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Abstract. In this paper we perform an error analysis for a multiscale finite element method

for singularly perturbed reaction–diffusion equation. Such method is based on enriching the

usual piecewise linear finite element trial spaces with local solutions of the original problem,

but do not require these functions to vanish on each element edge. Bubbles are the choice for

the test functions allowing static condensation, thus our method is of Petrov–Galerkin type.

We perform convergence analysis in different asymptotic regimes, and we show uniform

convergence in an appropriate norm with respect to the small parameter. Numerical results

show that the new method is able to compute solutions even on coarse meshes.

1. Introduction

It is well known that standard Galerkin method is inadequate to solve singularly perturbed

problems. Indeed, the method is not uniformly stable and the solution presents spurious

oscillations in the presence of boundary layers (e.g., see [24] and references therein).

Specially refined meshes, such as Shishkin meshes (see [22, 27], and references therein)

can ameliorate this situation. Nonetheless, such strategy becomes increasingly complex for

complicate geometries, and can be prohibitive to treat realistic three-dimensional problems.

Adaptivity is another possibility and consists on associating a posteriori estimators to the

Galerkin method in order to built refined meshes (see for instance [1, 3], and references

therein).

Previous papers [11, 12, 18, 19, 28] carried out more stable and accurate formulations

based on stabilized methods for the reaction–diffusion model, using coarse meshes. The

stabilized methods are based on modified variational formulations, but still employ piecewise

polynomials. These modifications involve nontrivial mesh-dependent stability parameters,

and also depend on the residuals of the governing differential equation.

Partial justification of these ideas were made possible by relating stabilized methods to the

Galerkin method using piecewise polynomials enriched with “bubble” functions, as illustrated
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in [4, 5, 6]. To systematically treat various singularly perturbed problems, residual-free

bubbles were introduced in [8, 13, 14, 15, 16, 17]. These bubbles are functions with local

support which solve, exactly or not, differential equations at the element level, involving the

differential operator of the problem. The right hand sides of these local problems are the

residuals due to the polynomial part of the solution. The other ingredient is the requirement

that the bubble part vanishes on element boundaries for second order problems. Convergence

results for linear and bilinear elements can be found in [7, 23, 26]. It turns out that such

construction for the reaction–diffusion problem yields a poor approximation. Assuming the

bubble part of the trial solution to be zero across element edges introduces inaccuracies.

In a previous work, Franca, Madureira and Valentin [10] have explored a new strategy,

without the zero boundary value restriction on each element, conjugate with a Petrov-

Galerkin method. They let the test space to be enriched with residual-free bubble functions,

but the functions in the trial space have boundary values determined by edge restrictions

of the governing differential operator. Such restrictions yield ordinary differential equations

that can be solved a priori. Even more importantly, the modification is computable at the

element level. Related ideas were proposed by [25] in the context of spline theory, and by

Hou, Wu and Cai [20, 21] for PDEs with oscillatory coefficients.

The present work is devoted to develop error estimates for the multiscale finite element

method proposed in [10]. We perform convergence analysis in two different asymptotic

regimes, and we point out sufficient conditions to obtain uniform convergence with respect

to the small parameter in an appropriate norm. Moreover, we show that we recover the

standard Galerkin energy norm error estimates when the mesh is fine enough.

The paper is organized as follows. In Section 2 we revisit our Petrov-Galerkin formulation.

In Section 3 we derive error estimates in different asymptotic regimes, and next in Section 4

we perform numerical tests. Finally in the Appendix we present some auxiliary results.

2. The Multiscale Method

Let Ω be a bounded domain in R2 with polygonal boundary ∂Ω. We consider u ∈ H1
0 (Ω)

the solution of the reaction diffusion equation

Lu := −ε∆u+ σu = f in Ω, u = 0 on ∂Ω,(1)

where ε and σ are positive constants. We assume f piecewise linear, thus (1) is well-posed.

The usual weak formulation of problem (1) consists on finding u ∈ H1
0 (Ω) such that

(2) a(u, v) = (f, v), for all v in H1
0 (Ω),
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where the bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R is given by

a(u, v) := ε(∇u,∇v) + σ(u, v).(3)

As usual (·, ·)D denotes the inner product in L2(D) where D is a open set of Ω. The norm

induce by such inner product is denoted by ‖.‖0,D. To simplify the notation, we write (·, ·)
and ‖.‖0 when D = Ω. Similarly the L∞(D) norm is denoted by ‖.‖∞,D. The weak problem

(2) is well-posed thanks to the coercivity of the bounded bilinear form a(·, ·) over H1
0 (Ω) and

the Lax–Milgram Theorem.

Let Th be a regular triangulation of domain Ω into elements K with boundary ∂K such

that

Ω =
⋃

K∈Th

K,

where the intersection of two elements is either a vertex, or an edge, or empty. We define

Vh as the set of edges Z belonging to Th, we denote by hK a characteristic length of K ∈ Th,
and we set h = max

K∈Th
{hK}. By Ωlayer, we denote the set of elements in Th which boundaries

have nontrivial intersection with ∂Ω, and we define

Ω0 = Ω/Ωlayer,

and hl = max
K∈Ωlayer

{hK}. In the sequel C, C0, C1, C2, . . . will denote generic positive constants,

independent of h, ε or σ, but whose value may vary in each occurrence. Moreover, we write

b ' d meaning that

b ≤ Cd and d ≤ Cb.

The space of piecewise linear polynomials P1(K) is used to approximate the exact solution.

