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Abstract

Many problems of practical interest in science and engineering are of the multiscale type,
and many of those can be described by partial differential equations (PDEs) with oscillatory
coefficients. The corresponding numerical solutions using classical methods are extremely
expensive in terms of memory and CPU. Multiscale schemes such as the MsFEM and
MHM methods have been developed to solve such problems, based on two-level ideas. This
work proposes a numerical method, the Multiscale Hybrid-Hybrid-Mixed method (MH?M).
The starting point is a hybrid formulation of three fields: the solution in each element
interior, its flux at the boundary of each element, and its trace on the mesh skeleton.
Continuity of traces and fluxes are weakly imposed. Multiscale effects are incorporated
into basis functions through localized Neuman problems. A series of static condensations
transforms the saddle point problem into an elliptic one, posed at the interfaces. At the
discrete level, this drastically reduces the size of the global system. The matrix of the
associated linear system is symmetric and positive definite, and can be solved by classical
iterative schemes. We prove the well-posedness of the method and establish error estimates.
We also perform numerical tests to confirm the theoretical predictions and compare the
method with the FEM, MsFEM and MHM schemes.

Keywords: MHM. Numerical methods. Multiscale hybrid method.



Resumo

Muitos problemas de interesse pratico em ciéncia e engenharia sdo do tipo multiescala, e
muitos deles sao descritos por equagoes diferenciais parciais (EDPs) com coeficientes oscila-
torios. As solucoes numéricas correspondentes usando métodos clssicos sao extremamente
caras em termos de memoria e CPU. Esquemas multiescala como os métodos MsFEM e
MHM foram desenvolvidos para resolver tais problemas, baseados em ideias de dois niveis.
Este trabalho propde um método numérico, o método Multiscale Hybrid-Hybrid-Mixed
(MH2M). O ponto de partida ¢ uma formulacio hibrida de trés campos: a solugao no
interior de cada elemento, seu traco e fluxo no esqueleto da malha. A continuidade de
tragos e fluxos é fracamente imposta. Efeitos multiescala sdo incorporados em funcgoes de
base por meio de problemas de Neuman localizados. Uma série de condensacoes estaticas
transforma o problema do ponto de sela em um problema eliptico, colocado nas interfaces.
No nivel discreto, isso reduz drasticamente o tamanho do sistema global. A matriz do
sistema linear associado é simétrica e definida positiva, e pode ser resolvida por esquemas
iterativos classicos. Provamos a boa colocacao do método e estabelecemos estimativas de
erro. Também realizamos testes numéricos para confirmar as previsoes tedricas e comparar
0 método com os esquemas FEM, MsFEM e MHM.

Palavras-chave: MHM. Métodos numéricos. Método hibrido multiescala.
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1 Introduction

Many problems of practical importance in science and engineering have multiscale
characteristics. We mention the modeling of composite materials and flows in porous media
as common examples. A large class of multiscale problems are described by partial differen-
tial equations with oscillatory coefficients. Coefficients can characterize the heterogeneity
of a medium, as in porous media flows, or they can represent the random velocity field in
a turbulent transport problem. The direct numerical solution of this class of problems,
using, for example, the classical Finite Element Method (FEM), becomes difficult and with
a expensive computational cost since the number of degrees of freedom of the resulting
discrete system is extremely large, due to the resolution required to achieve meaningful
results; moreover, it requires a lot of memory and CPU time, even with supercomputers.
On the other hand, the large-scale features of the solution and the averaged effect of small

scales on large scales are of primary interest.

Multiscale methods are designed to deal with problems with oscillatory coefficients.
Inittialy I. Babuska and J. E. Osborn [5] introduced numerical scheme to deal with these
class of problems in one dimension, called Generalized Finite Element Method. Then, this
concept was expanded to higher dimension by T. Hou, X. Wu and Z. Cai [20]. Moreover,
the theory of the Multiscale Finite Element method was presented by Y. Efendiev and T.
Hou [12]. This method is designed to capture accurately the averaged effect of differential
operators with oscillatory coefficients on the large scale solutions. Its general idea is to
build finite element base functions that capture the small scale information of the leading
order differential operator. Parallel implementation is possible due to independence of

local problems.

Recently a new family of multiscale finite element method, called the Multiscale
Hybrid-Mixed (MHM) method, was introduced by C. Harder, D. Paredes and F. Valentin
to solve the Darcy equation with heterogeneous coefficients [2, 23, 6]. This method has
a suitable framework to solve linear elasticity problems and diffusion-advection-reaction
problems [18, 17]. Moreover, the continuity of the numerical solution is relaxed at the
expense of introducing a Lagrange multiplier, while assuring the strong continuity of the

dual unknow, which makes dealing with flow simulation in porous media possible.

We introduce a numerical method, called Multiscale Hybrid-Hybrid-Mixed method
(MH2M), derived from a mixed-hybrid formulation of the Three-Field Domain Decomposi-
tion method, proposed by Brezzi and Marini [9] to solve second-order elliptical problems.
The MH?M method is defined on traces space, what makes it cheaper than the MHM

method, whose associated global system matrix depends on the dimension of the fluxes
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and piecewise constants spaces. Also, the constat term globally computed in the MHM
method is now determined locally. The associated global matrix is simmetric and positive
definite, wich enable us to solve the global system using the iterative method called
Conjugate Gradient method [21]. The MH?M provide us with a non-conformal primal
variable, while conformity of the trace approximation is weakly imposed. Here, the flux is
relaxed on the boundary of each element, allowing distinct refinements for each element
whitout loss of mass conservation. Error estimates were presented for the Three-Field
formulation by F. Brezzi and D. Marini [14], where the bubble functions ensure stability
of this formulation on the interfaces. To circumvent the inf-sup condition necessary for
the stability of boundary Lagrange multipliers, the Locally Discontinuous but Globally
Continuous Galerkin (LDGD) method [3] is based on a stabilized hybrid formulation.
The variational formulation of the LDGC method has a penalty function g > 0 from the
Discontinuous Galerkin (DG) method and consists of finding a pair of solutions living in
the functions and traces spaces used in the MH?M method. For 3 sufficiently small, we
can approximate the LDGC and MH2M methods by taking in the MH?M method the test
space of fluxes composed of normal derivatives of test functions. The stability of MH2M
holds by taking function spaces previously satisfying compatibility conditions introduced

in this work.

This work is presented as follows: in Chapter 2 we establish some notations and
preliminary definitions. Then we present the MH?M method in infinity dimension broken
function spaces and demonstrate the well-posedness of its global elliptical problem, among
other functional analysis results. In Chapter 3 we present the MH?M and show that the
well posedness of its discrete global problem is valid, since the discrete inf-sup condition
holds. Error estimates are also presented. We study a simple example assuming consistency
at the sencod level. We end this chapter by presenting some relationships between the
MH?M and MsFEM methods. Finally, Chapter 4 presents numerical results in order to
confirm the theoretical estimates. Furthermore, it evaluates the robustness of the MH?M
method compared to the MsFEM and the MHM method.
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2 Setting and preliminary results

In this section we set the model problem after briefly introducing some function
spaces. Starting from a three-field formulation, we obtain, by means of space decom-
positions techniques, an elliptical problem, which characterizes the MH2M method in

finite-dimensional spaces. Several properties are proved in the last subsection.

We suppose that our problem is posed in an open domain 2 C R", with a polyhedral
boundary d€2. In practice n = 2 or 3, but we present the problem in a two-dimensional
setting for the sake of simplicity. In the sequel we introduce some notations about the

Sobolev spaces. They are based on

[2(Q) = {v; [ 10 do = [oli2a o < +oo} (2.1)

the space of square integrable functions on 2. We then define, for an integer m > 0,

H™(Q) := {v; Dv € L*(Q), |a] <m}, (2.2)
where o = (aq,- -+ , ;) and
olely
D% i= ————— la| =1 + -+ ap, (2.3)

Ozt - - - Qaon’

these derivatives being taken in the sense of distributions. On this space, we shall use the

semi-norms

|U|i,Q = Z |Dav|%2(ﬂ)7 ke {07 17 T 777’} (24)
|o|=k
and the norm
[olle = > vlio (2.5)
k<m

The space L?(Q2) is then H°(Q) and we shall usually write ||v]oq to denote its norm
|v]| L2(2)- We refer [11, 1, 15, 7] to the other Sobolev spaces that appear throughout this

presentation.
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2.1  The model

The boundary value problem considered in this work consists of finding a solution
u:Q—=Rto

—V - (AVu) = f in (2.6)
u=0 on 0,

where f is a given regular function and the diffusion coefficient A = {A;;} is a simmetric
tensor in [L*(2)]?*? wich is assumed to be uniformly elliptic, that is, there are positive

constants api, and amax so that
amin|v|2 <A(x)v-v < amax\v\Q, Vv eR? (2.7)

where | - | is the Euclidean norm. The classical solution to this problem is a function
u € C2(Q)NC(Q) satisfying the equation (2.6) everywhere in Q and fulfilling the boundary
condition at every x € 0. The associated standard variational formulation for (2.6)

requires f € L*(Q2) and looks for a weak solution u € H}(2) such that
a(u,v) = F(v), Vv e HyQ), (2.8)

where the bilinear form a : H}(Q) x Hj(Q) — R and the linear form F : H}(Q2) — R are
defined as:

a(v,w) ::/Q.AV'U'VU) dr and F(v) ::/va dx, (2.9)

for all v,w € H}(). The variational formulation reduces the regularity constraint over
solution u and over data f. To prove the existence and uniqueness of this solution it is
enough to verify the continuity and the coerciveness of the bilinear form a(-,-) and the
continuity of the linear form F'(-); thus the result follows from the Lax-Milgram Lemma

A.0.1. Indeed, we get from the Cauchy-Schwarz inequality that

a0, 0)] < s [ [0 V0| d < sl Vool Vllog < vl allwlhas (210
(2.11)
F)| < [ Ifolde < [ flbalvla,
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for all v, w € H}(Q), that establishes the continuitity for a(-,-) and F(-). Moreover, the

coercivity for a(-,-) holds, since:
a(v,v) 2 aminlvfi o > ol[v]l3 0, (2.12)

where the Poincaré inequality Theorem A.0.3 was used at the last inequality. The Lax-

Milgran Lemma provide us the following stability result:

1
ull1.0 < a”f”o.,ﬂ- (2.13)

2.2 Infinite dimensional problem using hybrid formulation

We introduce the mixed-hybrid formulation to the problem (2.6). Let H €]0, 1]
be a parameter, T3 be a regular mesh of the domain 2 composed of elements K € Ty
and let &4 the mesh skeleton composed of faces elements. For a fixed element K € Ty,
OK denotes its boundary, and n® the unit size normal vector that points outward K. We

denote by n the outward normal vector on 0f). Consider the following broken spaces:

HY(Tw) = {v € L*(Q); v|x € H'(K), K € Tu};
Ai={pe HV2(0K); 3o € H(div,K); p=0-nf|ox, K € Ty} * (2.14)
Hy(En) = {vle,; v € HY(Q)}.

