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In this paper we propose a way to analyze certain classes of dimension reduction models
for elliptic problems in thin domains. We develop asymptotic expansions for the exact
and model solutions, having the thickness as small parameter. The modeling error is then
estimated by comparing the respective expansions, and the upper bounds obtained make
clear the influence of the order of the model and the thickness on the convergence rates.
The techniques developed here allows for estimates in several norms and semi-norms,
and also interior estimates (which disregards boundary layers).

1. Introduction

Much investigation has been done in the recent and not so recent past to take
advantage of the small thickness to solve or approximate elliptic problems in thin
domains. Indeed it is tempting to use dimension reduction, i.e., to pose and solve a
modified problem in a region with one less dimension and then extend the reduced
solution to the more general domain. It is reasonable to expect that the new problem
will be simpler than the original one, but it is not easy to predict how far apart are
the two solutions. In this paper we analyze the approximation properties of some
classes of models for elliptic problems in thin domains, not only as the thickness
of the domain goes to zero, but also as the “degree” of the models increases, in a
sense that we will make clear.

We assume that the thin domain is a three-dimensional plate of the form P ε =
Ω × (−ε, ε), where Ω is a two-dimensional smoothly bounded region and ε < 1
is a small positive quantity. For simplicity, we analyze the Poisson problem with
vanishing Dirichlet boundary condition on the lateral boundary ∂Ω×(−ε, ε), despite
the fact that other equations and conditions are also of interest. Let ∂P ε

L = ∂Ω ×
(−ε, ε) be the lateral boundary of the plate and ∂P ε

± = Ω × {−ε, ε} its top and
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2 Asymptotic Estimates of Hierarchical Modeling

bottom. We define then uε ∈ H1(P ε) as the weak solution of

−∆uε = fε in P ε,
∂uε

∂n
= gε on ∂P ε

±,

uε = 0 on ∂P ε
L,

(1.1)

where fε : P ε → R and gε : ∂P ε
± → R. In general, the solution of (1.1) will depend

on ε in a nontrivial way. In fact the above problem is a singularly perturbed one,
and as ε goes to zero it “loses” ellipticity. This results in the onset of boundary
layers, as we make clear below.

Projecting the exact solution of (1.1) into the space of functions with polynomial
dependence in the transverse direction results in a whole hierarchy of models that
approximate the original problem with increasing accuracy as the semi-discrete
space gets richer, and maintain the lower dimensional character. For symmetric
elliptic problems, one possibility is to use a Ritz projection,21 deriving the minimum
energy models.20,3,4,14

Characterizing the solution of (1.1) as the minimizer of the associated energy
functional, i.e.,

uε = arg min
v∈V (P ε)

J (v), where J (v) =
1
2

∫
P ε

| ∇ v|2 dx−
∫

P ε

fεv dx−
∫

∂P ε
±

gεv dx∼,

and V (P ε) =
{
v ∈ H1(P ε) : v = 0 on ∂P ε

L

}
, we aim to find a “good” approxima-

tion for uε searching for

uε(p) = arg min
v∈H̊1(Ω;Pp(−ε,ε))

J (v), (1.2)

where H̊1(Ω; Pp(−ε, ε)) is the space of polynomials of degree p in (−ε, ε) with coef-
ficients in H̊1(Ω). It immediately follows from its definition that uε(p) is the Ritz
projection of uε into H̊1(Ω; Pp(−ε, ε)), and (1.2) characterizes a minimum energy
model. Observe that using higher polynomial degrees, i.e., higher order models, we
obtain a hierarchy of models that furnish increasingly better solutions.

As an example, we write the model explicitly for p = 1. Rewriting (1.2) in
variational form, it is not hard to check that if uε(1)(xε) = ω0(x∼

ε)+ω1(x∼
ε)xε

3, then

−∆ 2Dω0 = f0 + ε−1g0, −ε
2

3
∆ 2Dω1 + ω1 = f1 + g1 in Ω,

ω0 = ω1 = 0 on ∂Ω,
(1.3)

where ∆ 2D = ∂11 + ∂22 and

f0(x∼
ε) =

1
2ε

∫ ε

−ε

fε(x∼
ε, xε

3) dx
ε
3, f1(x∼

ε) =
1
2ε

∫ ε

−ε

fε(x∼
ε, xε

3)x
ε
3 dx

ε
3,

g0(x∼
ε) =

1
2
[
gε(x∼

ε, ε) + gε(x∼
ε,−ε)], g1(x∼

ε) =
1
2
[
gε(x∼

ε, ε) − gε(x∼
ε,−ε)].
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Note that the two differential equations in (1.3) are independent of each other.
We can express in a unique way any function defined on P ε as a sum of its even
and odd parts with respect to xε

3. The even parts of f ε, gε appear only in the
equation for ω0, and the respective odd parts show up in the equation for ω1.
Also, the equation determining ω1 is singularly perturbed, but this is not the case
for the equation determining ω0. If higher order methods were used, we would
have two independent singularly perturbed systems of equations, corresponding to
the even and odd parts of uε(p). A similar splitting also occurs for the linearly
elastic isotropic and homogeneous plate, where the equations decouple into two
independent problems corresponding to bending and stretching of the plate.

The natural question of how close uε(p) is to uε is not easy to answer due to the
complex influence of ε in both the original and model solutions. Several authors
investigated various aspects of this and other related problems. For a review of the
literature, see the Ph.D. thesis of Madureira.15 It is worth mentioning nevertheless
the work of of Vogelius and Babuška. In a series of three remarkable papers,21,22,23

they investigated various aspects of minimum energy methods for scalar elliptic ho-
mogeneous problems in a n-dimensional plate, with Neumann boundary condition
on the top and bottom of the domain. They started by showing how to optimally
choose the semi-discrete subspace that characterizes each model. This space de-
pends only on the coefficients of the differential equation, and a truncated outer
asymptotic expansion (i.e., ignoring boundary layer terms) of the exact solution
belongs to it. Then they estimated the rate of convergence of the model solution
(with respect to the thickness, in the energy norm). To do this they assumed that
the volume loads vanished and that the surface loading was such that boundary
layer effects were of higher order than the first truncated term of the outer ex-
pansion. They then estimated the difference between the exact solution and the
truncated expansion. As this quantity is certainly bigger than the error of the min-
imum energy model in the energy norm, they then obtained an upper bound for the
modeling error. This procedure was extended by Miara17 to linearly elastic plates,
again with strong restrictions on the volume and surface loads. In this case the
optimal subspace might depend on the data, a clear disadvantage. Recent work by
Ovaskainen and Pitkäranta19 used similar ideas to obtain more refined estimates
for minimum energy methods applied to a thin linearly elastic strip under traction.
Some limitations of this approach are that it is not clear how to extend it to models
that are not energy minimizers, nor how to obtain sharp estimates in norms other
than energy or in the interior of the domain.

Our approach differs significantly from the aforementioned ones. We estimate
the modeling error not by comparing the exact and model solutions directly, but
rather by first looking at the difference between the solutions and their truncated
asymptotic expansions, and then comparing the asymptotic expansions. This is
possible because the projection used to define each model can be used to find terms
of the asymptotic expansion of the model. This allows the comparison between
corresponding terms of the expansions. Schematically, this is how it works:
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uε
Asymptotic
Expansion of uε

Asymptotic
Expansion of uε(p)

uε(p)

Although we also use asymptotic expansion techniques, we do not rely on the
fact that our solution minimizes the potential energy. In fact our arguments work
for saddle point models as well.15 In addition to the flexibility to tackle different
models, we are also able to obtain sharp estimates in different norms and interior
estimates.

We consider the Poisson problem as it contains the same basic characteristics
and difficulties of more complex elliptic equations, but is still simple enough so
that technicalities do not overshadow the main aspects of our analysis. We avoid
nonetheless using specificities of the problem, and the arguments employed here
extend in a natural way to the analysis of hierarchical models for linearly elastic
plates. Indeed, based on the asymptotic expansions developed by Monique Dauge
and her collaborators,8,9 a similar kind of study can be performed.