We denote by Vh the standard finite element space

Vh := {vh ∈ H1(Ω) | vh|K ∈ P1(K) for all K ∈ Th},(4)

and

V 0
h := Vh ∩H1

0 (Ω),

and the Galerkin scheme associated to the continuous problem reads: find ug ∈ V 0
h such that

(5) a(ug, v1) = (f, v1), for all v1 in V 0
h .

It is well known that the Galerkin method (5) is unable to approximate the solution if

ε � σh2. To overcome such limitation, we have proposed in [10] a method based on en-

riching the standard finite element space. The idea is to add special functions, also called
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multiscale functions, to the usual polynomial spaces to stabilize and improve the accuracy

of the Galerkin method. For the sake of completeness, we describe the main steps to obtain

our multiscale method.

We start by introducing some new notation. We denote by H1
0 (Th) and H1(Th) the spaces

of functions on Ω whose restrictions to each element K belongs to H1
0 (K) and H1(K),

respectively. Given an edge Z belonging to Vh, let P1(Z) the space of linear polynomials on

Z, and let us introduce the operators BiK : P1(Z) → L2(Z) defined in the following way:

given a base function qi of P1(Z) we associate wi = BiKqi ∈ L2(Z) such that

(6) Li∂Kwi := −ε∂sswi + σiwi = qi on Z, wi = 0 at the nodes.

The coefficient σi is set as a positive parameter which can depend on |K| and |Z|, and

on the node i. Such dependence will be specified later (see equation (28)), and we denote

by s a variable that parametrize Z by arc-length. We point out that (6) is well-posed. A

similar boundary condition was used in Hou, Wu and Cai [20, 21] for elliptic problems with

oscillatory coefficients. Now, let Mi
K : P1(K) → H1(K) be the linear operator defined as

follows: given vi a base function of P1(K) let bi = Mi
K vi ∈ H1(K) be the solution of the

problem

Lbi = vi in K, bi = BiK(
σi
σ
vi) on each Z ∈ ∂K,(7)

where BiK are the local operators defined in (6). Since bi|Z ∈ L2(Z) problem (7) is clearly well-

posed in each K ∈ Th. Therefore, using (7) we introduce the operatorMK : P1(K)→ H1(K)

defined by

MK ph :=
∑

i

Mi
K(bi) pi, ph ∈ P1(K),(8)

where pi represents the coefficients of ph. Furthermore, we denote by Eh the subspace of

H1(Th), called multiscale space, such that Eh ∩ V 0
h = {0} and defined by

Eh := {ve ∈ H1(Th) | ve|K =MK v1 for all v1 ∈ Vh},(9)

whereMK is the operator (8). Hence, we introduce the trial subspace Uh of H1(Th) defined

by

Uh := V 0
h ⊕ Eh,(10)

thus an element vh of Uh may be uniquely written as

vh := v1 + ve,
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where v1 ∈ V 0
h and ve ∈ Eh. The space Eh is a finite dimensional space and dim(Eh) =

dim(Vh). We note from (7) that the functions belonging to Eh may be a priori discontinuous

across the edges of triangles. The continuity is enforced only at the nodes of the triangulation.

Therefore, the method is nonconforming. Our approximation of the exact solution in the

enriched space (10) is defined by the solution of the following Petrov-Galerkin problem: find

uh ∈ Uh such that

(11) ah(uh, vh) = (f, vh), for all vh ∈ V 0
h ⊕H1

0 (Th)

where

ah(u, v) :=
∑

K∈Th

a(u, v)K ,

and

a(u, v)K := ε(∇u,∇v)K + σ(u, v)K .

From (11) we immediately have that the corresponding uh ∈ Uh satisfies

ah(uh, v1) = (f, v1) for all v1 ∈ V 0
h ,(12)

a(uh, v
K
b )K = (f, vKb )K for all vKb ∈ H1

0 (K).(13)

We postpone to Section 3 the discussion of well-posedness of (11). By integrating (13) by

parts, we immediately have that the enriched part of the solution uh, denoted by ue ∈ Eh,
is the strong solution of the local problem

(14) Lue = f − Lu1 in each K ∈ Th,

and hence, from (14) we impose

(15) ue =MK(f − Lu1).

It follows by construction and by (12) that (11) is equivalent to the finite dimensional

problem: find u1 ∈ V 0
h such that

(16) ah((I −MKL)u1, v1) = (f, v1)− ah(MKf, v1) for all v1 ∈ V 0
h ,

where I is the identity operator.
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2.1. Corresponding discrete formulation. Let us rewrite (15) in terms of basis functions.

We assume that

(17) Eh = span{φi}i∈I and Vh = span{ψi}i∈I ,

where ψi are the usual hat functions. Then, f and u1 are given by

u1 =
∑

i∈I0

ψiui, f =
∑

j∈I

ψjfj,

where ui , i ∈ I0, and fj, j ∈ I, are the nodal values of u and f , respectively. Here I and I0

are the set of indexes of total and internal nodal points, respectively. It follows from (15),

and from the linearity of the operators L and L∂K that

(18) ue =
∑

i∈I0

φiui −
∑

i∈I

φi
fi
σ
,

where the basis functions φi ∈ Eh, i ∈ I, satisfy

Lφi = −σψi in K,(19)

φi = µi on each Z ∈ ∂K,(20)

for all K ∈ Th. From (6) and (18), µi is the solution of the boundary value problem

Li∂Kµi = −σiψi on Z and µi = 0 at the nodes.(21)

It is convenient to present such problem in terms of the unknown λi ∈ Uh, i ∈ I, be defined

by

(22) λj := ψj + φj = (I − σMK)ψj for all j ∈ I.

