
An interactive genetic algorithm with co-evolution of weights
for multiobjective problems

Helio J.C. Barbosa and André M.S. Barreto
Laboratório Nacional de Computação Cientı́fica

Av. Getúlio Vargas 333
25651 070 Petrópolis RJ, BRAZIL
fhcbm,andremsbg@lncc.br

Abstract

An interactive co-evolutionary genetic algorithm
is proposed for a class of multi-objective opti-
mization problems and is applied to the problem
of graph lay-out generation taking into account
the personal user’s preferences.

1 INTRODUCTION

When using evolutionary algorithms (EAs) for solving a
given problem, the user has to define a fitness function
which will be used to indicate the quality of a given can-
didate solution. This requirement can be relaxed if the user
somehow is able to rank the whole population of candidate
solutions according to its quality. As a minimum require-
ment, given two candidate solutions, the user must be able
to tell which one is the best.

In a number of applications for which EAs seem to be a
suitable tool, it is very difficult to construct a fitness func-
tion which accurately reflects the user’s perception of what
is a good solution for the problem at hand. For instance, all
artistic applications of EAs fall into this category where the
fitness function is subjective.

The potential of interactive evolution was first demon-
strated by Dawkins[1] and latter developed by Sims[2, 3].
Evolution strategies with subjective selection have been de-
veloped by Herdy[4, 5]. Additionally, a number of exam-
ples can be found in [6]. For musical applications, one is re-
ferred to [7, 8, 9, 10, 11] and references therein. Some hard
engineering problems have also been approached in such a
way that the user is included in the loop of the evolutionary
process. For instance, Gruau and Quatramaram[12] have
evolved neural nets for robot control by letting the user sub-
jectively affect the fitness value of a given solution.

It is well known to the interactive evolutionary computa-
tion (IEC) practitioners that user fatigue is a key element to

the success of an IEC application and, as a result, the con-
struction of tools which are able to learn the fitness func-
tion/user’s preferences and then replace the human in the
loop is an attractive idea. Using data gathered during in-
teractive run(s) with the user, neural networks have been
trained with the objective of replacing the user and allow-
ing for longer runs[9, 11].

Yet another very important situation where user prefer-
ences come into play is the arena of multi-objective op-
timization (MOO) problems, where genetic algorithms
(GAs) are specially attractive and a large literature is avail-
able (see the site maintained by Coello: www.lania.mx/˜
ccoello/EMOO/EMOObib.html). Although GAs have been
successfully applied to MOO problems, specially by us-
ing its population of solutions to approximate the whole
Pareto front, the task of both the GA (in finding the Pareto
front) and the user (in choosing a good compromise so-
lution) grows in complexity as the number of objectives
grows. One alternative solution is to weight the several
objective functions in such a proportion that the resulting
scalar objective function leads the GA to eventually find a
solution which satisfies the user’s preferences. Of course,
the task of assigning such weights is not trivial and we be-
lieve that the idea of co-evolution can help the design of an
interactive GA (IGA) for this class of problem.

One particular MOO application will be considered here,
namely that of graph lay-out, in order to test the proposed
procedure. An interactive co-evolutionary GA is proposed
which maintains two populations: a graph lay-out popula-
tion and a weight-set population. Each population evolves
via an independent GA but their evolution is coupled by
their fitness evaluation, which involves active user inter-
vention. For each lay-out several aesthetical objectives are
mathematically defined and the final fitness value is ob-
tained by the current set of weights. However, the pop-
ulation of weight-sets also evolves according to a fitness
defined as how well a given set of weights ranks the pop-
ulation of lay-outs as compared to the ranking periodically
provided by the user. It is expected that the lay-out popu-

203GENETIC ALGORITHMS



lation improves with respect to the current weight-set and
also that the weight-set population evolves generating in-
creasingly better weight-sets, i.e., sets that better reflect the
user’s preferences.

The paper is organized as follows: Section 2 describes the
multi-objective optimization problem and the graph lay-out
problem, Section 3 briefly reviews interactive evolutionary
computations and Section 4 summarizes the idea of co-
evolution and some previous work. Section 5 describes the
co-evolutionary GA used here and Section 6 presents some
computational experiments. The paper ends with conclu-
sions and suggestions for further work.