We can identify A with [ H~Y?(0K). Let

KeTy

A, ={pe H?*(&); 3o € H(div;Q); plp =0 -n"|p, VF € 4. (2.15)
Consider the finite dimensional subspaces A C A and A? C A, defined as:

A= ] {rePy(F), FedK}; (2.16)

KeTy

AV :={u e Py(F), F € &y}, (2.17)
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where Py(F') stands for the space of constants functions over F' € &. See in the Figure 1

the illustrative functions for A” and A? spaces.

/X7 I

Figure 1 — Function on the space A” in the MHHM method and a function on the space
A? in the MHM method.

For w,v € L*(Q), p € Hé/Q(SH) and p € A, define:

(woyp = 3 [ wods (upde, = X (oo (2.18)

KeTy KeTy
where (-, -)or is the dual product involving H~Y2(9K) and H/?(0K), and we are using

the same notation for a function in HS/ ? (Ex) and its restriction to an element boundary
OK. Therefore, we get from Corollary A.0.1 that:

(1, pYok = /KUV -odr + /Kcr - Vo dz, (2.19)

for all ¢ € H(div; K) such that o -n® = p, and for all v € H'(K) such that v|sx = p. We

also denote:

(1, 0)e = D (1, 0)ox, (2.20)

KeTy

whenever v € H'(T3;) and pu € A. We write, abusing notation, (i, v)ox = (i, v|ox)ox, for
all p € HY2(0K) and all v € H(T3).
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Then, the mixed-hybrid formulation to the boundary value problem (2.6) consists
of finding u € H (Ty), p € Hé/Q(é'H) and A\ € A such that:

(AVU, VU)TH _</\7 U>€H

— (1, U) gy, +(1s p)ey
</\v £>5H

(f,0)7, Vv eHYT):;
, V€ A; (2.21)
, VEe Hy*(En).

0
0

This is the Three-field domain decomposition method proposed in [9], and it is equivalent

to (2.6) as shown below.

Theorem 2.2.1. Let u be the weak solution of (2.6), in the sense that u satisfies the
variational formulation (2.8). Then (2.21) holds with p = ulg,, and A = AVu-n® € A.
Conversely, if u € H'(T3), p € Hé/Q(SH) and A € A are solution of (2.21), then u is the

weak solution of the boundary value problem (2.6). —

Proof. Let u be the weak solution of (2.6). Then (2.8) holds in each element K € T4. For
A= AVu - nf we get

A& = D \&ax

KeTy
= K;H {/K V- (AVu)v dz + /KAVU - Vv dx} (2.22)
:K;H{—/Kfvdx+/f(fvd:c} =0,

for all € € Hé/Q(SH), where v € H} () is such that v|g,, = & Moreover, the first equation

in (2.21) becomes:

(AVu, Vo), — (A 0)g, = > [/K AVu - Vo dz — (AVu -0 )k

KeTy
= —V - (AVu)vd 2.23
2 v Aaved (2.23)
= K;—H/Kfvdx = (f7v)TH7

where the second identity holds since A € A is a trace of a function belonging to the space
H(div; K), for all K € Ty. The second equation of (2.21) is immediate for p = ulg,,.

Conversely, suppose u € H(Ty), p € H01/2(5H) and A € A solve (2.21). We gather
from the third equation in (2.21) and Lemma A.0.2 that there exists o € H(div; Q) such
that Msx = o -n%, for all K € Ty. Since H}(Q) C H*(Ty), we get from Lemma A.0.2
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that the first equation becomes:
(AVu, Vo)p, = (f,v), Vv € Hy(Q). (2.24)

it remains to show the continuity of u over £4. Let K € T3. Then, we obtain from the

second equation that

(,u—plox =0, Vp€ Aok, (2.25)

so that u = p over OK. Then, for each face F' € &y shared by two elements K;, K; € Ty
we have, denoting u|, for the restriction (u|sx,)|r, that u|r, = u|r, = p|r. Therefore,
follows directly from Theorem A.0.2, that u € H}(Q). So, we can rewrite (2.24) as:

(AVu, Vo) = (f,v)q, Vv e Hi(Q), (2.26)

which concludes the proof. O

The equivalence given by the previous theorem implies the well posedness of the
hybrid-mixed formulation (2.21). The next step is to decompose both H'(73) and A spaces

in the form "constant" plus "zero average". Let
H'(To) = Bo(To) © H'(To0), (2.27)

where Py(7T3) is the space of piecewise constants in each element and H'(73) is the space

of functions that have zero-average within each element border:
HY(T) = {v € H'(Tu); / vds=0,YVK € E} (2.28)
oK

Then, for v € H'(T), we write v = v° + @, where v* € Py(T3) and & € H'(T). This
space differs from the space Hy (T7) introduced in the MHM method, which works with

zero-average functionals inside each element, that is,

H(T3) = {v € H'(T): /Kv dr =0, VK € TH} . (2.29)
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Taking a further step, we decompose A into a space of “constats” plus "zero-average”
functionals over the border of the elements of 7. For each K; € Ty, let \) € A such that:

(A0, v)e,, = /6 vds, YuveH (Ty). (2.30)
K;
Let N be the number of elements of 73 and define the following spaces:

A = span{/\?, Vi=1,--- 7N};
H™(0K) = {j € H™(0K); {ji Dox = 0} (2:31)
A =Py(To)" == {A € A (f.0")e, =0. Yoo €Po(To)} = [] B '(0K).

KeTy

We can now decompose A = A°@®A as follows. Given i € A, let 1° € A® and ji € A such that

(,0) e = (1 0)ey — (10,0)e,, Vv € HY(Ty).
Note that ji € A since
<[L, UO>5H = </u7 U0>5H - <,LL07UO>£H = 07 (233)

and 1 = p°+ fi. According to the above definitions, we write u = u®+ @, where v’ € Py(T)
and @ € H'(T3), and also A = \° + X, for A’ € A® and \ € A.
We get from (2.21) that A\° € A° and u® € Py(T5) are solution of the following

problems:

(A% 0%, = —(f.0")7,, Vo' €Po(Th);

(2.34)
(W) e, = (W per, V€A

Note that A\? is defined by the first equation of (2.34). The piecewise constant u" is obtained
from the second equation after the computation of p. We also obtain from (2.21) that
(@, A, p) € HY(Tz) x A x HY?(&) solves:

(AV'&, V'D)TH _<;\76>5’H = (f71~))7’7-u Ve ffl(m),
_</~L7 ﬂ)gH +</~L7 p>51-¢ =0 Ve ]\7 (235)
</\7 £>5’H = _<)‘07£>57-u VEe HS/Q(‘S'H)'
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The first equation of (2.35) is local and allows the introduction of local solvers. Let K € Ty.
For i€ A and f e L*(Q), let T: A — H'(T3) and T : L*(Q) — H'(T3) be such that

/K AV(T]) - Vi do = (i, t)ox. Vo € H(K), (2.36)
and

/K AV(Tf) - Vo de = /K fode, Ve B(K). (2.37)

The local problems (2.36) and (2.37) are well-posed. Indeed, it is simple to show that their
bilinear and linear forms are continuous. The coercivity for the bilinear forms holds from
the generalized Poincaré inequality introduced in Theorem A.0.4, which establishes that

there exists a positive constant C'(K) such that:

lvllo.x < C(K) (‘/ades + \U\LK) , (2.38)

for all v € H'(K). According to the Lemma A.0.3 and the Definition A.0.1, the constant
C' depends on the domain geometry. The T" operator is self-adjoint. In fact, since A is a

symmetric tensor, we have:
(N Ti)ox = / AVTA - VT do = / AVTf - VTN dz = (i, TN ox. (2.39)
K K

for all i, A € A, and K € Ty. Moreover, for K € T4, follows from (2.36) that a function
fi € H-Y2(0K) is the trace of AVTfi € H(div; K). Then, we get from the boundeness of
the trace operator in the space H(div; K') [15, Theorem 1.7] and from (2.7) that

21 o < IAVT il = (AVTRIG £ + IV - (AVTE) |15 )
= AVl = [ AVTi- VTjide = (3. Tiox (2.40)

< il -y ok | Thl1

where the last inequality follows from Trace Inequality in H!(K) [15, Theorem 1.4] and
Generalized Poincaré Inequality Theorem A.0.4. Then,

Thhx = Clal_1 ok (2.41)
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for all /i € A.