Hence, from the definition (22) the function λi, i ∈ I, satisfies

Lλi = 0 in K,(23)

λi = ρi on each Z ∈ ∂K,(24)

where ρi, i ∈ I, satisfies the ordinary differential problem

Li∂Kρi = 0 on Z and ρi = ψi at the nodes.(25)

Thus the discrete version of the weak formulation (16) reads

∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

[a(λj, ψi)− ε(∇ψj,∇ψi)]
fj
σ

for all i ∈ I0.(26)
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Remark 1. Numerical experiments indicate that the modified scheme type

(27)
∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

(λj, ψi)
fj
σ

for all i ∈ I0,

also yields accurate numerical approximations. Nevertheless, we do not believe that we can

derive (27) using the procedure described above. Thus, we do not advocate this approach.

Let K be an element of the triangulation Th, and Z an edge of its boundary ∂K. The

dependence of coefficients σi in terms of the shape of elements K is given by setting

σi :=
4|K|2

|Z|2|Zi|2
σ,(28)

where Zi denotes the corresponding edge of K opposed to the node i. Moreover, we define

γiK =

(

∂ψi
∂x
|K
)2

+

(

∂ψi
∂y
|K
)2

=
|Zi|2

4|K|2
' h−2

K for all i ∈ I.(29)

Thanks to the definitions (28), (29) the analytical solution of (23), (24) is given by

(30) λi(x, y) =

sinh

(

√

σ
γiKε

ψi(x, y)

)

sinh

(

√

σ
γiKε

) for all i ∈ I.

By taking a particular node k ∈ I, and look at all elements connected to this node, then the

equation (30) illustrate the nodal shape functions λk. Fixing σ = 1, we obtain for ε = 1, 10−2,

10−4, the shape functions λk, depicted in Figures 1 and 2. Note that as ε approaches zero,

the usual pyramid is squeezed in its domain of influence in the neighborhood around node

k. Note that the support of λk coincide with the support of the piecewise linear function ψk.

Since the elements in the patch are all identical, the shape functions λk depicted in Figures

1, 2 are continuous. As we pointed out before this is not true in general.
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Figure 1. The function λk for ε = 1 (left) and ε = 10−2 (right).

Figure 2. The function λk for ε = 10−4.

3. Error Analysis

We are now concerned with the error analysis of the multiscale method (16) in both ε and

h asymptotic limits. For simplicity we perform the error analysis of the method by setting γiK

independent of i ∈ I. With such assumption we assume an equilateral triangulation of the

domain. The general case is similar, but involves a quite cumbersome symbolic computation

(see Lemma 1 below). We start by recalling that the multiscale method (16) reads: find

u1 ∈ V 0
h such that

(31) ae(u1, v1) = fe(v1), for all v1 ∈ V 0
h ,

where the modified bilinear and linear forms are

ae(u, v) := a(u, v)− ah(MKLu, v), and fe(v) := (f, v)− ah(MKf, v).(32)
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We first observe that the method (31) is consistent sinceMK(Lu− f) = 0, see definition

(7). We shall show that the problem (31), and consequently (16), is well-posed. Before

presenting the main coercivity result, we need the following estimates.

Lemma 1. Let the linear operator MK be defined by (8). Then, there exist C1
λ, C2

λ, C1
ρ ,

C2
ρ , Cθ, Cξ, Cγ, and Cζ positive constants depending only on the inner angles of K, and such

that

i) C1
λλ

K
min‖v1‖2

0,K ≤ ((I − σMK)v1, v1)K ≤ C2
λλ

K
max‖v1‖2

0,K , ∀v1 ∈ Vh,

ii) −C1
ρρ

K
minh

−2
K ‖v1‖2

0,K ≤ −(σ∇MKv1),∇v1)K ≤ 0, ∀v1 ∈ Vh,

iii) 0 ≤ (∇((I − σMK)v1),∇v1)K ≤ C2
ρρ

K
maxh

−2
K ‖v1‖2

0,K , ∀v1 ∈ Vh,

iv) ‖MKv1‖2
0,K ≤ Cθθ

K
maxσ

−2‖v1‖2
0,K , ∀v1 ∈ Vh,

v) ‖∇(MKv1)‖2
0,K ≤ Cξξ

K
max(σhK)−2‖v1‖2

0,K , ∀v1 ∈ Vh,

vi) ‖(I − σMK)v1‖2
0,K ≤ Cγγ

K
max‖v1‖2

0,K , ∀v1 ∈ Vh,

vii) ‖∇((I − σMK)v1)‖2
0,K ≤ Cζζ

K
maxh

−2
K ‖v1‖2

0,K , ∀v1 ∈ Vh,

where the quantities constants λKmin, λKmax, ρ
K
min, ρKmax, θ

K
max, ξ

K
max, γ

K
max and ζKmax depend in a

nontrivial way on ε, σ, hK , and are given in the Appendix. Here hK =
γiK
CK

where CK = 6
C1
ρ

C1
λ
.