2 MULTI-OBJECTIVE OPTIMIZATION

In an unconstrained multi-objective optimiza-
tion (MOO) problem one seeks to optimize the
m components of a vector of objective functions
F (x) = (f1(x); f2(x); : : : ; fm(x)) where x 2 
 � R

n

is the vector of design (or decision) variables which
belong to the admissible set 
. The function F : 
 7! �
maps solution (or design) vectors x = (x1; x2; : : : ; xn)
to vectors y = (y1; y2; : : : ; ym), with yi = fi(x), in
the objective function space. Without loss of generality
it is assumed that each objective is to be minimized.
Due to their non-commensurable and conflicting nature
there is usually not a solution which minimizes all m
objectives simultaneously. This motivates the concept of
dominance: a vector a = (a1; a2; : : : ; an) dominates a
vector b = (b1; b2; : : : ; bn) if ai � bi 8i and there is j
such that aj < bj . One then defines Pareto optimality:
a solution x 2 D is said to be Pareto-optimal in D if
and only if there is no x

0 2 D such that its image F (x0)
dominates F (x). The Pareto-optimal set, P , is thus the set
of all x 2 D such that F (x) is non-dominated in �. The
Pareto front PF is the image of the Pareto-optimal set in
the objective function space.

The first application of GAs to MOO problems dates back
to the mid-eighties[13, 14] and several papers have been
published since then (see [15, 16, 17, 18]). An example
of a subjective MOO problem is presented by Shibuya et
all[19] where animations of human-like motions are to be
computer generated. Another example is that of graph lay-
out, which is discussed in the following section.

2.1 The graph lay-out problem

The graph lay-out or graph drawing (GD) problem con-
sidered here is the task of producing aesthetically-pleasing
two-dimensional pictures of undirected graphs drawn with
straight edges. Vertices will be drawn as points in the plane
inside a rectangular frame and the problem thus reduces to
finding the coordinates of such points, since the edges are

defined by a given 0/1 connection matrix.

Automatic graph lay-out is a long-studied problem in com-
puter science with a large literature (see [20], for a bibliog-
raphy). Many aesthetic criteria can be conceived of and
some generally accepted ones include: (i) uniform spa-
tial distribution of the vertices, (ii) minimum number of
edge-crossings, (iii) uniform edge length, (iv) exhibit any
existing symmetric feature and (v) vertices should not be
placed too close to edges. Of course one would strive for
an algorithm which generates a solution fulfilling all the
aesthetic criteria simultaneously. However, those criteria
are non-commensurable and conflicting. As an alternative
to a true multi-objective GA for approximating the Pareto
front in such a high-dimensional space (see Table 1) one
could “scalarize” the problem by assigning weights to each
of those criteria in order to obtain a single objective func-
tion. The problem is then how to assign those weights in a
way that a pleasant-looking lay-out emerges. In the graph
lay-out problem it is observed that different sets of weights
lead to different final solutions which display different as-
pects/properties of the graph at hand. The final choice is
thus often a matter of personal preference.

3 INTERACTIVE EVOLUTIONARY
COMPUTATION

When the fitness function is subjective, an interactive GA
is implemented in a way that the quality of every candidate
solution has to be externally provided by the user to the
GA which then performs recombination and/or mutation
of individuals in the current population in order to gener-
ate the next population. The new individuals must then be
presented to the user which has the task to evaluate them
according to his/hers preferences.

Caldwell and Johnston[21] have developed an IGA which
allows for the interactive evolution of a face of a suspect
seen by the user at the scene of a crime. An IGA has been
applied by Louis and Tang[22] to the traveling salesman
problem (TSP). First the user visually decomposes the TSP
into clusters of cities and then a GA is applied to solve
the TSP corresponding to each cluster. Finally, the user ei-
ther (i) manually connects sub-tours in order to get a com-
plete solution or (ii) defines a promising region between
two clusters and then let the system perform an exhaustive
search among edges to delete and add in this region such
that the total tour length is minimized.

It is interesting to note that when the evolved artifact is rep-
resented in two- or three-dimensional space the individuals
can be simultaneously presented (in small numbers though)
to the user which can then rank them by comparison. How-
ever, for a musical solution, say a jazz solo, which develops
itself in time, the user has to hear them carefully, one at a

204 GENETIC ALGORITHMS



time, and then proceed to the ranking stage.