Therefore, we can write & = TA+ T'f. Applying a static condensation in (2.35),
we have the saddle point problem of finding (X, p) € A x Hol/ ?(&y) such that:

—(f1, TN ey + (s pYere, = (T f)ens Vi€ A;

N 2.42
(A, e = (X&), VEe H)P(Ey). (242)

The coercivity of the bilinear form (-, 7"-) on A space allows us to project a function
xS Hé/ 2(57{) on the space A. Then, problem (2.42) can be simplified by applying static

condensation again. In fact, for all © € A, we have:

(7. T, = Y (i Tiidox, (2.43)

KeTy

and, for a fixed K € Ty,

(i Tiox = [ AV(TF) - V(Tf) do
> amin||VTRIG 5 > CIITAIT & (2.44)
> Cl”

$.0K>

where we have used in the last two inequalities the Genaralized Poincaré inequality (2.38)
and the injectivity of the operator 7' (2.41). We define:

G: [[ HY*0K) — A, (2.45)

KeTy

such that, for a fixed K € T3 and given ¢ € H'/?(0K), if \y|ox = Golox € HY?(0K),
then,

/K AV(TX,) - VTjide = (fi, Ths)ox = (fis S)or, Vi € A, (2.46)

where the first identity follows from (2.36). We have from (2.42) that A\ = G(p — Tf).
From the second equation of (2.42), we have the global problem of finding p € Hé/ 2 (Exn)
such that

(Gp,E)gy = —(N°,E)ey, + (GTf,E)e,y, VE € HY?(Ex). (2.47)
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The following description of the exact solution holds:

u=u’+TGp+ (I —TGTf. (2.48)

Moreover,

A=\ 4+ G(p—TFf). (2.49)

Note that both 7" and G can be solved locally. The matrix to compute A\° and u° from (2.34)
is diagonal and there is a finite number of unknows. Thus, (2.47) is only global infinite
dimensional system of equations, depending on A throught the G operator. Regarding
solvability of (2.35), from u, A and p solving (2.21) the decompositions u = u® + @ and
A=A+ ) yield solutions for (2.35). To check the uniqueness, if f = 0, the first equation
in (2.35) implies A’ = 0. By the injectivity of T and T operators we have it = TA+Tf = 0.
Since G o T is injective, we have from the global problem (2.47) that p = 0. Then (2.42)
implies A = 0. Finally, we obtain «° = 0 in (2.34).

The left hand side of (2.47) induces a symmetric, continuous and Hé/ *(&y)-elliptic
bilinear form as we will see next. Define the bilinear forms gx : H/?(0K) x H'/?(0K) — R
and g : Héﬂ(é’q{) X Hé/Q(SH) — R be such that:

gk (£,0) = (G, @)ox, V& b€ HPIK), VK € Ty; (2.50)
g(&,0) = 3 gk(6,0), V&b e H (En).
KeTy

Note that g (-,-) is symmetric since, for &, ¢ € H'/?(0K), we obtain by definition of G
and symmetry of T that:

Qe Dor = Oe; TAsYar = Moy TAe)or = (Mg, E) o

Remark 2.2.1. Another way, not explored in this work, to solve the three-field formulation
(2.21) consists to replace local Neumann problems by local sadle-point problems. Then,
we can apply an static condensation to get the trace p in terms of the solution v and flux

A, since the associated block matrix is non-singular. —
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2.3 Functional analysis results

We establish here the well posedness of the global problem (2.47), through the
Lax-Milgran Lemma, namely: continuity and coercivity of the bilinear form g(-, -) defined

in (2.50). We first introduce some definitions and technical results.

Definition 2.3.1. Consider the following semi-norms:

1/2
olax =AY Vollox = (/ A2y - A2V d:c) ;
K

= i f ; 2 1
|§|§,6K ¢€1‘}§1(K)|¢|1,A,K/ (2.51)
= inf ;
0l1 6, st |9l1,4,0

where, for ¢ € H/2(0K) and p € H(}/Q(SH), we define:

Ve(K) == {v € H'(K); vlox = €} and V,(Q) == {v € HI(Q); vle, = p}.  (2.52)

Futhermore, from the Spectral Theorem in finite dimensional spaces [22, page 160], the

positive matrix A'/? is the unique square root of the symmetric positive definite matrix

A. -

Lemma 2.3.1. Let K € Ty and £ € HY2(OK). Then

€10k = [0¢l1ax, (2.53)
where ¢¢ is the weak solution of
—V - (AV¢e) =0, in K; (2.54)
pe=¢&, onOK.

Moreover, if £ € Hé/Q(Sh) and (2.54) holds for all K € Ty, then ¢¢ € HL(Q) and

€8 6 = 16cB a0 = X 1613 onc (2.55)

KeTy
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Proof. For a fixed K € Ty, define the energy functional .J : H'(K) — R such that:
J(v) = / AVe-Vodr, Yoe HY(K), (2.56)
K
and consider the minimization problem in V¢(K):

inf J(v) = [¢|1 ok (2.57)

vEVe (K)

The associated variational formulation for (2.57) satisfies, for ¢¢ € V:
0= (J'(¢), ) =2 / AV - Vo dz, (2.58)
K

for all v € H}(K). Since (2.58) is the weak formulation for (2.54), we conclude that ¢

minimizes the functional (2.56), that is,

[€l10x = inf J(v) = J(0¢) = [de|ar i (2.59)
veVe

Furthermore, let & € H&/ *(&y) and assume that (2.54) holds in each element K € 5.
Then, we get from the first part of the proof that ¢¢|ox € H'(K), V K € Tz. In addition,

if 3, := &y \ 09 is the interior faces set, we have:

Yo (rn" b = D /F (ébg KiF — ¢§‘Kj7F) 7-n" ds (2.60)
Keéy Fely
= > /F(le—ﬁ\F)T-ans=0, (2.61)
FeTy

for all 7 € [C3°()]%, where, in (2.60), K;, K; € T are adjacent elements that share face
F € &y. Therefore, we get from the characterazion of the H'(f2) space, Lemma A.0.1, and
the fact that £ = 0 over 9 that ¢¢ € H} (). Finally:

Yo lRoc= > inf Pliax= D lecliax (2.62)
KeTy Q’BK KETHUE‘/&(K) o KeTy o
= |¢E|%,A,Q = inf ) ‘UE.,A.,Q = ‘5‘2%7,5”,

vEVE(Q

wich proves (2.55). O
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Definition 2.3.2.

1. For a fixed element K € Ty, let the space of zero average functionals over the

boundary 0K:

HY*(0K) := {g € HY?(0K); / Eds = 0} :
K
2. We define the following semi-norms on the space A:

<:LL7 Q§>3K
|M|—§,6K = sup W
deH? (OK) 10K KeTy

for all u € A.

Remark 2.3.1. About previous definitions, for K € T2, we mention:

ol = D ok

(2.63)

(2.64)

1. The semi-norm | - | 1 gxc on the space H'?(0K) is a norm. To verify that, it is enough

to show that the semi-norm | - |; 4 x on the space H'(K), evaluated on each element

K € T, is a norm. Indeed, for v € FII(K), we have:

[Ohaxk=0 < V0o=0 < 0= constant, (2.65)
so that, the zero mean property implies © = 0.
2. Follows from (2.46) that, for all £ € HY?(9K),
~ 1
(TGE)|ox = &+ ce € HY*(OK), where ¢¢ := “PE| aKgds. (2.66)
We stress that such identity holds only over the boundary of each element.
. The semi-norm | - |_ 1 o on the zero mean functions space H~2(JK) becomes a
norm. However, the composition | - |_%76K oG : H2(dK) — R is still a semi-norm.

In the following lemma we collect some useful technical results.
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Lemma 2.3.2. For a fivred K € Ty the following result holds:

(i) |Tﬂ|%,8K =|Thli,ax = |ﬂ|—§,aKa Ve
(i6) 1GE|_yoxc = |€ly orcs V€ € HV2(IK);

(iii) {1, Eox < €]y x|y oe VA € A, VE € HY2(OK),

Also, for all ¢ € HY?(0K),

sp ok e, (2.67)

pef~ 3 (9K) A1l 1.0x

Proof. For a fixed K € T3 and given ji € A, follows from (2.36) that Tji € H'(K) is

harmonic and the first identity in (¢) holds from Lemma 2.3.1.

For the second identity, let H*(K) be the space of harmonic functions in H'(K).
Futhermore, from Lemma 2.3.1, functionals of the space H*(K) minimizes the semi-norm
| - |%78K. Then, we get from (2.64) that:

_ _ (i, V)orx (i, V) orc
|M|—l,aK = sup —— = Ssup —7————.
2 vein(x) [Ul1on  vers(x) U1 ok

(2.68)
Since, for ¢ € H*, we get fiy == AV -0 € H~Y/?(0K) is such that T, = ¢, then
T : HY2(OK) — H* is surjective. It follows from the previous arguments and the first
identity in (i) that:

il = sup S TNore S AVT VTA de
e |T/\|%73K A€l |TA|1,4x

= |Tfi|1ak- (2.69)

Next, (i7) follows from (i) with i = G¢ and (2.66). In fact, since £ = TGE — ¢¢, we get
from (i) that:

€l oxc = ITGE — cely o = ITCE — cclare = [TGE v = GEl_y i (2:70)

Finally, to show (i), first denote ¢ the A-harmonic extension of £, that is, the solution
of (2.54). Follows from (i) and the Cauchy-Schwarz inequality that:

(i, 8)ox _ Jx AVT- Vi du
Al -1 ok Thl.ax

< |eliak = ‘a%.ﬁ]{a (2.71)
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where we used Lemma (2.3.1) at last step. Finally, for the semi-norm (2.67), we have:

i1, 6)a i AVTf - V(TGE) dz
p B0y IV SOEO D 116 e = e (272
pei—3 oK) M-30K  sei3 oK) HlLAK
where (i7) was used at the last identity. O

Proposition 2.3.1. Let the bilinear forms gx and g as defined in (2.50). The following

coercivity results hold:

9x(&.8) = €} o V€ € HY(OK); (2.73)
96,6 = ee,. VE€ H*(En). (2.74)

Moreover,
9(&0) < elsg,lplig, V& p € H*(En). (2.75)

Proof. For € € H'/? (0OK), let ;\5 = GE€. The local coercivity holds since, from the definition
of the T operator (2.36) and the identity (2.66),

|£|2%,3K = inf |¢|%,A,K = |T;\£|%,A,K = /KAVTS‘E ) VTS‘E dr = <5‘§ag>6K = gK(éy 87

PEVE(K)
(2.76)
and (2.73) follows. To show (2.74) assume that £ € HS/Q(&L). Then:
96,6 = > 9x(§.8) = > € ok = Elie, (2.77)
KeTh KeTh
from Lemma 2.3.1. Then (2.74) follows. To show (2.75), we obtain from (2.66):
9060 = 3 al€n) = X Geplox = ¥ [ AVIA-VIA dr,  (278)

KeTy KeTy KeTy

for all &,p € H& /2 (Er). Then, it follows from the Cauchy-Schwarz inequality and Lemma
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2.3.1 that:

9(&0) < X ITAeliax|TAhax = D Elioxlolion < IElie,lolie,

KeTy KeTy

where we used in the last inequality the Holder’s inequality, Proposition A.0.1.