We now briefly introduce and explain some basic notation that we use through-
out this paper. For an integer p and a positive real number a, we define Pp(−a, a)
as the space of polynomials of degree p in (−a, a). If s is a real number and D an
open set, then Hs(D) is the Sobolev space of order s, and H̊s(D) is the closure in
Hs(D) of the set of smooth functions with compact support in D. For m ∈ N and
a separable Hilbert space E, we denote Hm(D;E) as the space of functions defined
on D with values in E such that the E-norm of all partial derivatives of order less
or equal to m are in L2(D). Also, L̂2(−a, a) is the set of square integrable functions
with mean value zero in the domain (−a, a), for a positive number a. Finally D(D)
denotes the space of C∞ functions in D with compact support, while D′(D) denotes
the space of distributions.

As we have already hinted, we use one underbar for 3-vectors and one undertilde
for 2-vectors. We can then decompose 3-vectors as follows:

u =
(
u∼
u3

)
.

We denote by lowercase c a generic constant (not necessarily the same in all oc-
currences) which is independent not only of ε and p, but also of f and g, while
we use uppercase C when the constant may depend on f and g, more precisely on
Sobolev norms of f and g, but not ε and p. We denote a typical point in P ε by
xε = (x∼

ε, xε
3), with x∼

ε = (xε
1, x

ε
2) ∈ Ω.

Next, we outline the contents of this paper. In Section 2 we develop an asymp-
totic expansion for the solution of (1.1), presenting upper bounds for the difference



Asymptotic Estimates of Hierarchical Modeling 5

between the exact solution and truncated asymptotic expansions. The following
section contains the same sort of development, but this time concerning the hierar-
chical model solution. We present modeling error estimates in Section 4. Finally,
many issues involving the boundary correctors are discussed in the appendix, in-
cluding existence, uniqueness and exponential decay of solutions, approximation by
polynomials, and corner singularities.

2. Asymptotic Expansions for the Exact Solution

We start this section by developing an asymptotic expansion for uε. As in
Ciarlet’s book,7 we define an ε-independent domain P = Ω × (−1, 1). A point
x = (x∼, x3) in P is related to a point xε in P ε by x∼ = x∼

ε, x3 = ε−1xε
3. We

accordingly define ∂PL = ∂Ω × (−1, 1), and ∂P± = Ω × {−1, 1}.

P ε

x3 = ε−1xε
3

·

xε = (x∼, x
ε
3)

P

1

−1

·
x = (x∼, x3)

In this new domain we define u(ε)(x) = uε(xε), f(x) = fε(xε), and g(x) =
ε−1gε(xε). We infer from (1.1) that

∆ 2Du(ε) + ε−2∂33u(ε) = −f in P ,
∂u(ε)
∂n

= ε2g on ∂P±,

u(ε) = 0 on ∂PL.

(2.4)

We assume that f , g are ε-independent, but this restriction could be relaxed, for
instance by assuming that f and g can be represented as a power series in ε, plus a
small remainder.16 Furthermore, how exactly f and g scales with respect to ε is im-
material since we are considering a linear problem and the final rates of convergence
are in relative norms.

Consider the asymptotic expansion

u0 + ε2u2 + ε4u4 + · · · , (2.5)

and formally substitute it for u(ε) in (2.4). Grouping together terms with same
power in ε we have

ε−2∂33u
0 +

(
∆ 2Du

0 + ∂33u
2
)

+ ε2
(
∆ 2Du

2 + ∂33u
4
)

+ · · · = −f, (2.6)

∂u0

∂n
+ ε2

∂u2

∂n
+ ε4

∂u4

∂n
+ · · · = ε2g on ∂P±. (2.7)
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It is then natural to require that

∂33u
0 = 0, (2.8)

∂33u
2 = −f − ∆ 2Du

0, (2.9)

∂33u
2k = −∆ 2Du

2k−2, for all k > 1, (2.10)

along with the boundary conditions

∂u2k

∂n
= δk1g on ∂P±, for all k ∈ N. (2.11)

Note that Eqs. (2.8)–(2.11) define a sequence of Neumann problems for x3 ∈ (−1, 1),
parametrized by x∼ ∈ Ω. If the data for these problems is compatible then the
solution can be written as

u2k(x) = û2k(x) + ζ2k(x∼), for all k ∈ N, (2.12)

where ∫ 1

−1

û2k(x∼, x3) dx3 = 0, (2.13)

with û2k uniquely determined, but ζ2k an arbitrary function of x∼ only. As we shall
see, the ζ2k will be determined using the condition of compatibility of the data for
the Neumann problems. From the Dirichlet boundary condition in (2.4), it would
be natural to require that u2k = 0 on ∂PL. This is equivalent to imposing

ζ2k = 0 on ∂Ω, (2.14)

û2k = 0 on ∂PL. (2.15)

However, in general, only (2.14) can be imposed and (2.15) will not hold. We shall
correct this discrepancy latter. Now we show that the functions ζ2k, û2k (and so
u2k) are uniquely determined from (2.8)–(2.14). In fact, (2.8) and (2.11) yields
û0 = 0. From the compatibility of (2.9) and (2.11) we see that

∆ 2Dζ
0(x∼) = −1

2

∫ 1

−1

f(x∼, x3) dx3 − 1
2
[g(x∼, 1) + g(x∼,−1)], (2.16)

which together with (2.14), determines ζ0 and then, from (2.12), u0. In view of the
compatibility condition (2.16), û2 is fully determined by (2.9), (2.11), and (2.13).
Next, the Neumann problem (2.10), (2.11) admits a solution for k > 1 if and only
if ∆ 2Dζ

2k−2 = 0. But in view of (2.14), this means ζ2k−2 = 0, for k > 1, and then
û2k is uniquely determined from (2.10), (2.11). Note that u0 = ζ0 and u2k = û2k

for k ≥ 1.
Observe that u0 = 0 on the lateral boundary of P , since û0 = 0 and so (2.15)

holds for k = 0. However, u2, u4, etc, will not in general vanish on ∂PL (although
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their vertical integrals do). Thus (2.5) does not give a complete asymptotic expan-
sion of u(ε) and we seek a boundary corrector U , which should satisfy

∆ 2DU + ε−2∂33U = 0 in P,
∂U

∂n
= 0 on ∂P±, U ∼ ε2u2 + ε4u4 + · · · on ∂PL.

(2.17)

To study this singular perturbation problem, we define a system of boundary-fitted
horizontal coordinates. In this new system, a point close to the boundary ∂Ω has
as coordinates its distance to the boundary and the arclength along the boundary
to its nearest boundary point. We follow the notation of Chen.6 Suppose that ∂Ω
is arclength parametrized by z∼(θ) = (X(θ), Y (θ)). Let s∼ = (X ′, Y ′), n∼ = (Y ′,−X ′)
denote the tangent and the outward normal vectors to ∂Ω, and define

Ωb =
{
z∼ − ρn∼ : z∼ ∈ ∂Ω, 0 < ρ < ρ0

}
,

where ρ0 is a positive number smaller than the minimum radius of curvature of ∂Ω.
With L denoting the arclength of ∂Ω, then

x∼(ρ, θ) = z∼(θ) − ρn∼(θ).

is a diffeomorphism between (0, ρ0) × R/L and Ωb. Extending n∼ and s∼ to Ωb by

n∼(ρ, θ) = n∼(θ), s∼(ρ, θ) = s∼(θ), (2.18)

then, for α = 1, 2:

∂αθ =
sα

J(θ)
, ∂αρ = −nα,

where J(ρ, θ) = 1 − ρκ(θ), and κ is the curvature of ∂Ω. Finally, a change of
coordinates yields

∂αf = ∂θf∂αθ + ∂ρf∂αρ, for α = 1, 2.