It has been observed that the user’s task often leads to fa-
tigue and that an IGA should be carefully implemented if it
is to be useful. One possible way to remove the human be-
ing from the IGA loop and thus speed up the evolutionary
process is to substitute it by a neural network trained to re-
flect the user’s preferences. That has been tried by Biles[9]
in order to simplify his original procedure which consisted
in presenting each solution (a jazz solo) to an audience for
evaluation. Unfortunely good results were not obtained in-
dicating that this option is also hard. In the work by Jo-
hanson and Poli[11] an interactive system allows users to
evolve short musical sequences using interactive GP. As the
user is the bottleneck in the process, the system takes rating
data from a user’s run and uses it to train a neural network
based automatic rater which can then replace the user and
allow for longer runs. The best pieces generated by the au-
tomatic raters were reported to be pleasant but were not, in
general, as nice as those generated in user interactive runs.

An approach to the interactive development of programs
for image enhancement using GP is presented by Poli and
Cagnoni[23]. There is no fitness function and the user de-
cides which individual should be the winner in the tourna-
ment selection. Good solutions to real-life problems are re-
ported after only hundreds of evaluations. Also, a strategy
to reduce user interaction is proposed: the choices made by
the user in interactive runs are recorded and later used to
build a model which can replace the user in longer runs.

There are other situations of scientific and technological
importance where, although a reasonable fitness function
can be designed, the evolutionary process would be im-
proved if any additional user knowledge (perhaps hard to
code into the fitness function) could be used in the evalua-
tion or ranking of the population. In this case, one would
profit from a supervised process where the user monitors
the evolution and occasionally intervenes in order to guide
the process towards what is perceived as a better region of
the search space at least according to the user experience.
An example of such approach has been presented recently
by Boscheti[24], where IGAs are proposed for a class of
geophysical inversion problems. For additional IEC appli-
cations and a survey, the reader is referred to Takagi[25, 26]
and references therein.

As already mentioned, an important area where user pref-
erences are essential is that of MOO problems, and we be-
lieve that the idea of co-evolution can bring some needed
help to the design of an IGA for this class of problem.

4 CO-EVOLUTION

In a standard GA the fitness function does not change with
time so that the population can be thought of as climbing

a fitness landscape and gradually converging to one of its
peaks. In contrast to these static landscapes, natural evo-
lution happens in a dynamic fitness landscape where or-
ganisms are constantly adapting to each other and to their
environment.

Artificial co-evolutionary algorithms have been used in the
solution of practical problems and one idea is that of coop-
eration. Potter and De Jong[27] used it for function opti-
mization in Rn where n subpopulations are maintained and
the fitness of a given individual of a particular subpopula-
tion is an estimate of how well it cooperates with other sub-
populations to produce good solutions. These ideas were
later applied to the co-evolution of neural networks[28] and
sets of rules[29].

Another approach is that of competition. In the pioneering
work of Hillis[30] it was applied to the problem of evolving
minimal sorting networks for lists of a given number of el-
ements. It was observed that the co-evolution of test cases
along with the sorting networks results in an improved pro-
cedure. Two independent populations are maintained: one
of sorting networks (or hosts) and the other of test cases
(parasites). The fitness of each sorting network was mea-
sured by its ability to correctly solve test cases while the
fitness of each test case was proportional to the number of
times it was incorrectly sorted by the networks. Both popu-
lations evolved simultaneously, interacting through the fit-
ness function.

Paredis[31] used a co-evolutionary approach to improve the
genetic evolution of neural networks. Again two popula-
tions were maintained: one of neural networks and another
of examples of the classification task which is submitted
to the neural networks. The fitness of a neural network is
defined as the number of successful classifications of the
twenty most recently encountered examples. On the other
hand, the fitness of an example is the number of times it was
incorrectly classified by the neural networks it encountered
most recently. However, the example population consists
all the time of the same 200 pre-classified examples. To
evolve decision trees, Siegel[32] also performed competi-
tive co-evolution with fixed training examples.

Rosin and Belew[33] used competitive co-evolution for
game-learning problems in which the fitness of an individ-
ual in a host population is based on a direct competition
with individual(s) from a parasite population.

