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Abstract. .

1 Introduction

In this Chapter, we review mathematical elements in scalar and vector fields. We start with basic elements in
linear algebra ( see [1, 2] for details in this area). Next, in section 3-4 we define scalar and vector fields in R".

2 Background in Linear Algebra

Let the N-dimensional vector space V' over t composed by n-uplas:

v (N —1)

and B a basis of V' given by N linearly independent vectors:

B={e;eV; , i=0,1,..,.N—1}. )

Therefore, we know that any vector v € V can be written as a linear combination of elements in B, that
means:

N-1
vV = Z ;€;. (3)
=0

We call the array composed by the coefficients «; the representation of v in the basis B, which we indicate
by:

Vg = : . )

a(N'— 1)

Moreover, we know that such representation is unique. If B is the canonical basis given by:



1 0 0 0
0 1 0 0
B = ) . ; ! D) . ) &)
0 0 0 1
them we have [v]|; = v. In this case, we will drop the subscript ”B” in expression (4).
In this context, we can consider functions 7' : V' — R, that satisfy the property:
T (a1 + agug) = a1 T (1) + T (uz), (0)

a1, a9 € R and uyg, uy € V. The linear function 7 is called a linear form.
The space of linear forms is a vector space over R, called the dual of V, which is denoted by V*. Let the dual
basis

B={e'eV* , i=0,1,..,N—1}. (7)

where €’ is the dual of the vector e;; defined by:

e’ (ej) = (i~ j)

Observe that (V*)* = V. Therefore, we can see u € V as a linear form u : V* — R;

u(T)="T(u)
3 Scalar and Vector Fields in R"
The function
f:R" > R,
is a scalar field in R".
If V' is vector space, the function
F:R"—= 7V,

is a vector field from R" to the vector space V. A specific and important case of vector field is:

F:R? = R3,

4 Topology of Scalar Fields

Given a scalar field f : R™ — R we say that a point xo € R™ is a critical point of f if Dy f (x¢) = 0; that means:

L R AR
oy (x0) = Oz (xo) = = Oy (x0) = 0. ®
Also, we can compute the Hessian Hy f (xq) as:
[Hx f (x0)];; = il (x0), 1<1i,j< ©))
x 015 0x:01; 0) s >nLi=n,

and the dimension of the null space of the matrix [Hx f (x0)] is called the corank of Hy f at xo € R™.



We say that f has a nondegenerate critical point at xo € R™ if Dy f (x9) = 0 and if Hx f (x¢), defined by
expression (9), is non-singular (nondegenerate quadratic form). On the other hand, if Hy f (x() is degenerate we
say the point xo € R" that satisfies Dy f (xo) = 0 is a degenerate critical point.

Taylor Series for a crtical point xy € R™:

f(z) = f(x0) + % (z — x0)" Hxf (x0) (£ — %o) + O (||lz — x0l[?) - (10)

From expression (10) we have tree possibilities for the critical point Xg € R":

e Local maximum: Dy f (x¢) = 0 and Hy f (x0) positive definite
e Local minimum: Dy f (x9) = 0 and Hx f (X¢) negative definite
e Seddle point: Dy f (x0) = 0 and Hy f (x0) non-singular but with positive and negative eigenvalues

e Degenerate point: Dy f (x9) = 0 and Hy f (X¢) singular

5 Topology of Vector Fields

Consider the vector field:
where:

with A a real and constant matrix.
In this case, the solution of the differential equation:

dx
7 x, (11)
subject to:

z (0) = o, (12)
is [3]:

x (t) = exp (At) xo.

