
497.078
503.067
507.378

502.086
494.326
496.553
503.540
501.891

523.659
505.463
506.617
508.436
499.618

520.019
514.072
519.726
505.618
509.740

0.822

1.262
1.253
0.969
1.401
0.925

1.084
1.083
1.416
0.959
1.168

2.573
1.735
1.289
3.246
1.756

1.857
1.587
2.603
4.145
4.652

3.674
2.869
2.922
3.858
3.536

7.994
5.318
5.359
6.546
4.309

9.080
7.972
7.651
6.355
6.492




the responses for problems with discrete, continuous, disasemixed discrete-continuous
variables.

Moreover, the procedure is simple and can be implemented ®Azor any other

population-based algorithm.
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