Inspired by the work of Hillis[30], a co-evolutionary GA
has been proposed by Barbosa[34] in which two evolving
populations are used to solve min-max problems. Sev-
eral successful small scale applications were reported in
[34]. Later[35] that approach was applied to a class of op-
timization problems stated as an adversary game between
two players (“nature” and the designer), as well as to con-

205GENETIC ALGORITHMS



strained optimization problems[36].

Competitive co-evolution was also used by Sebald[37] in
the min-max design of neural net controllers for uncertain
plants while Husbands[38] used a cooperative/competitive
multi-population distributed co-evolutionary GA to handle
a generalized version of job shop scheduling.

In this paper an interactive, co-evolutionary GA is proposed
for MOO problems where the user’s preferences are subjec-
tive, such as in the graph lay-out problem considered here.
However, the procedure can not be classified neither as a
competitive nor as a cooperative co-evolutionary GA.

5 THE CO-EVOLUTIONARY GA

In the co-evolutionary GA proposed here, two popula-
tions will be maintained: a graph lay-out population and a
weight-set population. The lay-out population is composed
of individuals that contain the coordinates of all vertices in
the graph while the weights population is composed of in-
dividuals that contain, each one, a set of weights. An inde-
pendent GA is applied to each population and the coupling
of the evolutionary processes is made through the fitness
evaluation. Each one of the metrics/objectives can be ex-
actly computed for a given lay-out but the fitness of this
lay-out depends on how – i.e. with which set of weights –
those objectives are linearly combined.

A fitness function must also be defined for the weight pop-
ulation. Here it will be defined as follows. After the lay-
out population evolves for a given number of generations
(with its fitness being computed according to a fixed set of
weights) a sample of lay-outs from the current population
is displayed for user inspection. The user then ranks them
according to his/hers personal preferences, which may be
different from their current ranking in the population.

Now it is time for the weight population to evolve while
the current lay-out population is kept “frozen”. The fitness
function value of a given set of weights is then computed
as follows. Each individual (set of weights) evaluates the
sample of lay-outs and produces its own ranking. The fit-
ness of a given set of weights is higher, the closer its rank-
ing approaches the ranking provided by the user. A set of
weights that ranks the sample in a very different order from
that chosen by the user is not very useful and has thus a low
fitness.

The weight population is now evolved in order to search
for that set of weights which produces a ranking the most
closely resembling the one provided by the user. During a
fixed number of generations, the lay-out population is kept
“frozen”.

After a (hopefully) better set of weights is found, the lay-
out population is then allowed to evolve with its fitness

evaluation being now performed using the newly found
(best) set of weights.

The process is then repeated for a given number of cycles
until a satisfactory graph lay-out emerges.

As a result, the fitness of an element in the lay-out popula-
tion depends on the current set of weights, which depends
on the evolution of the weight population whose fitness, in
turn, depend on how well the current set of weights reflects
the user’s personal preferences concerning the graph lay-
outs. In other words, the evolution of the lay-out popula-
tion happens in a fitness landscape that changes every time
a new set of weights is presented by the weights population.
On the other hand, the fitness landscape of the weights pop-
ulation changes every time the user presents its ranking of a
sample of the current lay-out population. Figure 1 displays
the pseudo-code for the algorithm.

In order to minimize fatigue, the user only points and clicks
the mouse on some of the displayed lay-outs following a
decreasing order of his/her preference. The remaining lay-
outs are ranked after those picked by the user and maintain
their relative order.

Algorithm
Initialize lay-out population randomly
Initialize weight-set population randomly
Compute each criterion for all graph lay-outs
while not(user satisfied) do

Display a sample from the lay-out population
The user ranks the sample
for i = 1; 2; :::;max gen w do

Evaluate population of weights
Generate new population of weights

Pick the best set of weights
for j = 1; 2; :::;max gen l do

Compute each criterion for all graph lay-outs
Evaluate population of lay-outs
Generate new population of lay-outs

end

Figure 1: Pseudo-code for the algorithm.

Details of the GA used for each population are given next.