The expression for the Laplacian in these new coordinates follows:

∆ 2DU = ∂ρρU − κ

J
∂ρU +

1
J2
∂θθU +

ρκ′

J3
∂θU

= ∂ρρU +
∞∑

j=0

ρj
(
aj
1∂ρU + aj

2∂θθU + aj
3∂θU

)
, (2.19)

where we formally replace each coefficient with its respective Taylor expansion,1

and

aj
1 = −[κ(θ)]j+1, aj

2 = (j + 1)[κ(θ)]j , aj
3 =

j(j + 1)
2

[κ(θ)]j−1κ′(θ).
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Defining the new variable ρ̃ = ε−1ρ and using the same name for functions different
only up to this change of coordinates, we have from (2.19) that

∆ 2DU = ε−2∂ρ̃ρ̃U +
∞∑

j=0

(ερ̃)j
(
aj
1ε

−1∂ρ̃U + aj
2∂θθU + aj

3∂θU
)
, (2.20)

Aiming to solve (2.17), we insert the asymptotic expansion

U ∼ ε2U2 + ε3U3 + ε4U4 + · · · , (2.21)

in (2.20), and collect together terms with same order of ε. This leads us to pose a
sequence of problems in the semi-infinite strip Σ = R

+ × (−1, 1), for k ≥ 2:

(∂ρ̃ρ̃ + ∂33)Uk = Fk in Σ,

∂Uk

∂n
= 0 on R

+ × {−1, 1},
Uk(0, θ, x3) = uk(0, θ, x3) for x3 ∈ (−1, 1),

(2.22)

where

Fk =
k−2∑
j=0

ρ̃j
(
aj
1∂ρ̃U

k−j−1 + aj
2∂θθU

k−j−2 + aj
3∂θU

k−j−2
)
,

with the convention that uk = 0 for k odd and U0 = U1 = 0. Note that the problem
described by (2.22)—we show that it is well–defined further ahead—is parametrized
by θ, and that the geometry of Ω plays an important role through the coefficients
aj
1, a

j
2, a

j
3.

Combining (2.5) and (2.21) we obtain the formal asymptotic expansion

uε(xε) ∼
∞∑

k=0

ε2ku2k(x∼
ε, ε−1xε

3) − χ(ρ)
∞∑

k=2

εkUk(ε−1ρ, θ, ε−1xε
3). (2.23)

Here χ(ρ), is a smooth cutoff function which is identically one if 0 ≤ ρ ≤ ρ0/3 and
identically zero if ρ ≥ 2ρ0/3. (This does not turn out to be a significant source of
error since Uk decays exponentially to zero in the normal direction.)

Although our reasoning has been formal so far, we shall rigorously justify this
asymptotic expansion in Theorem 2.1. Before doing that, we first study the terms
entering into the expansion.

We use the following notation:

‖v‖(m,n,P ) = ‖v‖Hm(Ω;Hn(−1,1)), |||(f, g)|||m,P = ‖f‖(m,0,P ) + ‖g‖Hm(∂P±).

In the lemma below, the bounds follow from standard regularity estimates for
Eqs. (2.16), (2.9)–(2.11).
Lemma 2.1 Suppose that f and g are smooth functions on P and ∂P±, respec-
tively. Then the functions u0, u2, · · · on P are uniquely determined by (2.8)–(2.14),
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and u0(x) = ζ0(x∼) is independent of x3. Moreover, for m a nonnegative integer and
s a real number such that s ≥ 2, there exists a constant c independent of f and g

such that

‖ζ0‖Hm+1(Ω) ≤ c|||(f, g)|||m−1,P ,

‖u2(x∼, ·)‖Hs(−1,1) ≤ c
(‖f(x∼, ·)‖Hs−2(−1,1) + |g(x∼,−1)| + |g(x∼, 1)|),

‖u2‖(m,s,P ) ≤ c
(‖f‖(m,s−2,P ) + ‖g‖Hm(∂P±)

)
.

The next lemma, whose proof we postpone to the appendix, guarantees the exis-
tence, uniqueness, and exponential decay of solutions for (2.22).
Lemma 2.2 Assume, for a fixed positive integer k, that uk is defined as above.
Then, for each θ, there exists a unique weak solution Uk(·, θ, ·) ∈ H1(Σ) to (2.22).
Also, there exist positive constants C and α such that∫ ∞

t

∫ 1

−1

(Uk)2 + (∂ρ̃U
k)2 + (∂3U

k)2 dx3 dρ̃ ≤ Ce−αt, (2.24)

for every nonnegative real number t. The constant α may depend on Ω and k, but
is independent of f and g, while the constant C may depend on Ω, k, f , and g.
Although (2.23) is a formal expansion, a rigorous error estimate shows that the
difference between the exact solution and a truncated asymptotic expansion is of
the same order of the first term omitted in the expansion. In fact, define

eε
2N (xε) = uε(xε) −

N∑
k=0

ε2ku2k(x∼
ε, ε−1xε

3) + χ(ρ)
2N∑
k=2

εkUk(ε−1ρ, θ, ε−1xε
3). (2.25)

In the theorem below we bound the H1(P ε) norm of eε
2N .

Theorem 2.1 For any positive integer N , there exists a constant C such that the
difference between the truncated asymptotic expansion and the original solution mea-
sured in the original domain is bounded as follows:

‖eε
0‖H1(P ε) ≤ Cε3/2, ‖eε

2N‖H1(P ε) ≤ Cε2N+1. (2.26)

Since the domain P ε depends on ε, the interpretation of the convergence estimates
given in Theorem 2.1 is not straightforward. The relative error is more informative
in this case. For this we may use (2.26) and the triangle inequality to obtain a lower
bound on the H1(P ε) norm of the solution. The leading term of the asymptotic
expansion for uε is ζ0, unless ζ0 is identically zero, that is, unless the quantity

−1
2

∫ 1

−1

f(x∼, x3) dx3 − 1
2
[g(x∼, 1) + g(x∼,−1)] (2.27)

appearing on the right-hand side of (2.16) vanishes. Assuming momentarily that
ζ0 does not vanish, then we easily conclude from (2.26) and the triangle inequality
that there exists a strictly positive constant C depending on f and g, such that
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‖uε‖H1(P ε) ≥ Cε1/2 for all ε sufficiently small. If, on the other hand ζ0 vanishes,
but f and g do not both vanish identically, then it can be seen from (2.9) and (2.11)
that u2 does not vanish. Applying the second estimate of (2.26) with N = 1 and
using the triangle inequality, we conclude ‖uε‖H1(P ε) ≥ Cε3/2 in this case. Thus in
any case (as long as f and g do not both vanish identically) we have

‖uε‖H1(P ε) ≥ Cνε1/2, where ν =

{
1, ζ0 �≡ 0,
ε, ζ0 ≡ 0.

Thus,

‖eε
0‖H1(P ε)

‖uε‖H1(P ε)
= O(ν−1ε),

‖eε
2N‖H1(P ε)

‖uε‖H1(P ε)
= O(ν−1ε2N+1/2), N = 1, 2, . . . .

It is easy to estimate the convergence in some other norms as well. For instance, in
the L2(P ε) norm, we have from the triangle inequality that

‖eε
2N‖L2(P ε) ≤ ‖eε

2N+2‖H1(P ε) + ‖eε
2N+2 − eε

2N‖L2(P ε).

Since

(eε
2N+2 − eε

2N )(xε) = −ε2N+1U2N+1(ε−1ρ, θ, ε−1xε
3)

+ ε2N+2
[
u2N+2(x∼

ε, ε−1xε
3) − U2N+2(ε−1ρ, θ, ε−1xε

3)
]
, (2.28)

we easily conclude from a scaling argument that ‖eε
2N‖L2(P ε) = O(ε2N+2), for N

positive.
Using similar arguments, it is possible to compute interior estimates, which

achieve better convergence in regions far away from the lateral boundary of the
plate. The reason for the improvement in such subdomains is that the influence of
the boundary layer is negligible. Table 1 presents these interior and various other
error estimates. We assume that f and g are sufficiently smooth functions and we
show only the order of the norms with respect to ε. “BL” stands for “Boundary
Layer” and the “Relative Error” column presents the norm of eε

2N divided by the
norm of uε. In parentheses are the interior estimates, when these are better than
the global estimates.

The remainder of this section contains the proof of Theorem 2.1. In our demon-
stration, we follow the basic steps of a similar proof for an elasticity problem.8

Definition 2.1 Set

u2N (x) =
N∑

k=0

ε2ku2k(x), U2N (x) =
2N∑
k=2

εkUk(ε−1ρ, θ, x3).