Proof. Let K be a triangle element of partition Th with characteristic length hK . Then,

K = T (K̂),

where T : (ξ, η) → (x, y) is an affine transformation and K̂ is the unit triangle reference

element. Let v1 be an element of Vh, and v1|K =
∑3

i=1 viψi. The basis functions defined on

the reference element K̂ are

ψ̂i := ψi ◦ T (ξ, η), λ̂i := λi ◦ T (ξ, η), φ̂i := φi ◦ T (ξ, η),

and we have from definition (22) that

((I − σMK)v1, v1)K =
3
∑

i=1

3
∑

j=1

vivj(λi, ψj)K = 2|K|
3
∑

i=1

3
∑

j=1

vivj(λ̂i, ψ̂j)K̂ ,

−(σ∇(MKv1),∇v1)K =
3
∑

i=1

3
∑

j=1

vivj(∇φi,∇ψj)K '
3
∑

i=1

3
∑

j=1

vivj(∇ξηφ̂i,∇ξηψ̂j)K̂ ,

(∇((I − σMK)v1),∇v1)K =
3
∑

i=1

3
∑

j=1

vivj(∇λi,∇ψj)K '
3
∑

i=1

3
∑

j=1

vivj(∇ξηλ̂i,∇ξηψ̂j)K̂ ,
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‖MKσv1‖2
0,K =

3
∑

i=1

3
∑

j=1

vivj(φi, φj)K = 2|K|
3
∑

i=1

3
∑

j=1

vivj(φ̂i, φ̂j)K̂ ,

‖∇MKσv1‖2
0,K =

3
∑

i=1

3
∑

j=1

vivj(∇φi,∇φj)K '
3
∑

i=1

3
∑

j=1

vivj(∇ξηφ̂i,∇ξηφ̂j)K̂ ,

‖(I − σMK)v1‖2
0,K =

3
∑

i=1

3
∑

j=1

vivj(λi, λj)K = 2|K|
3
∑

i=1

3
∑

j=1

vivj(λ̂i, λ̂j)K̂ ,

and

‖∇((I − σMK)v1)‖2
0,K =

3
∑

i=1

3
∑

j=1

vivj(∇λi,∇λj)K '
3
∑

i=1

3
∑

j=1

vivj(∇ξηλ̂i,∇ξηλ̂j)K̂ ,

where ∇ξη represents the gradient in terms of local coordinates ξ and η. In addition, it is

well known that

h2
K

3
∑

i=1

v2
i ' ‖v1‖2

0,K for all K ∈ Th.

Since the matrices (λ̂i, ψ̂j)1≤i,j≤3, (∇ξηφ̂i,∇ξηψ̂j)1≤i,j≤3, (∇ξηλ̂i,∇ξηψ̂j)1≤i,j≤3, (φ̂i, φ̂j)1≤i,j≤3,

(∇ξηφ̂i,∇ξηφ̂j)1≤i,j≤3, (λ̂i, λ̂j)1≤i,j≤3, and (∇ξηλ̂i,∇ξηλ̂j)1≤i,j≤3 are symmetric, thus diagonal-

izable, we have that

C1
λλ

K
min‖v1‖2

0,K ≤
3
∑

i=1

3
∑

j=1

vivj(λi, ψj)K ≤ C2
λλ

K
max‖v1‖2

0,K ,

−C1
ρρ

K
minh

−2
K ‖v1‖2

0,K ≤
3
∑

i=1

3
∑

j=1

vivj(∇φi,∇ψj)K ≤ 0,

0 ≤
3
∑

i=1

3
∑

j=1

vivj(∇λi,∇ψj)K ≤ C2
ρρ

K
maxh

−2
K ‖v1‖2

0,K ,

3
∑

i=1

3
∑

j=1

vivj(φi, φj)K ≤ Cθθ
K
max‖v1‖2

0,K ,

3
∑

i=1

3
∑

j=1

vivj(∇φi,∇φj)K ≤ Cξξ
K
maxh

−2
K ‖v1‖2

0,K ,
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3
∑

i=1

3
∑

j=1

vivj(λi, λj)K ≤ Cγγ
K
max‖v1‖2

0,K ,

3
∑

i=1

3
∑

j=1

vivj(∇λi,∇λj)K ≤ Cζζ
K
maxh

−2
K ‖v1‖2

0,K ,

where the positive constants λKmin and λKmax are the minimum and maximum eigenvalue of ma-

trix (λ̂i, ψ̂j)1≤i,j≤3. The positive constants ρKmax, θ
K
max and ξKmax are the maximum eigenvalues

of the matrices (∇ξηλ̂i,∇ξηψ̂j)1≤i,j≤3, (φ̂i, φ̂j)1≤i,j≤3, and (∇ξηφ̂i,∇ξηφ̂j)1≤i,j≤3, respectively.

The negative constant−ρKmin denote the minimum eigenvalue of matrix (∇ξηφ̂i,∇ξηψ̂j)1≤i,j≤3,

and the positive constants γKmax and ζKmax are the maximum eigenvalues of the matrices

(λ̂i, λ̂j)1≤i,j≤3, and (∇ξηλ̂i,∇ξηλ̂j)1≤i,j≤3, respectively. Their expressions are presented in the

Appendix. �

We are ready to prove the existence and uniqueness of solution for the problem (31).

Consider the local h-dependent norm

‖v‖E,K :=
√

CKαK‖v‖2
0,K + h2

K‖∇v‖2
0,K for all v ∈ H1(Th),(33)

where αK is the positive constant given by

αK =
σh2

K

CKε
λKmin −

ρKmin
6
,(34)

and we define α = minK∈Th αK . The positiveness of αK follows from the definition of the

eigenvalues ρKmin and λKmin, and is illustrated in Figure 12. As usual the associate global norm

is given by

‖v‖E :=

√

∑

K∈Th

‖v‖2
E,K for all v ∈ H1(Th),(35)

and we have the following coercivity result.