We get from the last Proposition 2.3.1 the following theorem.

Theorem 2.3.1. The elliptical global problem (2.47) is well-posed.

(2.79)

g
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3 The MH?M method

3.1 Galerkin scheme

We now introduce the MH?M method, which corresponds to the discrete version
of the elliptical problem (2.47). Let Hr, H, and h be parameters. Assume that 'y, C
Hé/ 2(87{) and Ay, C A are finite dimensional spaces. Let Ty := Ty, N HY/?(Ey) be
the space of functions in 'y, with zero average in each element boundary. For a finite

dimensional space Uy over Ty (or &) we use notation Uy x = Uy|k.

The finite dimensional spaces defined above cannot be chosen arbitrarily, since it is
necessary to ensure the injectivity of the operators 7" and G defined in (2.36) and (2.46).
In other words, the following compatibility conditions must be satisfied. Let the finite
dimensional space Vj, € H'(73) be such that,

[L’HA c [\’HA and (ﬂ’HAaf)h>6K = 0, V’f}h c Vh,K; VKEec 7;.[ — [L’HA = 0. (31)
We define T}, : A — V}, be such that, for a given ji € A,
/K AV(Tif) - Vo de = (i, 5o, ¥ Tn € Vi (3.2)

Moreover, we have the discrete operator T), : L*(Q) — Vi, be such that, for a given

fe L),
/K AVTWf - Vo de = /k Fonde, Y, € Vi (3.3)
for all K € Ty. Now, a second conditions is that there exists a space /~\H0 C A such that,

Enp €Typ  and (g, Enpdox = 0, Viin, € Ay, VK €Ty = & = 0.
(3.4)

Remark 3.1.1. An important characteristic of the three-field formulation is that it allows

different discretizations for Ay, on each opposite sides of the edges. —
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We assume henceforward that Ay . is a finite dimensional space such that /~\H0 -
AHA C A. Let the operator G, : Hé/Q(é'H) — AHA, the discrete equivalent to GG defined as
follows: for ¢ € H(}/Q(SH), define \, = G}, such that, for K € Ty,

/[(AV(T}L;\QQ : VThﬁ/HA dr = <ﬂ’HA7 Th5‘¢>aK = <,L~L'HA7 ¢)>3K7 vﬂ'HA € [\’HA' (35)

Figure 2 illustrates the relationships between the finite dimensional subspaces
defined above, as well as the action of operators G, and T}, as shown in equation (2.66).
Follows from the second identity of the Lemma 2.3.2 (i) that the range R(T},) consists
of the discrete harmonic extensions of the functions Ay L € Ay , through the 7}, operator.
The dashed lines connect spaces with the same dimension, accordingly the compatibility
conditions (3.1) and (3.4).

Figure 2 — Illustrative relationship between finite dimensional subspaces.

Here, 7o : H'(K) — H'Y?(0K) is the trace operator defined as vy(v) := v|sx. The Galerkin
scheme related to the continous problem (2.47) is to find py. € 'y, such that:

(Crpre, Gur)en = =N, Gu)en + (CGhThf e, Y &y € Ty (3.6)

Then, Ay, and wu are given by:

My = A+ Grlprr — Thf), (3.7)
up = u’ + ThGhPHr + (I — ThGh)Thf. (38)
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Remark 3.1.2. It is important to note that mass conservation to the approximated
flux Ay, € Ay, holds, since, for K € Ty, applying Green Identity and taking Ay, [sx =

AVuy, - nf, we have:

— /K fdx = /K V- (AVuy) dx = (AVuy, -0 1)k (3.9)

= My, Dor = A+ My, Dor = (A%, Dage.

Then, we obtain the first equation of (2.34) with vy = 1. —

We introduce a discretization of the bilinear forms g¢(-, -) and gk (-, ) as in (2.50).

Definition 3.1.1. Let the bilinear forms gy, ;¢ : HY/2(0K) x HY/*(0K) — R, for K € Ty,
and gy, : H&ﬂ(é’%) X Hé/Q(SH) — R such that:

gh,K(£7 ¢) = <Gh£7 ¢>6K7 and gh(£7 ¢) = Z gh.,K(ga d))/ (310)

KeTy
for all £, ¢ € Hy*(&y). —

The next result shows that a discrete inf-sup condition follows from the compatibility
condition (3.4).

Proposition 3.1.1. For a fized element K € Ty let the finite dimensional space /~\H0 cA

introduced in (3.4). Then, there exists a positive constant v independent of H sucht that:

(20, Erpoxc (3.11)

)

sup 7@1 Snrorc <7k sup
e |/L|—§,6K firey €0 ‘/“L’HA‘—%,ﬁK

for all &y € Ty —

Proof. For a fixed K € Ty, let KCcR"a simplicial element and Tk : R® — R™ an affine
mapping such that Tk := BgZ + bi for all # € R", where Bix € R™"™ is a non singular
matrix and bg € R™. Thus K = TK(K). Moreover we denote vj, := vj, o T, where h is
the diameter of K and vy ¢ K — R is a functional. Here we use the same notation Tk
for the mappping Tk |sx. We gather from the equivalence of norms on finite dimensional

spaces, the compatibility condition (3.4) and Corollary 5.1.1 [7, page 272] that there exists
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a positive constant vz such that:

(g ok

[ lry, = sup T > 75 el 1ok (3.12)
Py, €05, Haltn
Thus, for K € Ty,
(6|1 .0c < ClIBE llldet Bi|2 65,11 0 (Lemma A.0.4)
< C||Bglldet Bic#vi &, Iy, (3.12)
< Cgl|Bglldet Bic|?|| Bi|l|det Bx|™2|&urlry,  (Lemma A.0.4)
HH
< C'YKP_—AKEHp'FHF (Lemma A.0.5)
K

<ok sup (Fay s Emr) o

fing, €My, |ﬁHA|—§,aK .

Where we have used the mesh regularity assumption on the last inequality. O

3.2  Main results

We start this section proving the coercicity and boundedness of the discrete bilinear
forms (3.10).

Proposition 3.2.1. Let gk and g as introduced in (3.10) and assume that (3.4) holds.

Then we get the following coercivity results:

9n i (s Enr) > Vi LEme Lok ¥ € € Dot i (3.13)
gh(f’Hr? gﬂr) 2 7_2|£Hr|2%7gﬂ7 vg’Hr € F'Hra (314)

where the constant vk is the same as the inequality (3.11) and v = max{yx; K € Ty}.
Moreover, assume (3.1) holds. If T}, is injective with constant Cr,. on K € Ty, that is,

|Thl&"HA|1,A,K 2 CTK'[LHAL%.,BK7 vl&“HA € ]\HA’ (315)
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then

gh,K(éﬂrvar) < C;;|£Hr|%,6K|pHr|%.,aK7 v&?—lr: PHr € FHDK; (316)

gh(é?‘lrap'ﬁr) < C;;|£HF|%,€H|pHF|%7SH7 v&prﬂHr € FHF7 (317)

where Cr,, = inf{Cr,, K € Ty}. —

Proof. For EHF € IN‘HD K, denote /~\£~ = Ghé’)—[r. The local coercivity (3.13) holds since, from

discrete inf-sup condition (3.11), we have:

&1 ore = sup w <9k sup M. (3.18)
2 el |/L|—%,6K firy €Az, ‘MHA‘_%ﬁK

From (3.5), the Cauchy-Schwarz inequality and Lemma 2.3.2(i), we get:

3 fir, s Th\
|£Hr|§,aK§'YK sup M

[ ~ §7K|Th5‘€‘%.,6K = x| Th 1Ak (3.19)
fire, €Agy |MHA|—§,6K

By the characterization of the operator T}, (3.2) and again by (2.66), we obtain

N - - - 1/2
el onc < v Oes Tide)gie = i< |9 (Gs Grar)| (3.20)

and (3.13) holds.

Next, to verify (3.14), assume that &y, € Ty,. Then, &y = &y + &), where
EHF|3K € er and f%r is constant on 0K, V K € T. Then, we gather from definition
(3.10), the local coerciveness (3.13) and the identity (2.55), that:

90 (e Gr) = D Ik (Ep Srr) = D 7}2\5%@731( (3.21)
KeTy KeTy
> 7_2 Z |£’Hr|2%,6K = 7_2 Z ‘gﬂr@ﬁ}( = 7_2|€’Hr|2%757{- (322)
KeTy KeTy

To prove continuity, let us show the injectivity of 7},. Just as we show inequality
(3.11) from (3.4), it is possible to verify using similar arguments that follows from the

compatibility condition (3.1) that there exists a constant Cr, > 0 dependents on the
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shape-regularity of K € T3 such that:
~ [L 777h 19)
|y |1 0k < C1yc SUP iy Tn)osc 7 Jos (3.23)
'Dhevh,K ‘Uh‘%aK
Then, we get from (3.23) and the Cauchy-Schwarz inequality that:
T 34y > Un)o [ AV T} iy, - Vi, dx 3
Crlfins]-yor < sup Wiy, Tnloc _ sup A = |Thins |14k
U €Vh, K |'Uh|§,6K U €Vh, K ‘Uh‘l-,A-,K
(3.24)
Then (3.15) holds. We can now deduce the following inequality:
Crelel21 ore < ITudelf axe = (A, Tade)ox- (3.25)
Using (3.25), follows from (3.5) and Lemma 2.3.2 (7ii) that,
Or el 1 oxc < O Eurdor = (e, Eur)or < Il 1 oxclénrl L oxc- (3.26)
Therefore,
Nelsore < O 6l o (3.27)

We can now estimate (3.16) and (3.17). From (3.27) we get:

9n i (s Prr) = s predor < el s oclome | o < O e |2 orclore L ore- (3:28)

Finally, from the Holder’s Inequality (Proposition A.0.1), we have

an(&:p) < Y Crglénrlionlpucl ton < CnyléuelLe, lprelL e, - (3.29)

KeTy

which completes the proof.
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The next Lemma estimates G — G), based on the First Strang Lemma [13]. We see
that convergence depends on the approximability property of the /~\H + space and on the

consistency of the method at the second level.