5.1 The genetic algorithm for the weights population

As suggested by an anonymous reviewer, a system of lin-
ear inequalities could be written defining the set of all fea-
sible sets of weights, that is, weights that reproduce a given
user’s ranking. However, it cannot be proven that such a
set is always non-empty: there is a human making choices.
As a result, a generational GA with a rank-based selection
scheme was adopted for the evolution of the weights popu-
lation, where each chromosome is simply a vector of posi-

206 GENETIC ALGORITHMS



tive real numbers (the weights) whose sum is 1.

The fitness of a set of weights is evaluated by its capac-
ity to rank the lay-out population in accordance with the
user’s preferences. The process can be explained as fol-
lows. When the user inputs his/her own rank, it can be seen
as a vector U describing a specific ordering. The fitness of
a set of weights S can be calculated by:

f(S) =
mX

j=1

Cj(Wj � Uj)

where W is a vector like U, but describing the ordering gen-
erated by the individual S. C is a fixed vector of constants
which allows one to emphasize the importance of the first
individuals. In our tests, m = 9 and the elements of C are
f9; 8; 7; 6; 5; 4; 3; 2; 1g.

The crossover operator used was the blend crossover -
BLX[39] which generates one offspring by randomly gen-
erating for each weight a value in the range [ws

i
��; w

l

i
+�]

with � = �(wl

i
�w

s

i
) and wherews

i
and wl

i
are the smallest

and largest values respectively for wi in the parents’ chro-
mosomes (� was set to 0.3).

Two mutation schemes are used, which will be referred to
as weak perturbation mutation - WP and strong perturba-
tion mutation - SP. First of all, a value is randomly cho-
sen from the interval [0,1]. If it is lower than 0.85, mu-
tation will occur. Next, the WP mutation will be applied
with a probability of 0.7 and the SP will occur with proba-
bility of 0.3 (1.0 - 0.7). The mutation operators work as
follows: (i) WP: One weight wi of the set is randomly
chosen and perturbed by an amount limited to the interval
[�0:3wi; 0:3wi]; (ii) SP: One gene (a weight) is randomly
chosen and has its value changed to another value randomly
picked in the interval [0,1].

5.2 The genetic algorithm for the lay-out population

The GA used here is a standard generational one where
each candidate solution is encoded as a real vector contain-
ing the coordinates (xi; yi) of each vertex of the graph. The
initial population is randomly generated and the selection
process is rank-based.

The GA for graph lay-out tries to optimize for several aes-
thetic criteria. One of them is the energy function defined
by Kamada and Kawai[40]

E =

jV j�1X

i=1

jV jX

j=i+1

1

2
kij(jpi � pj j � lij)

2 (1)

where jV j is the number of vertices, pi is the position vec-
tor of vertex i, and kij and lij are respectively the spring
force and the ideal distance between vertices i and j. The

idea is to make the Euclidean distance between two vertices
as close as possible to the ideal “graph theoretic” distance,
which is defined as lij = Ldij where dij is the distance be-
tween vertices i and j measured as the length of the shortest
path between them and L is the ideal length of an edge in
the graph, given by L = L0=maxfdijg where L0 is the
length of the side of the square display area. Finally, the
spring constant in Eq. (1) is given by kij = K=d

2
ij

whereK
is a constant. Due to the observation that this energy func-
tion, which often leads to uniform edge length and uniform
vertex distribution, is not always able to achieve a good lay-
out, several other criteria have also been introduced. The
objective function is thus composed by a weighted sum
of those criteria and the energy function E . All criteria
adopted are listed in Table 1 with the complexity associ-
ated with their computation, where jEj denotes the number
of edges in the graph.

Only mutation operators are used in this GA. However, the
approach adopted here is different from that of the stan-
dard GA; here, each individual has a probability of 0.85
to be submitted to mutation. The first mutation operator is
the single vertex mutation – SV, which perturbs the coordi-
nates of a randomly chosen vertex by an amount not larger
than L. The second one is the exchange vertex mutation –
EV, which exchanges two randomly pre-selected vertices
of the same graph. Finally, a third one, called vertex re-
placement mutation - VR was also defined. Just like the
SP mutation of the GA for the weight population, it simply
replaces one gene for another value randomly chosen but
feasible, i.e., the (x; y) coordinates of a vertex are replaced
by a pair of values in the interval [0; L0]. The relative prob-
ability of these 3 operators was set as 0.5, 0.2 and 0.3, re-
spectively. One should note that both GA’s have to adapt
to – potentially drastic – landscape changes, so it seems a
good idea to have a high mutation probability.