Lemma 2. Let ‖.‖E,K be the norm defined by (33). Then, the bilinear form ae : Vh×Vh → R
is coercive and

ae(v1, v1) ≥ C
∑

K∈Th

ε

h2
K

‖v1‖2
E,K for all v1 ∈ Vh.
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Proof. From the definition of bilinear form (32), from (34), applying the items (i) and (ii)

of Lemma 1, and since CK = 6
C1
ρ

C1
λ

we obtain that

ae(v1, v1) ≥
∑

K∈Th

σC1
λλ

K
min‖v1‖2

0,K + ε‖∇v1‖2
0,K − ε (∇(MKσv1),∇v1)K

≥
∑

K∈Th

σC1
λλ

K
min‖v1‖2

0,K + ε‖∇v1‖2
0,K − C1

ρ

ε

h2
K

ρKmin‖v1‖2
0,K

=
∑

K∈Th

ε

h2
K

[

CK

(

σh2
K

CKε
C1
λλ

K
min −

C1
ρρ

K
min

CK

)

‖v1‖2
0,K + h2

K‖∇v1‖2
0,K

]

=
∑

K∈Th

ε

h2
K

[

C1
λCKαK‖v1‖2

0,K + h2
K‖∇v1‖2

0,K

]

,

and the result follows redefining the constants. �

Remark 2. Existence and uniqueness of solutions for problem (31) follows from Lax-Milgram

Theorem. Let ue ∈ Eh be uniquely defined by ue = MK(f − σu1) in K, where u1 is the

unique solution of (31). Then, ue + u1 belongs to Uh and satisfies (16).

Remark 3. The following limits will be useful in the sequel

lim
ε→0

αK =
3

4
and lim

hK→0

CKε

σh2
K

αK =
1

48
.(36)

The behavior of coefficients and eigenvalues mentioned here are illustrated by the Figure 12

in the Appendix.

3.1. Case ε → 0. We study the behavior of the convergence error in the case that ε � 1.

In this case we shall use the asymptotic properties of the exact solution u. As ε goes to zero

the exact solution converges, at least away from the boundary, to fσ−1. We shall estimate

the related error in the norm (35), and also bound u − fσ−1 in the same norm. The final

result, i.e., the estimate for u− u1, follows from the triangle inequality. We start by noting

that [2]
∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

0

≤ C

σ

(

ε1/4 ‖f‖0,∂Ω + ε1/2 ‖f‖1

)

,

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

0

≤ C

σ

(

ε−1/4 ‖f‖0,∂Ω + ‖f‖1

)

.

Thus by the norm definition (33), and since αK < 1, we obtain the following estimate
∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

E

≤ C

σ

[

(

hε−1/4 + ε1/4
)

‖f‖0,∂Ω +
(

h+ ε1/2
)

‖f‖1

]

.(37)

The estimate (37) indicates that we have to refine the entire domain in order to control the

error when ε tends to zero. Such estimate seems pessimist, and indeed, we can improve it.

Let us define f ∈ V 0
h such that f = f in Ω0. We have the following result.
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Lemma 3. Let u be the solution of (1). Then, there exit C1, C2, and C3 such that

i)

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0

≤ C1

σ2

(

hl ‖f‖2
∞,∂Ω + εσ−1

∥

∥∇f
∥

∥

2

0

)

,

ii)

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0

≤ C2

σ2

[

(hlε
−1σ + 1) ‖f‖2

∞,∂Ω +
∥

∥∇f
∥

∥

2

0

]

,

iii)
∑

K∈Th
h2
K

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

≤ C3

σ2

[

(h3
l ε
−1σ + h2

l ) ‖f‖
2
∞,∂Ω + h2

∥

∥∇f
∥

∥

2

0

]

.

Proof. Let u be the solution of the problem

Lu = f in Ω, u = 0 on ∂Ω,(38)

then e = u− u satisfies

Le = f − f in Ω, e = 0 on ∂Ω,(39)

and it follows from (39) that

ε ‖∇e‖2
0 + σ ‖e‖2

0 ≤
C

σ

∥

∥f − f
∥

∥

2

0
=
C

σ

∥

∥f − f
∥

∥

2

0,Ωlayer
≤ C

σ
hl ‖f‖2

∞,∂Ω ,(40)

and from (38) that

ε

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0

+ σ

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0

≤ C
ε

σ2

∥

∥∇f
∥

∥

2

0
.(41)

Moreover,

∥

∥

∥

∥

f − f
σ

∥

∥

∥

∥

2

0

≤ C

σ2
hl ‖f‖2

∞,∂Ω ,

∥

∥

∥

∥

∇
(

f − f
σ

)∥

∥

∥

∥

2

0

≤ C

σ2
hl
∥

∥∇
(

f − f
)∥

∥

2

∞,∂Ω
≤ C

σ2
‖f‖2

∞,∂Ω ,

(42)

hence, by using
∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0

≤ C

[

‖e‖2
0 +

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

f − f
σ

∥

∥

∥

∥

2

0

]

,

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0

≤ C

[

‖∇e‖2
0 +

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

∇
(

f − f
σ

)∥

∥

∥

∥

2

0

]

,

the items (i) and (ii) follows from (40), (41), and (42).

From (39) we obtain that
∑

K∈Th

h2
K ‖∇e‖

2
0,K ≤ C

∑

K∈Th

h2
Kε
−1σ−1

∥

∥f − f
∥

∥

2

0,K
= C

∑

K∈Ωlayer

h2
Kε
−1σ−1

∥

∥f − f
∥

∥

2

0,K
(43)

≤ Ch3
l ε
−1σ−1 ‖f‖2

∞,∂Ω ,
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and from (41) we have that

∑

K∈Th

h2
K

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

≤ Ch2

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0

≤ C

σ2
h2
∥

∥∇f
∥

∥

2

0
.(44)

Hence, the item (iii) follows by the triangular inequality

∑

K∈Th

h2
K

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

≤ C
∑

K∈Th

h2
K

[

‖∇e‖2
0,K +

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

+

∥

∥

∥

∥

∇
(

f − f
σ

)∥

∥

∥

∥

2

0,K

]

,

and using (42), (43), and (44). �

Corollary 4. Let u be the solution of (1). Then, there exits constant C such that
∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

E

≤ C

σ

[

h
1/2
l

(

hlε
−1/2σ1/2 + 1

)

‖f‖∞,∂Ω +
(

h+ ε1/2σ−1/2
)

‖∇f‖0

]

.

