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Abstract. .

1 Introduction

In this Chapter, we review mathematical elements in scalar and vector fields. We start with basic elements in
linear algebra ( see [1, 2] for details in this area). Next, in section 3-4 we define scalar and vector fields in Rn.

2 Background in Linear Algebra

Let the N -dimensional vector space V over < composed by n-uplas:

v =



v (0)
v (1)
.
.
.

v (N − 1)

 . (1)

and B a basis of V given by N linearly independent vectors:

B = {ei ∈ V ; , i = 0, 1, ..., N − 1} . (2)

Therefore, we know that any vector v ∈ V can be written as a linear combination of elements in B, that
means:

v =

N−1∑
i=0

αiei. (3)

We call the array composed by the coefficients αi the representation of v in the basis B, which we indicate
by:

[v]B =



α (0)
α (1)
.
.
.

α (N − 1)

 . (4)

Moreover, we know that such representation is unique. If B is the canonical basis given by:



B =





1
0
.
.
.
0

 ,



0
1
.
.
.
0

 ,



0
0
1
.
.
0

 , · · ·,



0
0
.
.
.
1




, (5)

them we have [v]B ≡ v. In this case, we will drop the subscript ”B” in expression (4).
In this context, we can consider functions T : V → <, that satisfy the property:

T (α1u1 + α2u2) = α1T (u1) + α2T (u2) , (6)

α1, α2 ∈ < and u1,u2 ∈ V. The linear function T is called a linear form.
The space of linear forms is a vector space over <, called the dual of V, which is denoted by V ∗. Let the dual

basis
B =

{
ei ∈ V ∗; , i = 0, 1, ..., N − 1

}
. (7)

where ei is the dual of the vector ei; defined by:

ei (ej) = δ (i− j)

Observe that (V ∗)∗ ≡ V. Therefore, we can see u ∈ V as a linear form u : V ∗ → <;

u (T ) = T (u)

3 Scalar and Vector Fields in Rn

The function
f : Rn → R,

is a scalar field in Rn.
If V is vector space, the function

F : Rn → V,

is a vector field from Rn to the vector space V. A specific and important case of vector field is:

F : R3 → R3,

4 Topology of Scalar Fields

Given a scalar field f : Rn → R we say that a point x0 ∈ Rn is a critical point of f if Dxf (x0) = 0; that means:

∂f

∂x1
(x0) =

∂f

∂x2
(x0) = . . . =

∂f

∂xn
(x0) = 0. (8)

Also, we can compute the Hessian Hxf (x0) as:

[Hxf (x0)]ij =
∂2f

∂xi∂xj
(x0) , 1 ≤ i, j ≤ n, (9)

and the dimension of the null space of the matrix [Hxf (x0)] is called the corank of Hxf at x0 ∈ Rn.



We say that f has a nondegenerate critical point at x0 ∈ Rn if Dxf (x0) = 0 and if Hxf (x0), defined by
expression (9), is non-singular (nondegenerate quadratic form). On the other hand, if Hxf (x0) is degenerate we
say the point x0 ∈ Rn that satisfies Dxf (x0) = 0 is a degenerate critical point.

Taylor Series for a crtical point x0 ∈ Rn:

f (x) = f (x0) +
1

2!
(x− x0)

T Hxf (x0) (x− x0) +O
(
||x− x0||2

)
. (10)

From expression (10) we have tree possibilities for the critical point x0 ∈ Rn:

• Local maximum: Dxf (x0) = 0 and Hxf (x0) positive definite

• Local minimum: Dxf (x0) = 0 and Hxf (x0) negative definite

• Seddle point: Dxf (x0) = 0 and Hxf (x0) non-singular but with positive and negative eigenvalues

• Degenerate point: Dxf (x0) = 0 and Hxf (x0) singular

5 Topology of Vector Fields

Consider the vector field:

F : Rn → Rn,

where:

F (x) = Ax,

with A a real and constant matrix.
In this case, the solution of the differential equation:

dx

dt
= Ax, (11)

subject to:

x (0) = x0, (12)

is [3]:

x (t) = exp (At)x0.

We shall remember that:

exp (At) = I +At+
1

2!
(At)2 +

1

3!
(At)3 + . . .

Therefore, if (vi, λi), i = 1, 2, . . . , n are the distint eigenvectors/eigenvalues of matrix A, then, we can write:

x0 =
n∑

i=1

αivi, (13)

and:

x (t) = exp (At)x0 = exp (At)

[
n∑

i=1

αivi

]

=
n∑

i=1

αi exp (At)vi



Figure 1: Hyperbolic linear systems in R3.