Some results regarding the boundary layer terms are collected below.
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Table 1: Order with respect to the thickness of the exact solution, the first term
of the boundary layer expansion, and the difference between the solution and a
truncated asymptotic expansion in various norms.

norm uε BL eε
2N , N ≥ 1 Relative Error

‖ · ‖L2(P ε) ν2ε
1
2 ε3 ε2N+2(ε2N+ 5

2 ) ν−2ε2N+ 3
2 (ν−2ε2N+2)

‖∂ρ · ‖L2(P ε) ν
3
2 ε

1
2 (ν2ε

1
2 ) ε2 ε2N+1(ε2N+ 5

2 ) ν−
3
2 ε2N+ 1

2 (ν−2ε2N+2)

‖∂θ · ‖L2(P ε) ν2ε
1
2 ε3 ε2N+2(ε2N+ 5

2 ) ν−2ε2N+ 3
2 (ν−2ε2N+2)

‖∂xε
3
· ‖L2(P ε) ε

3
2 ε2 ε2N+1(ε2N+ 3

2 ) ε2N− 1
2 (ε2N )

‖ · ‖H1(P ε) νε
1
2 ε2 ε2N+1(ε2N+ 3

2 ) ν−1ε2N+ 1
2 (ν−1ε2N+1)

Lemma 2.3 For any positive integer N , there exists positive constants C and α

such that

‖χ′U2N‖L2(P ) + ε‖χ′∂ρU2N‖L2(P ) ≤ Cε5/2 exp(−αε−1). (2.29)

Also, for all v ∈ H1(P ) that vanishes on ∂PL,∣∣∣∣
∫

P

∇∼ U2N ∇∼(χv) + ε−2∂3U2N∂3(vχ) dx
∣∣∣∣ ≤ Cε2N‖v‖H1(P ). (2.30)

Proof. The inequalities (2.29) follow from a change of coordinates, Lemma 2.2,
and the definition of χ. To see that (2.30) holds, first rewrite (2.19) as a finite
series, using Taylor expansion with remainders. Then the result follows from the
definition of U2N , (2.22), and Lemma 2.2 .

We obtain now a rough estimate for the asymptotic expansion error.
Lemma 2.4 For any positive integer N , let e2N (x) = eε

2N (xε). Then there exists
a constant C such that

‖e2N‖H1(P ) ≤ Cε2N .

Proof. We use in this proof that u2N solves the Poisson problem up to arbitrary
powers of ε. First note that e2N vanishes on ∂PL. Hence, in view of the Poincaré’s
inequality,

‖e2N‖2
H1(P ) ≤ c

∫
P

| ∇∼ e2N |2 + ε−2(∂3e2N)2 dx, (2.31)

and we estimate next the right hand side of (2.31). Let v ∈ H1(P ) such that v = 0
on ∂PL. If we define

E(2N, v) =
∫

P

∇∼(u(ε) − u2N)∇∼ v + ε−2∂3(u(ε) − u2N)∂3v dx∼,
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then, by construction of the asymptotic expansion, we have

E(2N, v) =
∫

P

fv dx∼ +
∫

∂P±
gv dx∼ −

N∑
k=0

ε2k

∫
P

(∇∼ u2k ∇∼ v + ε−2∂3u
2k∂3v

)
dx∼

= −ε2N

∫
P

∇∼ u
2N ∇∼ v dx∼,

and we conclude that
|E(2N, v)| ≤ Cε2N‖v‖H1(P ). (2.32)

We also have∣∣∣∣
∫

P

∇∼(χU2N )∇∼ v −∇∼ U2N ∇∼(χv) + ε−2
[
∂3(χU2N )∂3v − ∂3U2N∂3(χv)

]
dx∼

∣∣∣∣
≤ (‖χ′U2N‖L2(P ) + ‖χ′∂ρU2N‖L2(P )

)‖v‖H1(P ).

Hence, by Lemma 2.3∣∣∣∣
∫

P

[∇∼(χU2N )∇∼ v + ε−2∂3(χU2N )∂3v
]
dx∼

∣∣∣∣ ≤ Cε2N‖v‖H1(P ). (2.33)

Making v = e2N we have∫
P

| ∇∼ e2N |2 + ε−2(∂3e2N)2 dx∼

= E(2N, e2N ) +
∫

P

[∇∼(χU2N )∇∼ e2N + ε−2∂3(χU2N )∂3e2N

]
dx∼

≤ Cε2N‖e2N‖H1(P ),

from (2.32) and (2.33), and the result follows from (2.31) .
The estimate in Lemma 2.4 is not sharp. The powers of ε can be shown to be

2N + 1/2. We make this improvement when we consider the error on the unscaled
plate P ε.

Proof. (of Theorem 2.1) Assume first that N is positive. From Lemma 2.4, we
immediately obtain ‖eε

2N‖H1(P ε) = O(ε2N−1/2). This result too is not sharp. To
obtain a sharp result, we use the triangle inequality:

‖eε
2N‖H1(P ε) ≤ ‖eε

2N+2 − eε
2N‖H1(P ε) +O(ε2N+3/2),

and then the result follows from (2.28) and a scaling argument. A similar argument
holds for N = 0 .

3. Asymptotic Expansions for the Model Solution

To develop an asymptotic expansion for the solution of the hierarchical models,
we reason as before, but use weak equations instead of their strong form. We start
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by posing a problem for the solution of the minimum energy model in the scaled
domain P . If we define u(p)(x) = uε(p)(xε), then

∫
P

∇∼ u(p)∇∼ v + ε−2∂3u(p)∂3v dx∼ =
∫

P

fv dx∼ +
∫

∂P±
gv dx∼, (3.34)

for all v ∈ H̊1(Ω; Pp(−1, 1)). Considering the asymptotic expansion

u0(p) + ε2u2(p) + ε4u4(p) + · · · , (3.35)

and formally substituting it for u(p) in (3.34), we conclude that,

∫
P

∂3u
0(p)∂3v dx∼ = 0, (3.36)∫

P

∂3u
2(p)∂3v dx∼ =

∫
P

(
f + ∆ 2Du

0(p)
)
v dx∼ +

∫
∂P±

gv dx∼, (3.37)∫
P

∂3u
2k(p)∂3v dx∼ =

∫
P

∆ 2Du
2k−2(p)v dx∼, for k > 1, (3.38)

for all v ∈ H̊1(Ω; Pp(−1, 1)). Let P̂p(−1, 1) be the space of polynomials of degree
p in (−1, 1) with zero average. Repeating the arguments of the expansion for the
exact solution, we set u0(p)(x) = ζ0(x∼) and u2(p)(x∼, ·) as the Galerkin projection

of u2(x∼, ·) into P̂p(−1, 1) for almost every x∼ ∈ Ω, i.e.,

∫ 1

−1

∂3u
2(p)(x∼, x3)∂3v(x3) dx3 =

∫ 1

−1

[f(x∼, x3) + ∆ 2Dζ
0(x∼)]v(x3) dx3

+ g(x∼,−1)v(−1) + g(x∼, 1)v(1), for all v ∈ P̂p(−1, 1).
(3.39)

For any integer k ≥ 2, we define u2k(p)(x∼, ·) ∈ P̂p(−1, 1) by

∫ 1

−1

∂3u
2k(p)(x∼, x3)∂3v(x3) dx3 =

∫ 1

−1

∆ 2Du
2k−2(p)(x∼, x3)v(x3) dx3, (3.40)

for all v ∈ P̂p(−1, 1), and for almost every x∼ ∈ Ω.
The ansatz (3.35) does not satisfy the Dirichlet boundary conditions at ∂PL

and we use then boundary correctors Uk(p). These functions are polynomial in the
transverse direction, and are defined in the semi-infinite strip Σ. We need to define
the spaces

V (Σ, p) =
{
v ∈ D′(R+; Pp(−1, 1)) : ‖∇∼ v‖L2(Σ) + ‖v(0, ·)‖L2(−1,1) <∞}

,

V0(Σ, p) =
{
v ∈ V (Σ, p) : v(0, ·) = 0

}
.
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For any positive integer k, let Uk(p) ∈ V (Σ, p) be the solutions of

∫
Σ

∂ρ̃U
k(p)∂ρ̃v + ∂3U

k(p)∂3v dρ̃ dx3 =
∫

Σ

Fk(p)v dρ̃ dx3 for all v ∈ V0(Σ, p),

Uk(p)(0, θ, x3) = uk(p)(0, θ, x3) for all x3 ∈ (−1, 1),

Fk(p) =
k−1∑
j=0

ρ̃j
(
aj
1∂ρ̃U

k−j−1(p) + aj
2∂θθU

k−j−2(p) + aj
3∂θU

k−j−2(p)
)
,

(3.41)
where uk = 0 for k odd and U0(p) = U1(p) = 0.