Proof. The result follows by the norm definition (33), since αK < 1 for all K ∈ Th, and from

Lemma 3. �

We have the following estimate.

Lemma 5. Let u1 be the solution of (31). There exists C such that
∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

E

≤ C

σ

[

hl

(

h
1/2
l ε−1/2σ1/2 + 1

)

(

1 + α−1/2
)

‖f‖∞,∂Ω + hl‖∇f‖0 + hα−1/2 ‖∇f‖0

]

.

Proof. Applying Lemma 2 we have that

C
∑

K∈Th

ε

h2
K

‖f
σ
− u1‖2

E,K ≤ ae

(

f

σ
− u1,

f

σ
− u1

)

= ae

(

f

σ
− u, f

σ
− u1

)

+ ae

(

u− u1,
f

σ
− u1

)

= a

(

f

σ
− u, f

σ
− u1

)

− ah
(

MKL
(

f

σ
− u
)

,
f

σ
− u1

)

+ ae

(

u− u1,
f

σ
− u1

)

.(45)

Hence, we have to estimate such terms. Since f is piecewise linear, the second term on

the right hand side vanishes. Moreover, from the definition (3) and applying the Cauchy–

Schwartz and the inverse inequalities, we have that the first term on the right hand side is

bounded as

a

(

f

σ
− u, f

σ
− u1

)

=
∑

K∈Th

ε

σ

(

∇f,∇
(

f

σ
− u1

))

K

≤
∑

K∈Th

ε

σ
‖∇f‖0,K

∥

∥

∥

∥

∇
(

f

σ
− u1

)∥

∥

∥

∥

0,K

≤ C
∑

K∈Th

ε

σhK
‖∇f‖0,K

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

0,K

≤ C
∑

K∈Th

(

4ε

σ2CKαK
‖∇f‖2

0,K +
εCKαK

4h2
K

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

2

0,K

)

≤ C
∑

K∈Th

(

4ε

C0σ2CKαK
‖∇f‖2

0,K +
C0ε

4h2
K

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

2

E,K

)

,(46)
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where C0 < 1. It remains to estimate the third term on right hand side of (45). Clearly, as

long as f vanishes on ∂Ω, by the consistency of (31), the third term also vanishes and the

result follows. Now, suppose that f is nonzero on ∂Ω. Therefore, again by the consistency

of (31), we have that

ae

(

u− u1,
f

σ

)

= ae

(

u− u1,
f − f
σ

)

.(47)

By using (47), (3), (15), the consistency of (31), and the Cauchy–Schwartz inequality we

obtain that

ae

(

u− u1,
f

σ

)

=
∑

K∈Ωlayer

ε

σ

(

∇ (I −MKL) (u− u1),∇
(

f − f
))

K
+
(

(I −MKL) (u− u1), f − f
)

K

=
∑

K∈Ωlayer

ε

σ

[(

∇ (I −MKL) (u− f

σ
),∇

(

f − f
)

)

K

+

(

∇ (I −MKL) (
f

σ
− u1),∇

(

f − f
)

)

K

]

+

[(

(I −MKL) (u− f

σ
), f − f

)

K

+

(

(I −MKL) (
f

σ
− u1), f − f

)

K

]

=
∑

K∈Ωlayer

ε

σ

[(

∇
(

u− f

σ

)

,∇(f − f)

)

K

+

(

∇
(

f

σ
− uh

)

,∇
(

f − f
)

)

K

]

+

[(

u− f

σ
, f − f

)

K

+

(

f

σ
− uh, f − f

)

K

]

≤ C
∑

K∈Ωlayer

[

ε

σ

(

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

0,K

+

∥

∥

∥

∥

∇
(

f

σ
− uh

)∥

∥

∥

∥

0,K

)

hK
∥

∥∇(f − f)
∥

∥

∞,K

+

(

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

0,K

+

∥

∥

∥

∥

f

σ
− uh

∥

∥

∥

∥

0,K

)

hK
∥

∥f − f
∥

∥

∞,K

]

≤ C
∑

K∈Ωlayer

[

εγ1

σ

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

+
εγ1

σ

∥

∥

∥

∥

∇
(

f

σ
− uh

)∥

∥

∥

∥

2

0,K

+
εh2

K

σγ1

∥

∥∇(f − f)
∥

∥

2

∞,K

γ2

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0,K

+ γ2

∥

∥

∥

∥

f

σ
− uh

∥

∥

∥

∥

2

0,K

+
h2
K

γ2

∥

∥f − f
∥

∥

2

∞,K

]
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where γ1 and γ2 are positive constants. It turns out from items (vi) and (vii) of Lemma 1

that

∥

∥

∥

∥

f

σ
− uh

∥

∥

∥

∥

2

0,K

=

∥

∥

∥

∥

(I − σMK)

(

f

σ
− u1

)∥

∥

∥

∥

2

0,K

≤ Cγγ
K
max

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

2

0,K

≤ Cγ
2

CKε

σh2
K

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

2

0,K

,(48)

∥

∥

∥

∥

∇
(

f

σ
− uh

)∥

∥

∥

∥

2

0,K

=

∥

∥

∥

∥

∇
(

(I − σMK)