Lemma 3.2.1. Let ¢ € HS/Q(SH) and assume (3.15) holds. Then:

|Go — Gro|a < E(9), (3.30)
where,
E(¢):= inf {(Cp'+1)1Go — firy|n+ C7'S(iin,)} -
Pty €M,
and
S(ﬁ/HA) — sup <ﬁ/HA ) Tﬁ'HA>5H~_ </1'HA7 ThﬁHA>g’H
ﬁ’HAEA'HA ‘nHA‘A

Proof. Consider the bilinear forms ar : A x A — R and ar, : Ay A X Ay , — R defined as:

CLT(:\, [L) = </\,T[L>5H and aTh(S\'HA7[L'HA) = <5"HA7Th/&'HA>5H7 (331)

for all \, i€ A and for all :\HA, fiyg, € AHA. We get from the injectivity of T}, operator
(3.15) and its definition (3.2) the following coercivity result:

CTlﬂHAﬁx < |Thﬂ’HA|iA,Q = (AVTh[LHM VTh[LHA)TH (332)

= </&'HA7 Th/lHA>5H = ar, ([L’HA7 ﬁ'HA>7

for all iy, € AHA. Moreover, by Lemma 2.3.2 (i) and (#ii), and Holder’s inequality
(Proposition A.0.1) we obtain:

ar(fi, ) = (ft, Tii)e,, = > (1 Ti)ox

KeTy

< Z |ﬂ|—§,aK|T77|§.,aK: Z ‘ﬂ‘—%.ﬁK‘m-%.ﬁK (3-33)

KeTy KeTy

< [l al7]a
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for all 71,77 € A. In what follows we denote A = G¢ and S\HA = Gpo, for ¢ € HY2(Ey).
Note that, by simmetry of the T and T}, operators, and by definitions of G and G},, we have:

aT(;\vﬂ'HA) = <X7 TﬁfHA>5H = <,[L'HA7T5‘>£’H = <,L~LHA7¢)>€'H; (334)
and,
aTh(;\'HAvﬂ'HA) = <X'HA7Thﬁ/HA>EH = <,[L'HA7Th5‘HA>5H = </1'HA7 qj))g';-[' (335)
Hence,
aT(;\v /a'HA) = a’Th(S"Hju /jL'HA) = <[L’HA7 ¢)>5H' (336)

Finally, the estimate (3.30) holds, since, by the coercivity of ar, (3.32) and using the

simmetry of the operators T" and T},, we get:

— firtys My — finy) by (3.32)
;\HA fiaey) — az, (e, My — fiaey)
(ﬂ A7/\HA firy) = ar(fiays My — finey)
= ar(X — [y, My — Finy) + ar(firy s My — finy)
— an, (e, My — finy) by (3.36)

CTl:\HA MHAlA < aTh

3 ~ Y7 ar (M, s ) — aT, (Ma s A
< oy — gl (13— g a + sup TP ) = 0, (s s )}
ﬁHAGAHA |77HA|A

Therefore,

aT(ﬁ'HA ) ﬁ"HA) — ar, (ﬁ'HAa ﬂ'HA>

CTl;\HA - I&’HAlA < |/~\ - ﬂ’HA'A + sup ~ (337)
ﬁHAEA’HA ‘nHA‘A
Using the triangular inequality,
Me = Aa < [N = fine|a + [N = finea, (3.38)

we get
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Mo, = Al < inf {(CF' + DI = fiagy |a + C7' S (g, } (3.39)
Aty €A,
and
_ ar (M s Pry) — am, Ty s )
S(,U/HA) p— Sup ( A A — h A A
T g €Ay |77’HA‘A
which completes the proof. O
In the next theorem we derive estimates for the approximation errors p—py., A=Ay,
and u — uy,.

Theorem 3.2.1. Let y and 3. solve (2.47) and (3.6); u and uy, be as presented in (2.43)
and (3.8); and X\ and Ay, be as in (2.49) and (3.7). Then, problem (3.6) is well-posed and:

lp — PHJ%,SH < mirnefm {2|P — ¢Hr|§,5ﬂ + E(Cbﬂr)} + (T - Th)f@.,g,{ + E(Tyf). (3.40)
Moreover,

A=l < p = prcly e, + Elone) + (T — Th)f\%.,g,{ + E(T3,f); (3.41)

= unl1 4z < A= Naala + 1T = Tall oy + (T = T0) flr g, (3.42)

Finally, the following weak continuity

<M'HA7 Up — pHI‘>g’H = 07 V/UJ'HA € A'H,\: (343)

holds. —

Proof. Tt follows from Proposition 3.2.1 that the bilinear form g, is bounded and coercive
on the space I'yy.. Then, the Lax-Milgran Lemma ensures the well-posedness of (3.6). Let

us derive (3.40). From the triangular inequality,

|p - pHr'%,EH < |p - QS’Hr'%.,EH + |¢'Hr - p’HF‘%.,&.L' (344)
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Since 'y, C Hé/ *(&y), we gather from the continous global problem (2.47) and its discrete
version (3.6) that

(Growne — Gp. &g )ey, = (GhTh — GT) f. & )ers V¥ éap € Doy (3.45)

By the coercivity of the bilinear form g, (3.14) and taking {3 = ¢np. — pauy in (3.45), we

have:

Y2 b — Pﬂp@ygﬂ < 9u(Prr — Prr» Oy — PHr)

(Grdmr — Grpur + (Grpry — Gp), dur — prr)ey + (GT — GiT0) [, by — pre) s
= (Gnmr — Gp. b3y — prr)ey, + (GT — G T f. by — prr)es,

(Gh = G)brup, Gry — prp)ey T (G (Prr — p)s Prr — Prr) ey

(GT = GWTh)f, drr — P ),
(E(¢Hr) 0 — Plie, + (GT — GhTh)f|A) P30 — Prcl1 g, (3.46)

were we have used the estimate (3.30) and Lemma 2.3.2-77 in the last inequality. It follows

from the triangular inequality, Lemma 2.3.2-i and estimate (3.30) that

(GT — GpTh) fla < (GT — GTy) fla + |(GTh — GLTh) f|a
< |(T — Th)f|%7gﬂ + E(Thf) (3.47)

Therefore, (3.40) follows from (3.44), (3.46) and (3.47).

Let us deduce (3.41). We gather from the continuous global problem (2.47) and its

discrete version (3.6) that:
A=y = A=, = (Gp — Grpyy) + (GhThf — GTf). (3.48)
To estimate the first term on the right hand side of (3.48) we proceed as follows:

(Gp - th'Hrv Qg>€’,\{ = <GP - GPHI‘7 g5>57-¢ + <GPHF - th’Hrv QJN))gH
< (10— prrly gy + Gore — Grprela) 0lye,, (3:49)
< (Ip = prrlse, + E(ore)) 1011 6,



Chapter 8. The MH? M method 44

Therefore,
Gp = Grpug,
|Gp = Ghpaela = sup < s O 0= prrlie, + Elpur). (3.50)
dei1y/?En) 10116,
(3.51)
Thus, the estimate (3.41) holds from the identity (3.48), (3.47) and (3.50).
In the sequel, since:
U — Uy = T:\ — ThS\’HA + Tf — Thf (352)
=T\~ (Thy, +Thy,) — Tidw, +Tf —Tuf (3.53)
=T\ = Ay) + (T = Ty, + (T = Ti) f, (3.54)
we obtain by Lemma 2.3.2 (7) that:
8= Tnlaz < 1A= Dol + 17 = Tall Bagals + 1T = Tl flye (3:55)

Since u’ and uj are piecewise constants, then |[u® — u)|; 47, = 0, so that (3.42) holds
from (3.48). We get from the second equation in (2.34) that (3.43) holds for u° € A°. For
fir, € Ay, we have

([L'HAvuh>5'H = (ﬂ'HAv ah>€’}( = </7J'HA7Thth'Hr + (I - ThGh)Thf>€H = <[LHA7 PHF>£H7
(3.56)

since, by (3.5), ThGrénurle,, = Enp, ¥ Eny € Ty weakly, which concludes the proof. [

Therefore, according to Theorem 3.2.1, the error estimates u — up, A — Ay, and
p — puy depend on the approximation of the both finite dimensional spaces, traces Iy, and
fluxes Ay, . Thus, it is necessary to enrich them, respecting the compatibility condition
(3.1) and (3.4), to ensure convergence of the approximation error to zero. In addition, the
consistency of the method at the second level affects the error estimates. In fact, local
problems need to be well resolved to ensure an approximation in the space of flows. Next,
we assume that local problems admit exact solutions and focus our attention on first-level

problems. Next we will consider
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3.3 V), = H'(T3) assumption

In this section we assume that local problems have exact solutions, so that
Vi, = H'Y(T#) and, consequently, T;, = T and T, = T. We review the main results
under this hypothesis and then present an example of the MHHM method with error
estimates. We start by noting that the compatibility condition (3.1) becomes, for K € Ty:

firg, € Ay, and  (fig,, D)o =0, Vi € H(K) = ji, = 0. (3.57)

Since the trace of functions in H'(K) is H/?(0K), condition (3.57) is satisfied for all
choice of Ay +- On the other hand, the compatibility condition (3.4) between spaces fHF

and AHO remains the same, that is, for each K € Ty:

Sur € Dype and (g, Sppdor = 0, V fin, € Ao = & = 0. (3.58)

Follows from (3.58) that the discrete inf-sup is valid, as presented in Proposition 3.1.1.
The assumption T}, = T simplifies the redefinition of the discrete operator G, as follows:
for ¢ € Hé/Q(SH), let Ay, = G} such that, for K € Tz,

[ AV(TA) - Vi, do = Giray Ths)oic = iy Dorc: ¥ iy € My (3.59)

In this case, the harmonic extension T'G¢ belongs to the infinite dimensional space
H Y(T3,), instead of Vi, as in the 7T}, operator case. Next, we revisit the main approximation
results in terms of spaces Ay, and 'y, provided the compatibility condition (3.58) is
satisfied.