A result analogous to Lemma 2.2 holds for Uk(p) as well, guaranteeing existence,
uniqueness and exponential decay, with the same decaying rate.15 This implies in
particular that there exist constants C and α such that∫

Σ

[χ′(ερ̃)U2(p)]2 dρ̃ dx3 ≤ C exp(−αε−1). (3.42)

The above inequality will be of use further on. Similarly to (2.23), we have that

uε(p)(xε) ∼ ζ0(x∼
ε) +

∞∑
k=1

ε2ku2k(p)(x∼
ε, ε−1xε

3) − χ(ρ)
∞∑

k=2

εkUk(p)(ε−1ρ, θ, ε−1xε
3),

where ζ0 solves (2.16).
We present next an estimate, in the H1(P ε) norm, of uε(p) minus its truncated

asymptotic expansion. Since the proofs of the previous section work here with minor
modifications, we refrain from repeating them. We would like to remark that this
result gives a bound that is uniform in p, and that the bound is the same (up to a
constant) as in Theorem 2.1.
Theorem 3.2 For any positive integer N , let

eε
2N(p)(xε) = uε(p)(xε) −

N∑
k=0

ε2ku2k(p)(x∼
ε, ε−1xε

3)+

χ(ρ)
2N∑
k=2

εkUk(p)(ε−1ρ, θ, ε−1xε
3).

Then there exists a constant C such that ‖eε
2N(p)‖H1(P ε) ≤ Cε2N+1, for all p ∈ N.

4. Estimates for the modeling error

In this section, we estimate the modeling error. As we mentioned before, this is
done by comparing the asymptotic expansions of the exact and model solution. A
key point is to estimate the difference between terms of the respective expansions.
We need the following definitions.
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Definition 4.2 For a nonnegative real number s, let

as = ‖f‖L2(Ω;Hs(−1,1)) + ‖g‖L2(∂P±), a1
s = ‖f‖H1(Ω;Hs(−1,1)) + ‖g‖H1(∂P±),

ab
s =

(∫
∂Ω

‖f(x∼, ·)‖
2
Hs(−1,1) + |g(x∼,−1)|2 + |g(x∼, 1)|2 dx∼

)1/2

.

The comparison between u2(p) and u2 is straightforward since the former is
a Galerkin projection of the latter. Indeed, let π̂1

p be the orthogonal projection
operator from H1(−1, 1)∩ L̂2(−1, 1) to P̂p(−1, 1), with respect to the inner product
that induces the norm |·|H1(−1,1). The next classical result,5 estimates the projection
error.
Lemma 4.5 For any nonnegative real number s, there exists a constant C such
that if 0 ≤ r ≤ 1 ≤ s, then

‖φ− π̂1
pφ‖Hr(−1,1) ≤ Cpr−s‖φ‖Hs(−1,1) for φ ∈ Hs(−1, 1) ∩ L̂2(−1, 1). (4.43)

From (2.9), (2.11)–(2.14), and (3.39), we gather that u2(p) = π̂1
pu

2, for all x∼ ∈ Ω.
From Lemmas 4.5, and 2.1, we conclude the following result.
Lemma 4.6 For any nonnegative real number s, there exists a constant c indepen-
dent of ε, p, f , and g, such that

‖u2 − u2(p)‖L2(P ) ≤ cp−2−sas,

‖∇∼ u
2 −∇∼ u

2(p)‖L2(P ) ≤ cp−2−sa1
s,

‖∂x3u
2 − ∂x3u

2(p)‖L2(P ) ≤ cp−1−sas.

Bounding the difference U2 − U2(p) is harder due to the presence of corner singu-
larities. Since both U2 and U2(p) are originally defined in the semi-infinite strip Σ,
it is natural to investigate the approximation properties in this domain, and such
is done in the appendix. We apply these approximation results to estimate the
difference between boundary correctors in P ε.
Definition 4.3 Let x∼ ∈ ∂Ω, and let s be a nonnegative real number. Let

N(s) = max{n ∈ Z : 2n < s}. (4.44)

If supx3∈{−1,1} |g(x∼, x3)| �= 0, set m = 1. If |g(x∼,−1)| = |g(x∼, 1)| = 0 and

sup
x3∈{−1,1}

N(s+5/2)∑
j=2

|∂2j−3
3 f(x∼, x3)| �= 0, (4.45)

let m be the minimum integer in {2, . . . , N(s+ 5/2)} such that

sup
x3∈{−1,1}

|∂2m−3
3 f(x∼, x3)| �= 0.

We define in both cases µ(x∼, s, δ) = min{4m − 2 − δ, s + 3/2}. If |g(x∼,−1)| =
|g(x∼, 1)| = 0 and (4.45) does not hold, then define µ(x∼, s, δ) = s+ 3/2. Finally, set

µ̄(s, δ) = inf
x∼∈∂Ω

µ(x∼, s, δ).
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Remark 4.1 Four our purposes, the minimum value that µ̄(s, δ) can assume is
2 − δ, since we will always impose s > 3/2.
We postpone the proof of the next lemma to the Appendix B.
Lemma 4.7 Let Z(xε) = χ(ρ)[U2 − U2(p)](ε−1ρ, θ, ε−1xε

3). For any nonnegative
real number s such that s+1/2 is not an even integer, and for any arbitrarily small
δ > 0, there exists a constant c independent of ε, p, f , and g, such that

‖∂ρZ‖L2(P ε) + ‖∂xε
3
Z‖L2(P ε) ≤ cp−µ̄(s,δ)ab

s.

Finally, we present the convergence results for the hierarchical models. Let P ε
0 =

Ω0 × (−ε, ε), here Ω0 is an open domain such that Ω̄0 ⊂ Ω. This new domain is
useful to obtain interior estimates.
Theorem 4.3 For any nonnegative real numbers s and s∗ such that s∗ + 1/2 is
not an even integer, and for any arbitrarily small δ > 0, there exist constants c and
C independent of ε and p, with c also independent of f and g, such that the error
between uε and its approximation uε(p) is bounded as

‖uε − uε(p)‖L2(P ε) ≤ cε5/2p−2−sas + Cε3,

‖∂ρ[uε − uε(p)]‖L2(P ε) ≤ cε2p−µ̄(s∗,δ)ab
s∗ + Cε5/2,

‖∂θ[uε − uε(p)]‖L2(P ε) ≤ cε5/2p−2−sa1
s + Cε3,

‖∇∼ u
ε −∇∼ uε(p)‖L2(P ε

0 ) ≤ cε5/2p−2−sa1
s + Cε9/2,

‖∂xε
3
uε − ∂xε

3
uε(p)‖L2(P ε) ≤ cε3/2p−1−sas + Cε2,

‖uε − uε(p)‖H1(P ε) ≤ cε3/2p−1−sas + Cε2.

Moreover, if f ≡ 0, then ‖uε − uε(p)‖H1(P ε) ≤ cε2p−µ̄(s∗,δ)ab
s∗ + Cε5/2.