We shall remember that:

1 1
exp (At) =I+At+§(At)2+§(At)3+...
Therefore, if (v;, \;), i = 1,2, ..., n are the distint eigenvectors/eigenvalues of matrix A, then, we can write:
n
mo =) aivi, (13)
i=1

and:

x (t) = exp (At) o = exp (At)

=1

= Z a; exp (At) v;
i=1
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Figure 1: Hyperbolic linear systems in R3.
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= Z a; exp (Ait) v;. (14)
i=1

Therefore, we can express the solution of the initial value problem using the eigenvalues/eigenvectors of
the matrix A and solving equation (13). Consequently the eigendecomposition of A defines the topology of the
general solution of the equation (11).

If \; has real part non-null for ¢ = 1, 2, ..., n, we say that the singular point & = 0 is hyperbolic. For n = 3
we have the cases pictured in Figure 1 for hyperbolic systems [3].

Now, consider the vector field F' : R™ — R", with F' smooth and:

F(x) = (F (z1,22,...,2n), Fo (x1,22, ..., 2pn) ..., Fp(x1,22,...,2)) . (15)

Then, we define the Jacobian matrix:

8F1 8F1 8F1

oz ox Oxn

F, 0F )

DF (w) — ox1 Oxo e Oxn
OF, OF, OF,

ox1 Oxo e Oxn



Definition: A hyperbolic singular point of F is a point p € R" such that: F' (p) = 0 and all the eigenvalues
of DF (p) have real part non-null.

Hartman’s Theorem. Let a smooth vector field F' : " — R"and p € R™ a hyperbolic singular point. Then,
there are neighbourhoods V' (p) C R™ and W (0) C R™ such that F' : V (p) — R" can be represented by the
solutions of:

dx
— =DF
o (p) x,

in the neighbourhood W (0).

6 Complex Eigenvalues

For real matriz A and a complex eigenvector v = v + iv9 with complex eigenvalue \ = v + i3 we have:

Av = = Av=)\v.

Therefore, ¥ = v1 — vy is an eigenvector of A with eigenvalue A = v — i3. For instance, if A € R?*?, with
complex eigenvalues, then from expression (14), the general solution of (11) is:

x(t) = arexp|(y+if)t] (v1 +ive) + agexp [(y — iB) t] (v1 — iva). (16)

Let us define the function:

@ () = exp(y +i8) 1] (v1 + iva) = exp [74] (cos (Bt) + i sin (B)) (v1 + ivs)

o (t) = exp [yt] [(cos (Bt) v1 — sin (Bt) v2) + i (sin (5t) v1 + cos (Bt) v2)] .

With this expression we can build another function:

@ (t) = exp [yt] [(cos (Bt) v1 — sin (Bt) va) — i (sin (Bt) v1 + cos (Bt) va) , ]

So, we can construct the functions

21(1) = 5 (9 (1) + 2 (1) = Re (1)), (17)
22 (1) = 5 (o (1) + P (1) = Im (9 (). (18)

We can show that:

x1 (t) = exp [yt] (cos (St) v1 — sin (Bt) va),

X2 (t) = exp [yt] (sin (Bt) v1 + cos (Bt) va) .

It is possible to verify that {a; (t),x2 ()} is a linerarly independent set of solutions of expression (11).
Consequently, in this case, the general solution of the system (11) can be written as:

xr (t) = C1q (t) + Cox2 (t) . (19)

If we write ¢c; = pcosw and ca = psinw, then we can re-write expression (19) as:

x (t) = pcoswexp [yt] (cos (Bt) v1 — sin (Bt) v2) + psinw exp [yt] (sin (5t) v1 + cos (Bt) va) ,



that renders:
x (t) = pexp [yt] (cosw cos (Bt) + sinw sin (5t)) vi+

pexp [yt] (sinw cos (Bt) — coswsin (St)) va,
which finally gives:

x (t) = pexp [yt] (cos (w — Bt) v1 + sin (w — Bt) va) .

Case 1. Closed trajectories: v = 0

x (t) = p(cos (w — Bt) vy + sin (w — St) va).

Case2. v <0
tgriloocc (t) = (0,0).
Case3.v>0
lim «(t) = oo.
t—+o00
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