The reason for not using a crossover operator is the fact
that the schemes tested not only did not bring any improve-
ment but also made the process slower. This seems to be
due to the difficulty known as the competing conventions
problem in the area of evolutionary neural networks. In our
case, it happens when two (or more) identical layouts of the
same graph are either shifted, rotated or inverted. It is de-
sirable for a crossover operator that, when combining two
equivalent layouts, the offspring generated be similar to its
parents. We intend to develop such an operator, using ideas
from [41].

6 NUMERICAL EXPERIMENTS

In order to illustrate the feasibility and performance of the
approach proposed here, the task of laying out a simple
planar graph was undertaken.

207GENETIC ALGORITHMS



Criterion Abb. Description Complexity
Energy En Potential energy E �(jV j2) a

Edge Crossings Ec Number of intersections between edges �(jEj2)

Edge Deviation Ed Difference between edge lengths �(jEj2)
Edge attraction Ea Distance between connected vertices �(jEj)

Vertices Repulsion V r Inverse of distance between vertices �(jV j2)
Centripetal Attraction Ca Distance between vertices and the centroid of lay-out �(jV j)

Central Uniformity Cu Difference between vertices distances to the centroid of lay-out �(jV j2)
Vertex-edge Distance V Ed Inverse of distance between vertices and edges �(jV jjEj)

aAssuming that the dij are previously calculated and stored.

Table 1: Aesthetics criteria adopted in the algorithm

Figure 2 shows 9 elements from the initial population
which were presented to the user.

Figure 2: A sample from the initial population.

The first run was made by a user who did not care about the
number of edge-crossings in the drawing.

The weights associated with the criteria used in this
case, En;Ed;Ec; Ca and V r then evolved respectively to
0.5394, 0.2854, 0.06554, 0.050776 and 0.05887 and a so-
lution with many edge crossings was obtained but with an
interesting spatial structure displayed as shown in Figure 3.

The second run was made by an user who wanted a solu-
tion with a minimum of edge-crossings. As expected, the
weights evolved to quite different values: 0.0008176, 0,
0.6478, 0.02042 and 0.3310. It is easy to see that the (third)
weight associated with edge-crossings now has evolved to a
value ten times higher than that of the previous case and the
one associated with the energy is almost 1=1000 of the pre-
vious solution, indicating that this criteria goes “against” a
planar solution in this problem. The graph obtained has no
edge-crossings and is displayed in Figure 4.

Figure 3: Solution for user 1.

7 CONCLUSIONS

The work presented here reports on an investigation be-
ing conducted concerning the design of an interactive co-
evolutionary genetic algorithm for multi-objective opti-
mization problems and its application to the graph lay-out
problem. Comparing with previous interactive evolution-
ary algorithms, the proposed interactive co-evolutionary
GA can use a larger population for the application at hand
since the user only has to rank a sample from the corre-
sponding population. A single paradigm – the genetic algo-
rithm – is used for both tasks, namely, that of searching for
a good solution of the multi-objective optimization prob-
lem (a graph lay-out, in the present application) and that of
learning the user’s subjective preferences.

Acknowledgements

This paper was written while the first author was visiting
the Colorado State Artificial Intelligence Laboratory. The
hospitality provided by Prof. Darrel Whitley is gratefully
acknowledged. The authors would also like to thank the
reviewers for comments and suggestions which helped im-
prove the quality of the paper.

208 GENETIC ALGORITHMS



Figure 4: Solution for user 2.

References

[1] R. Dawkins. The Blind Watchmaker. Longman, Es-
sex, 1986.

[2] K. Sims. Artificial evolution for computer graphics.
Computer Graphics, 25(4):319–328, July 1991.

[3] K. Sims. Evolving 3D morphology and behaviour by
competition. In R. A. Brooks and P. Maes, editors,
Artificial Life IV, pages 29–39. MIT Press Cambridge,
MA, 1994.

[4] M. Herdy. Evolution strategies with subjective selec-
tion. In W. Ebeling, H.-P. Schwefel, and H.-M. Voigt,
editors, Proc. of the Parallel Problem Solving from
Nature - PPSN IV, pages 22–31, Berlin: Springer,
1996.