Proof. We prove the second estimate. Using the triangle inequality, the following
holds:

‖∂ρ[uε − uε(p)]‖L2(P ε) ≤ ‖eε
2‖H1(P ε) + ‖eε

2(p)‖H1(P ε)

+ ε5/2‖∇∼ u
2 −∇∼ u2(p)‖L2(P ) + ε2‖∂ρZ‖L2(P ε). (4.46)

From Theorems 2.1 and 3.2, we have that ‖eε
2‖H1(P ε) + ‖eε

2(p)‖H1(P ) ≤ Cε3. The
estimate for ‖∂ρZ‖L2(P ε) comes from Lemma 4.7. Finally we apply Lemma 4.6 to
bound ‖∇∼ u2 − ∇∼ u2(p)‖L2(P ), and substituting in (4.46) we have the result. The
other estimates follow from similar arguments .
Remark 4.2 In the worst case scenario, when g does not vanish identically along
the boundary of ∂P±, i.e., supx∼∈∂Ω maxx3∈{−1,1} |g(x∼, x3)| �= 0, then µ̄(s∗, δ) =
2 − δ.
We summarize the convergence results in the table below. We present only the
leading terms of the errors and in parenthesis we show interior estimates if those
are better than the global ones.
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Table 2: Rates of convergence of the model error.

norm uε − uε(p) Relative Error

‖ · ‖L2(P ε) ε5/2p−2−sas ν−2ε2p−2−sas

‖∂ρ · ‖L2(P ε) ε2p−µ̄ab
s (ε5/2p−2−sa1

s) ν−3/2ε3/2p−µ̄ab
s (ν−2ε2p−2−sa1

s)

‖∂θ · ‖L2(P ε) ε5/2p−2−sa1
s ν−2ε2p−2−sa1

s

‖∂xε
3
· ‖L2(P ε) ε3/2p−1−sas p−1−sas

‖ · ‖H1(P ε) ε3/2p−1−sas ν−1εp−1−sas

The estimates of the table above indicate that the rate of convergence in ε is
the same regardless of the value of p. Nonetheless, increasing p does diminish the
modeling error, as expected. It is interesting to see that for the relative error norm,
when ζ0 ≡ 0 there is no convergence in ε, only in p. Finally, if f is polynomial in
the transverse direction, then u2 = u2(p) in this case, for p high enough, and it is
possible to obtain better convergence rates with respect to ε in all norms of Table 2,
with the exception of the L2(P ε) norm of the normal derivative of the error.15
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Appendix A

In this appendix, we discuss several issues related to the boundary correctors.
Our first goal is to prove existence, uniqueness and regularity of solutions for Poisson
problems in the semi-infinite strip Σ. We also prove that under certain conditions,
such solutions and their approximations decay exponentially. Next, we will study
the properties of a standard Galerkin approximations for the boundary corrector U2

in spaces with polynomial dependence in the vertical direction. We show stability
and convergence results. We do not use the technique of separation of variables,
although it would simplify some of the proofs, because it does not generalize to the
case of linear elasticity.

In this appendix, we denote a typical point in Σ by x∼ = (x1, x2). It is useful to
consider the sets

Σ(t, s) =
{
x∼ ∈ Σ : t < x1 < s

}
, and γt =

{
x∼ ∈ Σ : x1 = t

}
,

for 0 ≤ t ≤ s < ∞. Let V (Σ) =
{
v ∈ D′(Σ) : wv ∈ L2(Σ), ∇∼ v ∈ L∼

2(Σ)
}
, where

w(x∼) = (1+x1)−1. By means of Hardy’s inequality, it is possible to show that V (Σ)
endowed with the inner product

∫
Σ ∇∼ u · ∇∼ v dx∼ +

∫
γ0
uv dx2 is a Hilbert space.15
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We denote V0(Σ) as the set of functions in V (Σ) that vanish on γ0. The following
well-posedness result holds.
Theorem A.1 Assume that w−αf ∈ L2(Σ), where α ≥ 1, and let U0 ∈ H1/2(γ0).
Then there exists unique U ∈ V (Σ) such that∫

Σ

∇∼ U · ∇∼ v dx∼ =
∫

Σ

f v dx∼ for all v ∈ V0(Σ), (A.1)

U = U0 on γ0. (A.2)

Moreover, there exists a constant c independent of f such that

|U |H1(Σ) ≤ 2
2α− 1

‖w−αf‖L2(Σ) + c‖U0‖H1/2(γ0).

With the questions of existence and uniqueness answered, we proceed to further
characterize the boundary correctors. We show that they decay exponentially fast
to a constant, in a sense that we will make clear. Our proof generalizes previous
approaches.12 It allows a nontrivial right hand side, and, more importantly, it works
not only for the exact solution of (A.1), but also for some of its approximations.
So, below, Ū does not necessarily solves (A.1), but it might be the projection of the
solution into some particular space. Similarly, σ̄∼ might be either the gradient of the
solution or its approximation. In our applications, Ū and σ̄∼ are given by Galerkin or
mixed approximations. As we see below, sufficient conditions for such exponential
decay are that Ū ∈ L2

w(Σ), σ̄∼ ∈ L∼
2(Σ), and that Ū , σ̄∼ satisfy for 0 ≤ t ≤ s <∞:∫

Σ(t,s)

|σ̄∼|
2 dx∼ =

∫
Σ(t,s)

fŪ dx∼ −
∫

γt

σ̄1Ū dx2 +
∫

γs

σ̄1Ū dx2, (C1)∫
Σ(t,s)

f dx∼ =
∫

γt

σ̄1 dx2 −
∫

γs

σ̄1 dx2, (C2)

−
∫

Σ(0,t)

x1f dx∼ =
∫

γ0

Ū dx2 +
∫

γt

(tσ̄1 − Ū) dx2, (C3)

∫
γt

Ū2 dx2 ≤ cW

∫
γt

σ̄2
2 dx2 +

1
2

(∫
γt

Ū dx2

)2

for some cW ≥ 0. (C4)

The constant cW in the condition (C4) mimics the Wirtinger inequality (the one-
dimensional version of the Poincaré’s inequality18).

Assume that there exist positive constants c0 and M such that(∫
Σ(t,∞)

f(x∼)2 dx∼

)1/2

+
∣∣∣∣
∫

Σ(t,∞)

(t− x1)f(x∼) dx∼

∣∣∣∣ ≤M exp(−c0t) (A.3)

and define
c∞(Ū) =

∫
Σ

x1f(x∼) dx∼ +
∫

γ0

Ū dx2. (A.4)

In the following two lemmas we show that results similar to (C1)–(C3) are valid in
unbounded sections of Σ as well.
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Lemma A.1 Assume that (A.3) holds, wU ∈ L2(Σ), σ∼ ∈ L∼
2(Σ) and that condi-

tions (C2), (C3) are satisfied. Then for t ≥ 0∫
Σ(t,∞)

f dx∼ =
∫

γt

σ1 dx2, (A.5)∫
γt

U dx2 = c∞(U) +
∫

Σ(t,∞)

(t− x1)f(x∼) dx∼. (A.6)

Proof. If we define P (s) =
∫

γs
σ1 dx2, then in view of (C2) we have that

P (s) =
∫

γt

σ1 dx2 −
∫

Σ(t,s)

f dx∼.

Thus P is a continuous function and lims→∞ P (s) = d, where d is the constant

d =
∫

γt

σ1 dx2 −
∫

Σ(t,∞)

f dx∼.

Since |σ∼| ∈ L2(Σ), then P (s) ∈ L2(R+). Hence d = 0 and identity (A.5) follows.
Now, to conclude (A.6), we use (C3) and then Eqs. (A.4), (A.5) .

The proof of the lemma below follows from similar arguments
Lemma A.2 Assume that U , |σ∼| ∈ L2(Σ) and that condition (C1) is satisfied.
Then, for t ≥ 0 ∫

Σ(t,∞)

|σ∼|
2 dx∼ = −

∫
γt

σ1U dx2 +
∫

Σ(t,∞)

f U dx∼. (A.7)

We have the following results.
Theorem A.2 Assume that (A.3) holds, that wŪ ∈ L2(Σ), σ̄∼ ∈ L∼

2(Σ) satisfy
(C1)–(C4), and also that c∞(Ū) = 0. Then there exists a constant c depending only
on c0 and cW such that∫

Σ(t,∞)

Ū2 + |σ̄∼|
2 dx∼ ≤ c

(
1 +

∫
Σ

|σ̄∼|
2 dx∼

)
exp(−t/c1), (A.8)

where c1 = max{1 + cW , 1/c0}.