Lemma 3.3.1. Let ¢ € HY?(Ey). Then,

|Gp — Grola < E(9), (3.60)

where,

E(¢) = (Cr' +1) inf [|Go— fir|a. (3.61)

Pty €M,
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Theorem 3.3.1. With the assumptions of the Theorem 3.2.1, the following error estimates
hold:

= puelye, <, i {20 = Oncly e, + B(ow)}+ E(TF); (3.62)
A= Mawuls < 10— prcly ey, + Elore) + E(TS). (3.63)
[u = unlram <A = A la (3.64)

Therefore, the estimate G — G, depends only on the approximation property of
the /~\H L-space as (3.61) shows. In all cases of the Theorem 3.3.1 the estimates depends on

approximation properties in both Ay , and 'y spaces.

3.4 A simple case

In this section we present an example of a pair of finite element spaces satisfying
the compatibility conditions (3.1) and (3.4). Then, we estimate the approximation rates

for this case.

3.4.1 Compatibility issues

Assuming Vj, = H(Ty), let the following finite element spaces:

Th, = {&u € Hy*(&n); Guolr € PL(F), VF € &y} (3.65)
Ay =1 {MHA € LY(OK); py, |r € Po(F), VF € aK}, (3.66)
KeTy

where P(F) is the space of linear functions over the face F' and Py(F) is the space of

constant functions over F'. We illustrate in Figure 3 typical functions of these spaces.

Remark 3.4.1. For the spaces (3.65) and (3.66) we have H = Hx = Hr. —

The next result shows that the zero-mean subspaces arising from (3.65) and
(3.66) satisty the compatibility condition (3.58). Before, it is interesting to note that,
in this case, the smallest space of finite-dimensional functions that keep the stability
conditions satisfied is formed by linear functions. So, for a fixed K € Ty, we have the
triple Py (K) — Py(0K) — Py (0K) (function, flow, trace).
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Figure 3 — Representative piecewise constant function of the space A%A_ x and a continuous
piecewise linear function of '}, .

Lemma 3.4.1. The zero-mean finite element spaces f%{r C F,lir and ]\%A C A%A, where
[, and A, are introduced in (3.65) and (3.66) satisfy the compatibility condtion (3.1)
and (3.4). —

Proof. Let K € Ty with faces Fy, Fy, F5. Consider {fig, 1. fin,2} C A%A((?K) a basis
function such that fiy, ;|p; = 6;;, Vi € {1,2} and V j € {1,2,3}. Now, given a function
Enp € f’%{r (0K), we have by the hypothesis that:

(i is Enedore =0, ¥ € {1,2}, (3.67)

so that EHF = 0 at the midpoint of each face F; and Fs. Since

(191, EnrYor = 0, (3.68)

we get EHF = 0 at the midpoint of Fj. Therefore, SHF = 0, since it vanishes at three

non-collinear points. ]

The discrete inf-sup condition follows from Proposition 3.1.1.

3.4.2 Error estimates

Next, we develop the approximation errors associated with the first level problems.
For this, let K be a reference element and, for a fixed K € T3, let Tx : R — RY, d € {2, 3}
be an affine mapping such that, for all # € RY, Tx4 = By + bg, where Br € R¥*? is an
invertible matrix and bx € R? is a vector. Then Ty (K) = K. For a space function V(K)

A

and v € V(K), we define 0 := vo Tk € V(K). Let us start by getting an estimate for
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I — pag, |a, where € AN L*(&y). We have from Definition 2 that:

2

‘<)\ - )"H 7&)3K|
|/\ - /\HAl?X = Z |/\ - /\’HA|2—%76K - Z Sup -4 (369)
KeTy KeTy quH%(@K) ‘qb‘%aK
Applying the Cauchy-Schwarz inequality, we obtain:
1/2
</\ - /\HAv QE>3K < |/\ - /\HA|0,6K|Q~5|O,6K = |: Z ‘)\ - )‘HA‘S.,F] |§Z)|073K. (370)
FEdK
Now, from [15, Lemma 3.18], the folling estimate holds:
1/2
AN =My lor < CHE a1k, (3.71)

where 7, € [H}(K)]? is such that 7, - n® = X over K. On the other hand, we get from
Lemma A.0.4 and from the equivalence norm result for fractional Sobolev spaces, in [19,

Proposition 2.1]:
|@looxc = [detBic|*|d], 5 < Cldet Bic|?0]1 o (3.72)
Moreover, follows from Lemma 2.9 [19, page 513] that:
|0lo.ox < Cldet Bi|"?||Bic[|'|det B | ™[] 1 e < ClHi|"?|0]1 o (3.73)
Thus, we obtain:
[Gloox < CHI|D]s oxc (3.74)

We gather from (3.69), (3.70), (3.71) and (3.74) that there exists a positive constat C,
independ of H, such that:

A=Ay, a < CH|7al17, - (3.75)
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Let 7y = AVu. Then |AVu|; 7, < @max|t|2,7,. so that:

A — Ay, [a < CHulo7,- (3.76)

Define the following interpolant operators 1Tt : Hy/*(Ey) — Py(Ex) and I1; : HY(Tz) —
P, (73), where the spaces Py (Ey) and Py (7T) are defined as:

Pi(Ex) = {€ € HY?(&n):€|r € PL(F), V F € &) (3.77)
P(Tw) = {v € H' (Tn); vlx € Pi(K); YV K € Ty} (3.78)

Then, we gather from the definition 2.3.1 and the interpolation error estimate introduced
in (4.5) [15, page 94] that:

o=l gy, = dnf o —=Thwliag, < Ju—Thuliaz, < CHJula7,. (3.79)
veVe

where the space V, is as defined in (2.52).

Remark 3.4.2. We gather from the definition of E(-) in (3.60) that

inf  E(dy,) = 0; (3.80)

S €M

Now we use the previous results to estimate the error-norms presented in Theorem
3.3.1. Follows from (3.76), (3.79) and Remark 3.4.2(a) that

o=l <, inf {200 = Oncly g, + B0} + E(TS)
<2[p—1iplig, + E(lip) + BE(T]) (3.81)
= CH|ula7, + CH|T f o,
< CH|ulo, 7 + CH fllog
< CH| fllo-
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where we use the fact that II;y € P;(F) C I'y, and the regularity [16, Theorem 1.10].
From (3.63) and (3.64), we obtain:

A= Naiala < lp = purlie, + Elpue) + E(TS)
< CH|ulo,7, + CH| fllo (3.82)
< CH||flloo-

These error estimates are summarized in the Theorem below.

Theorem 3.4.1. Under assumptions of Theorem 3.2.1, let Vi, = H(T3), T, = T and
the finite element spaces T3, and AY, introduced in (3.65) and (3.66). Then, there exists
constants C' > 0 such that

|0 = Pacls e, < CHIfllog:
A= Nala < CH| flloes (3.83)

|u - Uhll,.A,TH < CHHfHO-,Q-

3.5 On the relation between the present method and the MsFEM

Note that equation (2.47) that defines our method has some sort of relation with
the definition of the MsFEM. What we show bellow is that a Galerkin discretization of
(2.47) yields some nodal values under certain conditions. We first consider a continuous
version of MSFEM, seeking p € HS/ *(&y) such that:

/Q AVE(p) - VE(E) da = /Q FEE) de, V& HI(Ey) (3.84)

where we denote the A-harmonic extension & : Hy/*(&y) — H*(2) N HL(Q) (the space of
piecewise harmonic fuctions that are also in Hj(2)). Formulation (3.84) results from the
usual weak Hj(Q) formulation. A discretization of (3.84) yields the MsFEM.

Let us show that, from (2.66), the identity

1
£(6) = TGE — e =TGE+ /BK ¢ ds, (3.85)
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for all £ € HS/Q(SH), holds. For K € Ty, let £ € HY?(OK) and denote ve := E(&). Then,
U¢ = ve + ¢¢ belongs to the harmonic function space H*(K). Since map

T : A — H*(K) is surjective, there exists \¢ € H~Y/?(0K) such that T)A¢ = ¥. From
(2.66), ve satisfies:

/K AVT]i - Vise de = (i, 5)ox = (i )oxc, (3.86)

for all ji € A, so that Ue = TGE.

Then we gather from a discretization of (3.85) and from (3.86) that

(E(p), E(€)),, = / AVTGp - VTGE dx (3.87)

KeTy

= <Gp~ TG£>5H = <Gp7£>57~u

for all p, € € Hé/ 2(cS'H), that is, the left-hand side of the global problem (2.47). From
(3.87), we get by joining the right-hand sides of (3.84) and (2.47) the following identity:

~(\. &), + (GTF e, = [ FE(E (3.88)

for all £ € Hé/ *(&y). We can also deduce (3.88) in the following way: First, note that

(GTF.€)e, = (GETFe, = 3 / AVTf - VTGEdr = 3 / FTGE de.  (3.89)

KeTy KeTy

Thus,

— (X, )¢, + (GT f.E)e,, = (/ ¢ dx + /K fTGE dx)
- ( N dr + / FTGE dx)
[ K (fee + fTGE) d:c}

_ /K TGg—cgd:L’—/fg dz.
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Assuming that there are exact solutions for second level problems, follows from (3.85)
that solutions p from (2.47) and (3.84) coincide pointwise if A is an infinite dimensional

space. But, for G = Gh, solutions match if R(£) C R(T'G}). Moreover, for A = Z, then

solutions match, even when T = T},.
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4 Numerical Results

In this section we investigate the numerical performance of the MH2M method.
We briefly present the computational algorithm for the MH?M, and consider two model

problem: one that admits an analytical solution and another with heterogeneous coefficients.