[5] M. Herdy. Evolutionary optimization based on sub-
jective selection - evolving blends of coffee. In Proc.
of the 5th European Congress on Intelligent Tech-
niques and Soft Computing, EUFIT ’97, pages 640–
644, 1997.

[6] P.J. Bentley, editor. Evolutionary Design by Comput-
ers. Academic Press Ltd., London, 1999.

[7] A. Horner and D. Goldberg. Genetic algorithms and
computer-assisted music composition. In Richard K.
Belew and Lashon B. Booker, editors, Proc. of the
Fourth International Conference on Genetic Algo-
rithms and their Applications. Morgan Kaufmann,
San Mateo, CA, 1991.

[8] J.A. Biles. GenJam: A genetic algorithm for gener-
ating Jazz solos. In International Computer Music
Conference, San Francisco, CA, 1994.

[9] J.A. Biles. Neural network fitness functions for a mu-
sical IGA. In Soft Computing Conference, 1996.

[10] B.L. Jacob. Composing with genetic algorithms. In
International Computer Music Conference, San Fran-
cisco, CA, 1995.

[11] B.E. Johanson and R. Poli. GP-music: An interac-
tive genetic programming system for music genera-
tion with automated fitness raters. Technical Report
CSRP-98-13, University of Birmingham, School of
Computer Science, May 1998.

[12] F. Gruau and K. Quatramaran. Cellular encoding for
interactive evolutionary robotics. Technical Report
Cognitive Science Research Paper CSRP425, School
of Cognitive and Computing Sciences, University of
Sussex, Brighton BN1 9QH, England, UK, 1996.

[13] J.D. Schaffer. Some Experiments in Machine Learn-
ing using Vector Evaluated Genetic Algorithms. PhD
thesis, Vanderbilt University, Nashville, TN, 1984.

[14] J.D. Schaffer. “Multiple objective optimization with
vector evaluated Genetic Algorithms”. In Proc. of the
1st Int. Conf. on Genetic Algorithms, pages pp. 93–
100, 1985.

[15] C.M. Fonseca and P.J. Fleming. An overview of evo-
lutionary algorithms in multiobjective optimization.
Evolutionary Computation, 3(1):1–16, Spring 1995.

[16] Jeffrey Horn. Multicriterion Decision Making, vol-
ume 1, pages F1.9:1 – F1.9:15. IOP Publishing Ltd.
and Oxford University Press, 1997.

[17] D.A. Van Veldhuizen and G.B. Lamont. Multiobjec-
tive Evolutionary Algorithm Research: A History and
Analysis. Technical Report TR-98-03, Department
of Electrical and Computer Engineering, Graduate
School of Engineering, Air Force Institute of Tech-
nology, Wright-Patterson AFB, Ohio, 1998.

[18] C.A.C. Coello. A comprehensive survey of
evolutionary-based multiobjective optimization tech-
niques. Knowledge and Information Systems. An In-
ternational Journal, 1(3):269–308, 1999.

[19] M. Shibuya, H. Kita, and S. Kobayashi. Integration of
multi-objective and interactive genetic algorithms and
its application to animation design. In Proc. of IEEE
Systems, Man, and Cybernetics, volume III, pages
646–651, 1999.

[20] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis.
Annotated bibliography on graph drawing algorithms.
Computational Geometry: Theory and Applications,
4(5):235–282, 1994.

209GENETIC ALGORITHMS



[21] C. Caldwell and V.S. Johnston. Tracking a crimi-
nal suspect through face-space with a genetic algo-
rithm. In Richard K. Belew and Lashon B. Booker,
editors, Proc. of the Fourth International Conference
on Genetic Algorithms and their Applications. Mor-
gan Kaufmann, San Mateo, CA, 1991.

[22] S.J. Louis and R. Tang. Interactive genetic algorithms
for the traveling salesman problem. In Proc. of the
Genetic and Evolutionary Computation Conference,
1999.

[23] R. Poli and S. Cagnoni. Evolution of pseudo-
colouring algorithms for image enhancement with
interactive genetic programming. Technical Report
CSRP-97-5, School of Computer Science, The Uni-
versity of Birmingham, B15 2TT, UK, January 1997.