Proof. Let I(t) =
∫

γt
Ū dx2. Then, from Lemma A.1 and Eq. (A.3),

|I(t)| ≤M exp(−c0t). (A.9)

If we define the function E(t) =
∫
Σ(t,∞)

|σ̄∼|2 dx∼, then E′(t) = − ∫
γt
|σ̄∼|2 dx2 and

(C4) yields ∫
γt

Ū2 dx2 ≤ −cWE′(t) +
I(t)2

2
, (A.10)

∫
Σ(t,∞)

Ū2 dx∼ ≤
∫ ∞

t

(
cW

∫
γx1

|σ̄∼|
2 dx2 +

1
2
I(x1)2

)
dx1

= cWE(t) +
1
2

∫ ∞

t

I(x1)2 dx1.

(A.11)
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We can now bound the growth of the energy. From (A.9) and (A.11), we conclude
that Ū ∈ L2(Σ), and using Lemma A.2 we gather that:

E(t) = −
∫

γt

σ̄1Ū dx2 +
∫

Σ(t,∞)

f Ū dx∼

≤ 1
2

∫
γt

σ̄2
1 dx2 +

1
2

∫
γt

Ū2 dx2 +
α

2

∫
Σ(t,∞)

Ū2 dx∼ +
1
2α

∫
Σ(t,∞)

f2 dx∼

≤ − (1 + cW )
2

E′(t) +
I(t)2

4
+
αcW

2
E(t) +

α

4

∫ ∞

t

I(x1)2 dx1

+
1
2α

∫
Σ(t,∞)

f2 dx∼,

(A.12)

where (A.10) and (A.11) were used in the last inequality. Choose α = (cW )−1 in
(A.12) to conclude that (recall that E′(t) is nonpositive):

c1E
′(t) ≤ (1 + cW )E′(t) ≤ −E(t) +G(t), (A.13)

where

c1 = max{1 + cW ,
1
c0
}, G(t) =

I(t)2

2
+

1
2cW

∫ ∞

t

I(x1)2 dx1 + cW

∫
Σ(t,∞)

f2 dx∼.

(A.14)
We estimate now the energy norm. Define W (t) such that

W ′(t) = −W (t)
c1

+
G(t)
c1

, W (0) = E(0).

Then

E(t) ≤W (t) =
1
c1

exp(−t/c1)
∫ t

0

exp(x1/c1)G(x1) dx1 + E(0) exp(−t/c1). (A.15)

Using (A.14), (A.3), and (A.9) we have that the integral in (A.15) is uniformly
bounded and then E(t) decays exponentially. Combining (A.9) and (A.11), we
have the corresponding decay of ‖Ū‖L2(Σ(t,∞)) .

Using the previous theorem, we can decompose a general solution as a constant
term plus a exponentially decaying function, as the result below shows.
Corollary A.1 Assume that (A.3) holds and that Ū ∈ V (Σ), σ̄∼ ∈ L2(Σ) satisfy
(C1)–(C4). Defining c∞(Ū) as in (A.4), we have the decomposition

Ū =
1
2
c∞(Ū) + Ū∗, (A.16)

where Ū∗, σ̄∼ decay to zero exponentially as in Theorem A.2, i.e., (A.8) is satisfied
with Ū replaced by Ū∗.
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In the rest of this appendix, we investigate how well elements of V (Σ, p) can
approximate the solution of

∆U = 0 in Σ,
∂U

∂n
= 0 on R

+ × {−1, 1},
U = U0 on γ0,

(A.17)

where U0 ∈ Hr0(γ0) ∩ L̂2(γ0) for some r0 > 3/2. The approximation rates are
severely limited by the presence of corner singularities in U . We describe these
singularities explicitly and expose their influence in the convergence rates.

To describe the singular behavior of the solution of (A.17), we introduce in Σ
two polar coordinate systems, (rl, θl), l = 1, 2 relative to the vertices P1 = (0, 1)
and P2 = (0,−1). The convention is that rl gives the distance to Pl and the angle
θl ∈ [0, π/2] increases counterclockwise, so points lying on γ0 have θ1 = 0 and
θ2 = π/2.

The next theorem,13 shows a decomposition of the solution U in singular and
smooth parts and it is of paramount importance in future estimates.
Theorem A.3 Let U ∈ V (Σ) be the solution of (A.17) with r0 > 3/2 such that
r0 + 1/2 is not an even integer. Then there exist constants cj such that

U = US +W, US = χ̌

2∑
l=1

N(r0+1/2)∑
j=1

cj∂
(2j−1)
2 U0

(
(−1)l+1

)
vj

l , (A.18)

where χ̌ is a smooth cutoff function that equals the identity for x1 < 1 and vanishes
for x1 > 2, N is as in (4.44), and

vj
1 =

[
θ1 cos

(
(2j − 1)θ1

)
+ log r1 sin

(
(2j − 1)θ1

)]
r
(2j−1)
1 ,

vj
2 =

[(π
2
− θ2

)
sin

(
(2j − 1)θ2

)
+ log r2 cos

(
(2j − 1)θ2

)]
r
(2j−1)
2 .

Furthermore, ‖W‖Hr0+1/2(Σ) ≤ c‖U0‖Hr0 (γ0) for some constant c.

Remark A.1 Note that vj
1 = vj

2 = 0 when x1 = 0, and therefore US is identically
zero at x1 = 0.
Remark A.2 Since U0 ∈ Hr0(−1, 1) and 2N(r0 + 1/2) − 1 < r0 − 1/2, then US

is well defined. Also, note that the singular behavior of U depends not only on the
regularity of the Dirichlet data U0 but also on how many derivatives of U0 vanish
at the endpoints −1, 1. For instance, although U0(y) = y is smooth, it gives rise to
a singular solution.
Let π̂1(x2)

p be the operator that acts like π̂1
p in each vertical fiber, i.e., if φ ∈

L2(R+;H1(−1, 1) ∩ L̂2(−1, 1)), then π̂1(x2)
p φ ∈ L2(R+; P̂p(−1, 1)), and∫

Σ

∂2(φ− π̂1(x2)
p φ)∂2ψ dx∼ = 0 for all ψ ∈ L2((−1, 1); P̂p(−1, 1)).
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Furthermore, let πp be the orthogonal L2 projection operator from L2(Σ) into
L2(R+; Pp(−1, 1)), and let Π1

p be the orthogonalH1 projection operator fromH1(Σ)
into H1(R+; Pp(−1, 1)).

To estimate the projection error of the singular function US , we apply the ideas
of Dorr,10,11 and the Remark 6.3 of Bernardi and Maday.5 See the Madureira’s
thesis15 for a description of how such convergence rates can be obtained.
Lemma A.3 Let v(r, θ) = χ̌rα[ξ1(θ) + ξ2(θ) log r], where ξ1, ξ2 ∈ C∞([0, π/2]),
and α is a nonnegative real number. Then, for every δ, there exists a constant c
such that

‖v − π(ρ̃2)
p v‖H1(Σ) ≤ cp−2α+δ.

The result below estimates approximations given by projection operators, based on
the decomposition (A.18).
Lemma A.4 Assume that U ∈ V (Σ) solves (A.17) with r0 > 3/2 such that r0+1/2
is not an even integer, and that W and US are as in (A.18). Then, there exists a
constant c such that

‖W − π1(x2)
p W‖H1(Σ) ≤ cp1/2−r0‖U0‖Hr0 (γ0).

Also, if US is not the zero function then for any arbitrarily small δ > 0, there exists
a constant c such that

‖US − π(x2)
p US‖H1(Σ) ≤ cp−4m+2+δ‖U0‖Hr0 (γ0),

where m ∈ {1, . . . , N(r0 + 1
2 )} is the minimum integer such that

|∂(2m−1)
2 U0(−1)| + |∂(2m−1)

2 U0(1)| �= 0.

Remark A.3 Using the work of Babuška and Suri,2 it is possible to improve the es-
timate of Lemma A.4 slightly, replacing p−4m+2+δ by p−4m+2(log p), at the expense
of many technicalities.
We define the rate of convergence of our approximation result below.
Definition A.1 For U0 ∈ Hr0(−1, 1), and N as in (4.44), if there exists an mini-
mum integer m ∈ {1, . . . , N(r0 + 1

2 )} such that |∂2m−1
2 U0(−1)|+ |∂2m−1

2 U0(1)| �= 0,
let γ(r0, δ) = min

{
4m− 2 − δ, r0 − 1/2

}
, otherwise let γ(r0, δ) = r0 − 1/2.