4.1 Computational algorithm

Let No, Ny € Nand Br := {&,--- ,&n, } beabasis for 'y and By := {ji1,--- . fin, }
be a basis for /~\H +- The computational algorithm consists of the following steps:
1. compute \° € PY(7) from the first equation of (2.34);
2. compute Tyf1; € Ay from (3.2), for each fi; € By.
3. for each &; € Br, compute Gp&; € ]\HA from (3.5);
4. compute G, Tjf € Ay, using (3.5);
5. solve the discrete global problem (3.6) to obtain the coefficients of
Py = ZJX:VII @& € Dy
6. compute :\HA = Gu(ppp — Tnf);
7. compute up = Th;\HA +Thf;
8. compute uY) from the second equation of (2.34).

9. compute up = uf) + @y, = u) + TGupy, + (I — ThGh) Tnf.

4.2 Numerical validation

In this section we evaluate the performance of the proposed MH?M method through
two types of problems and, at the same time, compare it with the FEM, MsFEM and
MHM methods. The first case consist to solve the Poisson model (A =1 in (2.6)) with an
smooth analytical solution. The goal is to confirm the theoretical results. In the second
case, the tensor A represents a heterogeneous field varying in multiple scales, thus, problem
(2.6) verifies the robustness of the MH?M method. In what follows, the domain is a unit
square €2 :=|0, 1[x]0, 1[, the mesh 73 and sub-mesh 7} are composed by uniform triangles,
on Figure 4. The parameters h and H indicate the refinement level of the fine scale and the

coarse scale. More precisely, they are the number of partition on each face F' € 92 and the
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number of faces F' € 92 of the boundary 0f2. The second level problems, defined in each
element K € Ty, are solved by the classical FEM [13]. Here, for each K € Ty, the Hilbert

space H'(K) is approximated by the space of continuous piecewise linear functions.

0.8

0.6

0.4

0.2

X

Figure 4 — Representative uniform triangular mesh and sub-mesh in the unit square with

H=1/4and h=H/8.

421 Problem with known solution

Consider the boundary value problem (2.6) where the tensor A is the identity
matrix Z, and input data f € L*(Q) is given by:

flr,y) = =2[z(r - 1) +y(y—1)], VY(z,y) €. (4.1)

In this case,
u(z,y) =z(x—1lyly—1), Y(zr,y) € Q, (4.2)

and its graph is illustrated in the Figure 5.

The numerical results presented below are intended to validate the theoretical concepts.
For this, we compare the outputs of the FEM, MsFEM, MHM and MH2M methods with

the analytic solution. Then, we present the error convergence graph in the energy norm.
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fix,y)

Figure 5 — Analytical solution u of the Poisson problem (2.6).

4.2.1.1 Results from FEM and MsFEM
The FEM was implemented using the following finite element space:
Vi i= {on € H'(Q); vl € Pi(K), VK € Ty} (4.3)

The solution obtained through this method closely approximate the exact solution
if we take 1 = 1/30, see the cut at x = 0.5 illustrated in Figure 6.

FEM (H=1/30) +
4 exact solution
+¥ i

y

Figure 6 — FEM solution with # = 1/30.

Solving the problem (2.6) with MsFEM, the shape of the mulstiscale base is linear as
we can see in Figure 7 on the left. We plot in Figure 7, on the right, the profile of the

numerical solution and Figure 8 shows an approximated solution.

Before presenting the numerical results of the MHM and MH?M methods, we need
the following definition.

N

Definition 4.2.1. For each face F' € &y, we define a regular partition FV = (J f]-F ,
=1

where the integer N indicates the number of face divisions. Let the set FV defined as:

FN = U FY.

FeH

Therefore, if N =1 it means that F! = £y. For N > 1 we have #(FY) = N x #(Ey). —
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MSFEM(H=1/10, h=1/320) +

1 - exact solution
0.06+ & >

08

06 0.05+ * *

[

02

y

Figure 7 — Representative multiscale base function of the MsFEM with # = 1/2 and
h = H/128; and profile of the numerical solution with % = 1/10 and h = H/32.
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Figure 8 — Numerical solution from MsFEM in which H = 1/60 and h = H /4.

4.2.1.2 Results from the MHM method

Next, we present the numerical results of the MHM method. To this end, we
aproximate the A space by piecewise constant functions. We denote MHM-N when the

space A is approximated by the finite element space Ay, defined as:
Ay = {Ma € L(FV): Mulyr € Po(f7), Vi € {1,--- N}, VF € &y}

Therefore, a function Ay € Ay, has N degrees of freedom on each face F' € £;. To better
understand this idea, we ilustrate the representative functions of the spaces Ay, and
Ay, at the face F' € &y in Figure 9. Figure 10 shows the representative multiescale base
funtions arising from the MHM-1 and MHM-4, respectively.

Increasing the parameter N makes the method more accurate. On the other hand, it
demands greater computational power, since the order of the global matrix grows signifi-
cantly. See in the Figure 11 the profile of the numerical solution from MHM-1 and MHM-2
methods. Then, we plot the numerical solutions for this cases, with the same parameters,

in Figure 12.
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Figure 9 — Representative functions from the spaces Ay, and Ay, over a face F' € &y.
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-0.05
0.1

Figure 10 — Representative multiscale base functions from MHM-1 and from MHM-4 with
parameters H = 1/2, h = H /64.

0.07 0.07
exact solution e exact solution =
MHM-1 —— MHM-2 ——
0.06- 0.06-+
0.05 0.05+
0.04 0.04+
N ~N
0.03-+ 0.03—
0.02—+ 0.02+
0.01—+ 0.014
0 : : = } 0 % = a %
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
y y

Figure 11 — Prefile of the numerical solution from MHM-1 and MHM-2. The parameters
are H=1/6, h = H/8.

4213 Results from the MH*M method

Finally, this method was implemented with the fininte element space Ay ., consisting
of piecewise constant functions, as introduced in (3.66), but with the partition &y replaced
by FY as presented in the definition (4.2.1). Similarly, we work with the continuous
piecewise linear functions for the Iz space introduced in (3.65), replacing &y by Ff. Let
e Ay € €Typlr and a fixed face F' € &, Thus, we use the MH?M-L-R notation when

the restrictions fi|r and £|p has L and R degrees of freedom, respectively. Figure 13 shows
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8:82 0.07 058 0.07
0.05 0.06 0.05 0.06
0.04 0.05 0.04 0.05
003 00 303 004
o0 0.03 0.01 0.03

0 0.02 0 0.02
0.01 0.01 -0.01 0.01

0

-

Figure 12 — Numerical solution from MHM-1 and MHM-2, with H = 1/6, h = H/8.

the representative multiscale base functions for different values of R and L.

Figure 13 — Representative multiscale base functions from the MH?M-1-2, MH?M-2-2,
MH?2M-3-2, respectively. The parameters are H = 1/2 and h = H/64.

Note that for MH?M-1-2 the multiscale base function is linear, as in the MsFEM. The
Figure 14 shows the accuracy gain as a result of enrichment in Ay and I'y; spaces and we

plot the associated numerical soluton in Figure 15.

We plot in Figure 16 the convergence curves in the energy norm ||u — uy|| 47,
Note that the MH?M-1-2 curve closely approximates the MHM-1 curve. The same holds
for MHM-2 and MH?2M-2-3. Moreover, the FEM and the MsFEM curves coincide and they
have low efficiency compared to MHM and MH2M.

exact solution s exact solution e

0.061 \ MHHM-1-2 —— 0.064 MHHM-2-3 ——

0.2 0.4 0.6 0.8 L 0.2 0.4 0.6 0.8 L

y y

Figure 14 — Profile of a numerical solution from MH?M-1-2 and MH*M-2-3, with H = 1/6
and h = H/8.



Chapter 4. Numerical Results 59

© ooo0000
2555
202838583
& ooooooo
S_ocoooooo
2382

g_ogoo
SEYSISI

-

Figure 15 — Numerical solution from the MH?M-1-2 and MH?M-2-3, with # = 1/6 and
h="HJ8.

0.1

log |u-up|a

0.01 e

0.1
log H

Figure 16 — Mesh based energy error graph with h = H/8.

It is useful to estimate the energy error ||u—uy|| 47, as a function of the degrees of freedon
(DoF). It is a computational cost estimator. See in Figures 17 that the MH2M-1-2 method
offers a result very similar to the MHM-1, at a lower cost, considering the fact that the
two methods solve a saddle point problem 2.42 and (1.4) in [2, page 3506]. Surprisingly,
we get the same quality with much less degrees of freedom with the elliptical MH2M-E-1-2
method (2.47). In this case, the FEM and MsFEM methods have a similar computational
cost, but a worse approximation compared to the MHM and MH2M methods.

The good numerical result of the MHM method improves when Ay, is enriched. However,
the cost increases in the same proportion. On the other hand, the MH?M is little affected
by this change, as it maintains the same number of degrees of freedom when solves elliptic
global problem (3.6), see in Figure 18 the MHM-2 and MH?M-E-2-2 curves. The MH*M-2-3

approximates the exact solution as well as the MHM, but with a slightly lower cost.
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FEM o
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MHHM-E-1-2 —&—
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log |u-up|a

I I I
10 100 1000
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Figure 17 — Mesh based energy error by degrees of freedom graph with h = #/8.
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Figure 18 — Mesh based energy error by degrees of freedom graph with h = #/8.

The graph of Figure 19 shows that MH2M is invariant when increasing the number of
degrees of freedom (L) in Ay, , while MHM improves. Figure 20 shows the graph of the
associated computational cost. Here the number of degrees of freedom (Dof) for the MHM
method come from a saddle-point global problem, while the one comes from an elliptical

global problem for the MH?M method.
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Figure 19 — Energy error based on dimension of Ay, with H = 1/10 and h = H/32.
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Figure 20 — Error based on dimension of Ay, by degrees of freedom graph, where H = 1/10
and h = H/32.