[24] F. Boschetti and L. Moresi. Comparison between in-
teractive (subjective) and traditional (numerical) in-
version by genetic algorithms. In 2000 Congress
on Evolutionary Computation, pages 522–528, San
Diego, CA, USA, July 2000. IEEE Service Center.

[25] H. Takagi. Interactive evolutionary computation: Sys-
tem optimization based on human subjective evalua-
tion. In IEEE Int’l Conf. on Intelligent Engineering
Systems (INES’98), pages 1–6, Vienna, Austria, Sept.
1998.

[26] H. Takagi. Interactive evolutionary computation -
Cooperation of computational intelligence and hu-
man kansei. In 5th Int’l Conf. on Soft Computing
(IIZUKA’98), pages 41–50. World Scientific, Iizuka,
Fukuoka, Japan, Oct. 1998.

[27] M.A. Potter and K.A. De Jong. A cooperative
co-evolutionary approach to function optimization.
In Third Parallel Problem Solving from Nature,
Jerusalem, Israel, 1994.

[28] M.A. Potter and K.A. De Jong. Evolving neural net-
works with collaborative species. In Proc. of the 1995
Summer Computer Simulation Conference, Ottawa,
Ontario, Canada, 24–26 July 1995.

[29] K.A. De Jong and M.A. Potter. Evolving complex
structures via cooperative coevolution. In Fourth An-
nual Conference on Evolutionary Computation, San
Diego, CA, 1–3 March 1995.

[30] W.D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42:228–234, 1990.

[31] J. Paredis. Steps towards co-evolutionary classifica-
tion neural networks. In R. Brooks and P. Maes, ed-
itors, Artificial Life IV. MIT Press/Bradford Books,
1994.

[32] E.V. Siegel. Competitively evolving decision trees
against fixed training cases for natural language pro-
cessing. In K. Kinnear, editor, Advances in Genetic
Programming. MIT Press Cambridge, MA, 1994.

[33] C.D. Rosin and R.K. Belew. Methods for competitive
co-evolution: Finding opponents worth beating. In
L.J. Eshelman, editor, Proc. of the Sixth International
Conference on Genetic Algorithms and their Applica-
tions, Pittsburgh, PA, July 1995.

[34] H.J.C. Barbosa. A genetic algorithm for min-max
problems. In E.D. Goodman, V.L. Uskov, and
W.F. Punch III, editors, EvCA’96 - First Int. Conf.
on Evolutionary Computation and its Applications,
pages 99–109, Moscow, 24–27 June 1996. Institute of
High Performance Computer Systems of the Russian
Academy of Sciences.

[35] H.J.C. Barbosa. A coevolutionary genetic algorithm
for a game approach to structural optimization. In Th.
Baeck, editor, Proc. of the Seventh International Con-
ference on Genetic Algorithms and their Applications,
pages 545–552, East Lansing, MI, July 1997.

[36] H.J.C. Barbosa. A coevolutionary genetic algorithm
for constrained optimization problems. In Proc. of the
1999 Congress on Evolutionary Computation, pages
1605–1611, Washington, DC, USA,, July 1999. IEEE
Service Center.

[37] A.V. Sebald and J. Schlenzig. Minimax design of neu-
ral net controllers for highly uncertain plants. IEEE
Transactions on Neural Networks, 5(1):73–82, 1994.

[38] P. Husbands. Distributed coevolutionary genetic al-
gorithms for multi-criteria and multi-constraint opti-
misation. In T. Fogarty, editor, Evolutionary Comput-
ing, Lecture Notes in Computer Science, volume 865,
pages 150–165. Springer-Verlag, 1994.

[39] L.J. Eshelman and J.D. Schaffer. Real coded genetic
algorithms and interval schemata. In D. Whitley, edi-
tor, Foundations of Genetic Algorithms 2, pages 187–
202. Morgan Kaufmann, San Mateo, CA, 1993.

[40] T. Kamada and S. Kawai. An algorithm for draw-
ing general undirected graphs. Information Process-
ing Letters, 31:7–15, April 1989.

[41] Jürgen Branke, Frank Bucher, and Hartmut Schmeck.
A genetic algorithm for drawing undirected graphs. In
Proc. of the Third Nordic Workshop on Genetic Algo-
rithms and their Applications (2NWGA), pages 193–
206, 1997.

210 GENETIC ALGORITHMS