We conclude now the following approximation result for U .
Theorem A.4 Assume that U solves (A.17) with r0 > 3/2 such that r0 + 1/2 is
not an even integer. Then

‖U − Π1
pU‖H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0(γ0),

where γ is as in Definition A.1. The constant c depends on r0 and δ > 0 only.

Proof. Using the best approximation property of Π1
p, Theorem A.3 and Lemma A.4,

we have that

‖U − Π1
pU‖H1(Σ) ≤ ‖US − π(x2)

p US‖H1(Σ) + ‖W − π1(x2)
p W‖H1(Σ)

≤ cp−γ(r0,δ)‖U0‖Hr0(γ0)
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.
Now we use the above result to estimate the errors due to the Galerkin projec-

tions.
Theorem A.5 For any real number r0 > 3/2 such that r0 + 1/2 is not an even
integer, and any arbitrarily small δ > 0, there exists a constant c such that if
U ∈ V (Σ) solves (A.17) with U0 ∈ Hr0(γ0) ∩ L̂2(γ0), and if U(p) ∈ V (Σ, p) solves∫

Σ

∇∼ U(p) · ∇∼ v dx∼ = 0 for all v ∈ V0(Σ, p),

U(p) = π̂1
pU0 on γ0,

then
|U − U(p)|H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0),

where γ is as in Definition A.1.

Proof. Let Ũ0 be the trace of Π1
pU on γ0. Then, from the trace Theorem and

Theorem A.4,

‖U0 − Ũ0‖H1/2(γ0) ≤ c‖U − Π1
pU‖H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0(γ0).

Also,

‖Ũ0 − π̂1
pU0‖H1/2(γ0) ≤ ‖Ũ0 − U0‖H1/2(γ0) + ‖U0 − π̂1

pU0‖H1/2(γ0)

≤ cp−γ(r0,δ)‖U0‖Hr0(γ0).

Introduce now Ũ ∈ V (Σ) such that∫
Σ

∇∼ Ũ · ∇∼ v dx∼ = 0 for all v ∈ V0(Σ),

Ũ = Ũ0 on γ0,

and also Ũ(p) ∈ V (Σ, p) such that∫
Σ

∇∼ Ũ(p) · ∇∼ v dx∼ = 0 for all v ∈ V0(Σ, p),

Ũ(p) = Ũ0 on γ0,

Then,

|U − Ũ |H1(Σ) + |Ũ(p) − U(p)|H1(Σ)

≤ c‖U0 − Ũ0‖H1/2(γ0) + c‖Ũ0 − π̂1
pU0‖H1/2(γ0) ≤ cp−γ(r0,δ)‖U0‖Hr0(γ0). (A.19)

Now we advance to estimate |Ũ − Ũ(p)|H1(Σ). Since Ũ(p) − Π1
pU ∈ V0(Σ, p), then

|Ũ(p) − Π1
pU |2H1(Σ) =

∫
Σ

∇∼(Ũ(p) − Π1
pU) · ∇∼(Ũ − Π1

pU) dx∼

≤ |Ũ(p) − Π1
pU |H1(Σ)|Ũ − Π1

pU |H1(Σ),
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and therefore, |Ũ(p)−Π1
pU |H1(Σ) ≤ |Ũ−Π1

pU |H1(Σ). So, using the triangle inequality

|Ũ − Ũ(p)|H1(Σ) ≤ |Ũ − Π1
pU |H1(Σ) + |Π1

pU − Ũ(p)|H1(Σ) ≤ 2|Ũ − Π1
pU |H1(Σ)

≤ 2|Ũ − U |H1(Σ) + 2|U − Π1
pU |H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0(γ0).

from (A.19) and from Theorem A.4. Finally,

|U − U(p)|H1(Σ) ≤ |U − Ũ |H1(Σ) + |Ũ − Ũ(p)|H1(Σ) + |Ũ(p) − U(p)|H1(Σ)

≤ cp−γ(r0,δ)‖U0‖Hr0(γ0),

and the result follows .
Remark A.4 It is interesting to see how the corner singularities spoil an otherwise
good convergence rate. For example, if U0(y) = y, the Galerkin projection converges
as p−2+δ in H1(Σ), while if U0 is still smooth but has all derivatives vanishing at
the endpoints, then the convergence is faster than polynomial.15

Appendix B

In this second part of the appendix, we include proofs of results stated through-
out the paper and which proofs use results developed in the first part of this ap-
pendix.

Proof. (of Lemma 2.2) We use induction on k to prove the result and the relation∫
Σ

ρ̃l∂ρ̃U
k dρ̃ dx3 =

∫
Σ

ρ̃lUk dρ̃ dx3 = 0, l = 0, 1, · · · . (B.1)

Recall that, by convention, U1 = 0, and assume that the lemma and (B.1) hold
for k = 1, · · · ,K − 1. We show now that the same holds for k = K. From the
definition of FK , the hypotheses of Theorem A.1 are fulfilled, and there exists a
unique function UK solving (2.22) such that |∂ρ̃U

k| + |∂3U
k| ∈ L2(Σ). To con-

clude (2.24), we first note from Corollary A.1 that UK decays toward the constant
cK(θ) =

∫
Σ
ρ̃FK(ρ̃, θ, x3) dρ̃ dx3 +

∫ 1

−1
uK(0, θ, x3) dx3. Our goal now is to show that

this constant is actually zero. Since uK has zero average in each fiber, using the
definition of Fk, it is enough to prove (B.1) for any positive integer l. Using the
formula ∫

Σ

u∆ v dρ̃ dx3 =
∫

Σ

v∆u dρ̃ dx3 +
∫

∂Σ

u
∂v

∂n
− v

∂u

∂n
dρ̃ dx3,

with u = UK and v = ρ̃l+2/[(l + 2)(l + 1)], we get∫
Σ

ρ̃lUK dρ̃ dx3 =
∫

Σ

ρ̃l+2

(l + 2)(l + 1)
FK dρ̃ dx3 = 0

from the definition of FK and the inductive hypothesis. Similarly, using integration
by parts, we also have that

∫
Σ
ρ̃l∂ρ̃U

K dρ̃ dx3 = 0. Hence (B.1) holds and the lemma
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follows .

Proof. (of Lemma 4.7) From Theorem A.5, with u2(0, θ, ·) replacing U0, we have
that for each θ,

|U2 − U2(p)|H1(Σ) ≤ cp−γ(s+2,δ)‖u2(0, θ, ·)‖Hs+2(−1,1). (B.2)

Changing coordinates, we have that

‖∂ρZ‖2
L2(P ε)

≤ c

∫ L

0

∫
Σ

|∂ρ[U2 − U2(p)]|2 dρ̃ dx3 dθ + c

∫ L

0

∫
Σ

|χ′|2[U2 − U2(p)]2 dρ̃ dx3 dθ

≤ cp−γ(s+2,δ)‖u2(0, θ, ·)‖Hs+2(−1,1),

where we used Lemma 2.3 and Eqs. (3.42) and (B.2) in the last inequality. Now,
from the definitions 4.3 and A.1, γ(r+2, δ) = µ̄(s, δ), and from Lemma 2.1, we have
that

‖u2(0, θ, ·)‖Hr+2(−1,1) ≤ ab
s,

and the result follows .

Proof. (of Lemma 4.7) For x∼ ∈ ∂Ω fixed, let θ be such that z∼(θ) = x∼. From
Eqs (2.22), (3.41), and Theorem A.5, there exists a constant c such that

∫
Σ

|∂ρ̃[U2−U2(p)]|2 + |∂x3 [U
2−U2(p)]|2 dρ̃ dx3 ≤ cp−γ(s+2,p)‖u2(x∼, ·)‖Hs+2(−1,1)

≤ cp−γ(s+2,p)(‖f(x∼, ·)‖Hs(−1,1) + |g(x∼,−1)| + |g(x∼, 1)|). (B.3)

Replacing U0(·) by u2(x∼, ·) in Definition A.1, and using (2.9), (2.11), and (2.16),
it is not hard to show that γ(s + 2, p) ≤ µ̄(s, δ). Integrating (B.3) in θ and using
Lemma 2.1, we conclude the proof .
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