4.2.2 Two heterogeneous field problems

This section is dedicated to evaluating the robustness of the MH?M. Then, for a

given regular function f, we consider again the boundary value problem introduced in

(2.6), wich consists of finding u such that:

—V-A<§)Vu:f, i Q:
€
u=0 over 0.

Here, the diffusion coefficients A = A(x/c) models the presence of different types of
materials in a structure that we assume to reproduce periodically in the domain 2, with

periodicity ¢ €]0, 1[.
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Figure 21 — Profile increasing dimension of Ay, , with H = 1/8 and h = H/16.

4221 Problem1

We consider as source term f € L*() as in (4.1) and tensor A(x/e) defined as:

A <§) 2+ vsin(2mz/e) 2 + sin(2my/e)

- Vx = Q 4.4
€ 2+ ycos(2my/e) 2+ ysin(2mx/e)’ x = (z,y) €, (4.4)

where v = 1.8. The heterogeneous coefficient (4.4) are illustrated in Figure 22.

i
ENTNC S wreo)

Figure 22 — Plot of A(z/¢), for ¢ = 0.5 and ¢ = 1/17.

The small scale effects is characterized by the oscillatory behavior of the multiscale base
functions at each element. See in Figure 23 the base functions from MsFEM, MHM-4
and MH?M-4-2. Such mulstiscale base functions are approximated at the local level by
the standard Galerkin method over the linear continuous polynomial space defined in a

triangular sub-mesh.
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0.02
0015
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-0.015

Figure 23 — Representative multiscale base functions from MsFEM, MHM-4 and MH2M-
4-2, where h = 1/64 and ¢ = 1/17.

To provide a basis for comparision, we obtain a solution to the problem (2.6) using
the Galerkin finite element method with linear elements on a refined mesh of 130 elements
in each direction, and call it the "exact solution"; see Figure 24.

Figure 24 — Plot of the "exact solution" with 4 = 1/130 and ¢ = 1/17.

The next two numerical experiments compares the methods in two ways. When H goes
to zero in the first case, and in the second test we fix H and make H, tend to zero. We
compare the results with the ones from [23, page 26| and from the benchmark proposed in
[10, page 31]. Figure (25) shows the prefile for the first case. We show in Figure 26 the
energy error curves. Note that error increases when H is of the order of ¢ = 1.0/17.0 as in
[10, 23]. Then, for fixed H, we plot in Figure 27 the profile to Ay, space based convergence.
Finally, the numerical result from MH2?M-2-2 is ilustrated in Figure 28.
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Figure 25 — Profile with parameters H =1/4, H =1/8; H =1/16 and h = H/8, ¢ = 1/17.
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Figure 26 — Energy error graph with h = H/8, ¢ = 1/17 and ¢ = 1/6.
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Figure 27 — Profile with parameters H = 1/8, h =
dimension of Ay, .

4.2.2.2 Problem 2

H/16, e

1/17 and increasing

To the second test let the model problem (2.6) with the source term f: Q — R

defined as

and the diffusion matrix A(x/e) is such that

A(§
g

f(z,y) = 2w% cos(27x) cos(27y);

) 2 4+ 1.8sin
" 24 18sin

2rx

2+ 1.8sin

2

27y

(=
(

€

), 2 (2
) 2+ 1.8cos (=

€

Yy
[
.

(4.6)
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Figure 28 — Numerical solution from MH?*M-4-3 method with ¢ = 1/17, H = 1/10 and
h =H/16.

The "exact solution", considered as the solution of the classical Galerkin method
with the refinement level H = 1/130 and ¢ = 1/17, is illustrated in the Figure 29. Its

profile cut is shown in the Fiure 30.
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002 002
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Figure 29 — Plot of the "exact solution" with ‘H = 1/130.

Again, we compare the performances of the methods when the refinement level of
the coarse scale H goes to zero. We plot the profile in Figure 31 and the error curves for

e =1/17 and € = 1/6 are shown in Figure 32. Then Figure 33 shows a numerical solution
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Figure 30 — Profile at y = 0.5 of the "exact solution" with H = 1/130.

from the MH?M method.
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Figure 31 — Profile for H =1/4, H =1/8 and H = 1/16; h = H/8 and ¢ = 1/17.
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Figure 32 — Mesh based energy error with h = H/8, ¢ = 1/17 and € = 1/6.

Figure 33 — Numerical solution from MH?M-4-2, with H = 1/15, h = H /16 and ¢ = 1/17.
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5 Conclusion

This work proposes a numerical method, called Multiscale Hybrid-Hybrid-Mixed
method (MH?M), to solve second-order elliptical problem with oscillatory coefficients.
This method is derived from the Three-Field Domain Decomposition method, whose
continuities of the solution and flux are weakly imposed, after functions and fluxes trial
spaces decomposition and two static condensations. Moreover, we relax the flux defining
it on each element boundary, so that we can chooce different flux meshes for different

elements.

The infinite dimension global problem consists of an simmetric elliptical problem
on the traces space, so that its associated matrix is simmetric and positive definite, wich

allows resolution with low cost using the Conjugate Gradient method.

Although there is no conformity to the numerical solution, the trace and the flux
are conforms, which implies in the mass conservation for the flux of the numerical solution.

It is a desired property to flow simulation in porous media.

We show that the continuous and discrete inf-sup conditions are satisfied, as well

as the well-posedness of the global problem by the Lax-Milgram lemma.

We deduce the error estimates from the natural norms for specific compatible finite
element spaces. Then, numerical experiments confirm the theoretical estimates and show
the efficiency and robustness of the MH?M method with low computational cost, which

makes it a competitive multiscale method.
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APPENDIX A - Auxiliary results

Corollary A.0.1. Let Q2 be a bounded domain of R™ with Lipschitz-continuous boundary
L. Then for each v € HY(Q) and u € H?*(Q) there holds

/QvAudx:—/QVu-Vvd:l:#—/F%vds. (A.1)

Proof. See Corollary 1.2 [15]. O

Theorem A.0.1. (Laz-Milgram lemma) Let V' be a Hilbert space, a : V x V — R be a
bounded V -elliptic bilinear form and | € V'. Then there exists a unique solution to the

problem

a(u,v) =1(v), YveV.

Proof. See in [24, Theorem 1.5]. O

Lemma A.0.1. Consider the following spaces

X :={ve LQ); v|x € H'(K),VK € To},  Ho(div, Q) == {r € H(div,Q); 7-n=00nT}.

Then

HY(Q) = {v eX; > (r-nf v)ox =0,V7 € Ho(dz'v;Q)}.

KeTy,
Proof. See in [15, Lemma 3.1]. O

Theorem A.0.2. Let X :={v € L*(Q); v|x € H(K), VK € Ty}. Then

HYQ)={veX; vk —vlg,=0in L*(F), VK, K; € Ty, {F} = K;NK;}. (A.2)
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Proof. See in [15, Theorem 3.1]. O

Lemma A.0.2. Let
Vi={r e [L}Q)]"; 7lx € H(div; K), VK € T}
Then
H(div; Q) = {T ey; > (r- n v)ox =0, Vv € HOI(Q)}
KET,

Proof. See in [15, Lemma 3.4]. O

Proposition A.0.1. (Holder’s inequality) Let © = (x1,--- ,x,) and y = (Y1, ,Yn)
belongs to R. Set:
1/p*
p*)

If p and p* are conjugates, we then have the Holder inequality:

n 1/p n
]l = (Z |~"Ek|”> syl = (Z Yk
k=1 k=1

| > k—1 TkYk|

=1.
z,y€R" ||33||p||y||p*

Proof. See in [4, Proposition 1]. O

Definition A.0.1. Suppose €2 has diameter d and is star-shaped with respect to a ball
B. Let pmax := sup{p; {2 is star-shaped with respect to a ball of radious p}. Then, follows
from [8, page 99] that the chunkiness parameter of € is defined as:

(A.3)
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Theorem A.0.3. (Poincaré inequality) Let 2 be an open set of R™ which is bounded in
at least one space direction. There exists a constant C' > 0 such that, for every function
v € HD),

/le(a:)l2 de < C/Q |Vo(z)| dz.

Proof. See in [1, Proposition 4.3.10]. O

Theorem A.0.4. (Generalized Poincaré inequality) Let Q2 be a bounded domain. Then there

exists a positive constant C' that depends on the domain Q) and the its boundary I' such that:

Iolloe < C(Q,T) (‘/des 4 \u\m) , (A4)

for allv e H'Y(Q). —

Proof. See in [8, page 135]. O

Lemma A.0.3. (Friedrich’s inequality) Suppose ) is star-shaped with respect to a ball B.
Then, for all u € Wpl(Q),

v —Tllwy) < Conlulwi,

where T = Q™! [ u dz. —

Proof. See in [8, Lemma 4.3.14]. O

Lemma A.0.4. Let S and S be a compact and connected sets of R™ with Lipschitz-
continuous boundaries, and let F' : R" — R™ be the affine mapping given by F (&) =
Bi 4+ v, Vi eR", with B € R"™™ invertible and b € R™, such that vo F € H™(8). Then

let m be a nonnegative integer, and let v € H™(S). Then v :=v o F € H™(S), and there
exists C:= C(m,n) > 0 such that:

(01,5 < CIIB|™|det BI™2[v]m,s. (A.5)
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Conversely, if o € H™(S) and we let v = 0 o F~', then v € H™(S), and there exists
C = C(m,n) > 0 such that

[0]ms < CIB|™|det BI'?|o],, . (A.6)

Proof. See in [15, Lemma 3.12]. O

Lemma A.0.5. Let S and S be compact and connected sets of R™ with Lipschitz-
constinuous bundaries, and let F' : R™ — R™ be the affine mapping given by F (&) =

A

Bi 4+ b, Vi €R", with B € R"™" invertible and b € R", such that S = F(S). next, let

Hs := diameter of S = max |z —y (A.7)
.y

ps = diameter of largest sphere contained in S, (A.8)

H := diameter of S; (A.9)

p = diameter of largest sphere contained in S. (A.10)

Then

S
|det B| = |g|’ 1B < M

and B <
9] p

A
—. A1l
pPs ( )

Proof. See in [15, Lemma 3.14]. O