(

f

σ
− u1

))∥

∥

∥

∥

2

0,K

≤ Cζ
h2
K

ζKmax

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

2

0,K

≤ Cζ
4h2

K

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

2

0,K

,(49)

where we have used that

γKmax ≤
1

2

CKε

σh2
K

, ζKmax ≤
1

4
,

for all K ∈ Th. The behavior of such eigenvalues is illustrated by the Figures 12 and 13 in

the Appendix. Hence, based on (48) and (49), we set γ1 and γ2 as

γ1 =
CKC0αKσ

2Cζ
, γ2 =

C0αKσ

4Cγ
,(50)

and using (48) and (49) we have that

ae

(

u− u1,
f

σ

)

≤ C
∑

K∈Ωlayer

[

CKαKε

2Cζ

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

+
ε

8h2
K

‖f
σ
− u1‖2

E,K(51)

+
2Cζh

2
Kε

αKσ2

∥

∥∇(f − f
)

‖2
∞,K +

CKαKσ

4Cγ

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0,K

+
ε

8h2
K

‖f
σ
− u1‖2

E,K +
4Cγh

2
K

αKσ
‖f − f‖2

∞,K

]

≤ C
∑

K∈Ωlayer

[

αKε

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

+ αKσ

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0,K

+
ε

4h2
K

‖f
σ
− u1‖2

E,K

+
h2
K

αKσ

( ε

σ
h−1
l ‖f‖

2
∞,∂K + ‖f‖2

∞,∂K

)

]

.
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Now, choosing C0 properly, adding (46) and (51), and reordering the terms, and since

αK ≤ 1 for all K ∈ Th, we obtain from (45) that

∑

K∈Th

‖f
σ
− u1‖2

E,K ≤ C
∑

K∈Th

h2
K

σ2α
‖∇f‖2

0 + C
∑

K∈Ωlayer

[

αKh
2
K

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,K

+
αKσh

2
K

ε

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0,K

+
h4
K

αKσε

( ε

σ
‖∇
(

f − f
)

‖2
∞,K + ‖f − f‖2

∞,K

)

]

≤ C

[

h2

σ2α
‖∇f‖2

0 + h2
l

∥

∥

∥

∥

∇
(

u− f

σ

)∥

∥

∥

∥

2

0,Ωlayer

+
h2
l σ

ε

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

2

0,Ωlayer

+
h2
l

ασε

( ε

σ
+ hl

)

‖f‖2
∞,∂Ω

]

,

the result follows using Lemma 3, and redefining the constants. �

We are ready to present the main convergence result.

Theorem 6. Let u be the solution of (2) and u1 be the solution of (31). There exists C such

that

‖u− u1‖E ≤
C

σ

{

h
1/2
l

[

h
1/2
l

(

h
1/2
l ε−1/2σ1/2 + 1

)

(

1 + α−1/2
)

+ 1
]

‖f‖∞,∂Ω

+hα−1/2 ‖∇f‖0 +
(

h+ ε1/2σ−1/2
) ∥

∥∇f
∥

∥

0

}

.

Proof. The result follows using triangle inequality, Corollary 4, Lemma 5, and redefining the

constants. �

Remark 4. The convergence result presented in Theorem 6 points out that the error depends

on the form of f , and we can identify the following behavior:

i) supposing that f vanishes on ∂Ω, then

lim
ε→0
‖u− u1‖E ≤ C

h

σ
‖∇f‖0 ,(52)

since α→ 3/4 when ε→ 0. Moreover, if f is supposed to be constant or linear in Ω0

and hl ' εp with p ∈ (0, 1/2], thus we have convergence, i.e.,

lim
ε→0
‖u− u1‖E = 0.(53)

ii) if f is nonzero on ∂Ω and hl ' εp with p ∈ (1/3, 1/2], then

lim
ε→0
‖u− u1‖E ≤ C

h

σ

(

‖∇f‖0 +
∥

∥∇f
∥

∥

0

)

,(54)

since α is bounded. As long as f is constant or linear in Ω we recover the convergence

(53).
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The convergence results presented above are also valid for the L2 norm. We stress that the

assumption C1ε
1/2 ≤ hl ≤ C2ε

1/3 used to obtain uniform convergence is not too strong.

Indeed, the mesh refinement is concentrated along the boundary. Moreover, we note that

if we consider ε of order 10−6 for example, what corresponds a strong boundary layer, we

just need to chose a first range of element with characteristic length hl ∈ [C1 10−3, C2 10−2].

This numerical aspect is shown in Section 4. Similar numerical results are obtained using

the formulation (27), and that indicates we have equivalent convergence estimates. Such

analysis is out of the scope of this work.

Numerical validations point out that uniform convergence is recovered in the interior

domain Ω0 without any boundary refinement as long as f is constant. Such aspect was not

analyzed in this work.

3.2. Case h→ 0. In this subsection we perform a convergence analysis with respect to h. In

what follows, we consider that the positive constant C is independent of h but might depend

on ε and σ. First, recall that we denote by ug the solution of the Galerkin formulation (5).

Hence, it is well known (see [9] for instance) that there exists constant C such that

σ ‖u− ug‖2
0 + ε ‖∇(u− ug)‖2

0 ≤ Ch2 ‖u‖2
2 .(55)

Our goal consists on estimating the Galerkin error in the norm (35). This is done in the

following lemma.

Lemma 7. Let u be the solution of (2) and ug be the solution of (5). There exists a constant

C such that

(56)
∑

K∈Th

ε

h2
K

‖u− ug‖2
E,K ≤ Ch2 ‖u‖2

2 .