=
n∑

i=1

αi

[
vi + tAvi +

1

2!
t2A2vi +

1

3!
t3A3vi + . . .

]

=
n∑

i=1

αi

[
vi + tλivi +

1

2!
t2λ2ivi +

1

3!
t3λ3ivi + . . .

]

=
n∑

i=1

αi

[
I + tλi +

1

2!
t2λ2i +

1

3!
t3λ3i + . . .

]
vi

=

n∑
i=1

αi exp (λit)vi. (14)

Therefore, we can express the solution of the initial value problem using the eigenvalues/eigenvectors of
the matrix A and solving equation (13). Consequently the eigendecomposition of A defines the topology of the
general solution of the equation (11).

If λi has real part non-null for i = 1, 2, . . . , n, we say that the singular point x = 0 is hyperbolic. For n = 3
we have the cases pictured in Figure 1 for hyperbolic systems [3].

Now, consider the vector field F : Rn → Rn, with F smooth and:

F (x) = (F1 (x1, x2, . . . , xn) , F2 (x1, x2, . . . , xn) , . . . , Fn (x1, x2, . . . , xn)) . (15)

Then, we define the Jacobian matrix:

DF (x) =


∂F1
∂x1

∂F1
∂x2

. . . ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

. . . ∂F2
∂xn

. . .
∂Fn
∂x1

∂Fn
∂x2

. . . ∂Fn
∂xn

 .



Definition: A hyperbolic singular point of F is a point p ∈ Rn such that: F (p) = 0 and all the eigenvalues
of DF (p) have real part non-null.

Hartman’s Theorem. Let a smooth vector field F : <n → <nand p ∈ Rn a hyperbolic singular point. Then,
there are neighbourhoods V (p) ⊂ Rn and W (0) ⊂ Rn such that F : V (p) −→ Rn can be represented by the
solutions of:

dx

dt
= DF (p)x,

in the neighbourhood W (0).

6 Complex Eigenvalues

For real matriz A and a complex eigenvector v = v1 + iv2 with complex eigenvalue λ = γ + iβ we have:

Av = λv =⇒ Av = λv.

Therefore, v = v1− iv2 is an eigenvector of A with eigenvalue λ = γ− iβ. For instance, if A ∈ R2×2, with
complex eigenvalues, then from expression (14), the general solution of (11) is:

x (t) = α1 exp [(γ + iβ) t] (v1 + iv2) + α2 exp [(γ − iβ) t] (v1 − iv2) . (16)

Let us define the function:

ϕ (t) = exp [(γ + iβ) t] (v1 + iv2) = exp [γt] (cos (βt) + i sin (βt)) (v1 + iv2) ,

⇐⇒

ϕ (t) = exp [γt] [(cos (βt)v1 − sin (βt)v2) + i (sin (βt)v1 + cos (βt)v2)] .

With this expression we can build another function:

ϕ (t) = exp [γt] [(cos (βt)v1 − sin (βt)v2)− i (sin (βt)v1 + cos (βt)v2) , ]

So, we can construct the functions

x1 (t) =
1

2
(ϕ (t) +ϕ (t)) = Re (ϕ (t)) , (17)

x2 (t) =
1

2i
(ϕ (t) +ϕ (t)) = Im (ϕ (t)) . (18)

We can show that:

x1 (t) = exp [γt] (cos (βt)v1 − sin (βt)v2) ,

x2 (t) = exp [γt] (sin (βt)v1 + cos (βt)v2) .

It is possible to verify that {x1 (t) ,x2 (t)} is a linerarly independent set of solutions of expression (11).
Consequently, in this case, the general solution of the system (11) can be written as:

x (t) = c1x1 (t) + c2x2 (t) . (19)

If we write c1 = ρ cosω and c2 = ρ sinω, then we can re-write expression (19) as:

x (t) = ρ cosω exp [γt] (cos (βt)v1 − sin (βt)v2) + ρ sinω exp [γt] (sin (βt)v1 + cos (βt)v2) ,



that renders:

x (t) = ρ exp [γt] (cosω cos (βt) + sinω sin (βt))v1+

ρ exp [γt] (sinω cos (βt)− cosω sin (βt))v2,

which finally gives:

x (t) = ρ exp [γt] (cos (ω − βt)v1 + sin (ω − βt)v2) . (20)

Case 1. Closed trajectories: γ = 0

x (t) = ρ (cos (ω − βt)v1 + sin (ω − βt)v2) . (21)

Case 2. γ < 0

lim
t−→+∞

x (t) = (0, 0) .

Case 3. γ > 0

lim
t−→+∞

x (t) = ∞.
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