Proof. From the norm definition (33) we obtain that

∑

K∈Th

ε

h2
K

‖u− ug‖2
E,K =

∑

K∈Th

(

εCK
σh2

K

αKσ ‖u− ug‖2
0,K + ε ‖∇(u− ug)‖2

0,K

)

≤ C
(

σ ‖u− ug‖2
0 + ε ‖∇(u− ug)‖2

0

)

since εCKαKσ
−1h−2

K is bounded for all K ∈ Th, and the result follows using (55). �

Lemma 8. Let ug be the solution of (5) and u1 be the solution of (31). There exist a

constant C such that

(57)
∑

K∈Th

ε

h2
K

‖ug − u1‖2
E,K ≤ Ch2 ‖u‖2

2 .
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Proof. From Lemma 2 and the consistency of (31) we have that

C
∑

K∈Th

ε

h2
K

‖ug − u1‖2
E,K ≤ ae (ug − u1, ug − u1) = ae (ug − u, ug − u1)

= a (ug − u, ug − u1)− ah (MKL (ug − u) , ug − u1)

≤ |ah (MKL (ug − u) , ug − u1) |

since the Galerkin method is also consistent. Hence, it follows from the Cauchy–Schwartz

inequality that

C
∑

K∈Th

ε

h2
K

‖ug − u1‖2
E,K ≤

∑

K∈Th

(ε‖∇ (MKL (ug − u)) ‖0,K‖∇ (ug − u1) ‖0,K

+σ‖MKL (ug − u) ‖0,K‖ug − u1‖0,K)

≤
∑

K∈Th

(

2ε

C
‖∇ (MKL (ug − u)) ‖2

0,K +
2h2

Kσ
2

εCCKαK
‖MKL (ug − u) ‖2

0,K +
Cε

2h2
K

‖ug − u1‖2
E,K

)

.

Then using Lemma 1, items (iv), (v), we obtain that

∑

K∈Th

ε

h2
K

‖ug − u1‖2
E,K ≤ C

∑

K∈Th

(

ε

σ2h2
K

ξKmax +
h2
Kθ

K
max

εαK

)

‖L (ug − u) ‖2
0,K

≤ C
∑

K∈Th

h2
K

ε

(

(

ε

σh2
K

)2

ξKmax +
θKmax
αK

)

(

‖σ (ug − u) ‖2
0,K + ‖ε∆u‖2

0,K

)

≤ C
∑

K∈Th

h2
K

ε

(

‖σ (ug − u) ‖2
0,K + ‖ε∆u‖2

0,K

)

≤ Ch2
(σ

ε
h2 + ε

)

‖u‖2
2,

where we have used that θKmaxα
−1
K and (εσ−1h−2

K )2ξKmax are bounded, and (55). Such behavior

is illustrated by Figures 12 and 14 in the Appendix. The result follows by redefining the

constants. �

Theorem 9. Let u be the solution of (2) and u1 be the solution of (31). There exist C such

that

(58)

(

∑

K∈Th

ε

h2
K

‖u− u1‖2
E,K

)1/2

≤ Ch‖u‖2.

Proof. Using triangle inequality, and from Lemmas 7 and 8 we have that

∑

K∈Th

ε

h2
K

‖u− u1‖2
E,K ≤

∑

K∈Th

ε

h2
K

‖u− ug‖2
E,K +

∑

K∈Th

ε

h2
K

‖ug − u1‖2
E,K ≤ Ch2 ‖u‖2

2 .

�
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Remark 5. The convergence result (58) is equivalent to the standard Galerkin error in the

energy norm (55). The asymptotic behavior of the norm’s coefficient is presented in (36).

4. Numerical Results

4.1. Source problem. Let us first consider the unit source problem (f = 1/2) defined on

the unit square, and subject to the boundary conditions described in Figure 3. We use the

unstructured mesh shown in Figure 4.

For a fixed σ = 1 and small ε, boundary layers appear close to the domain boundary.

Figures 5, 6 show the solutions of the Galerkin and the multiscale methods, for ε = 10−6.

As predicted, the present method perform better than the Galerkin method. For ε = 1, all

methods have comparable performance, see Figure 7.

Next, we take f piecewise linear, f(x, y) = x for 0 ≤ x ≤ 0.5 and f(x, y) = 1−x otherwise.

Again, the multiscale method perform better than the Galerkin method. We remark that the

solution obtained from the enriched formulation (26) is more diffusive than the one obtained

from the modified enriched formulation (27) as shown in Figure 10 and Figure 11.

u = 0

u = 0
x

y

1.0

u = 1

u = 1

0.0

1.0

Figure 3. Problem statement.
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MESH%anticlipinit


Figure 4. The unstructured mesh.

GALERKIN  METHOD MULTISCALE  METHOD%anticlipinit


Figure 5. Comparison between Galerkin and the multiscale methods for ε = 10−6.
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GALERKIN  METHOD

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 MULTISCALE  METHOD

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 6. Profile of solutions at x = 0.5 (ε = 10−6).

GALERKIN  METHOD MULTISCALE  METHOD%anticlipinit


Figure 7. Isovalues of solutions obtained with Galerkin and the multiscale

methods (ε = 1).
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MULTISCALE  METHOD GALERKIN  METHOD%anticlipinit


Figure 8. Solutions for piecewise linear f with modified multiscale, multi-

scale and Galerkin methods (ε = 10−6).

0 0.25 0.5 0.75 1
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0.25

0.5

0.75

1 MULTISCALE METHOD

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
GALERKIN METHOD

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 9. Profile of solutions at x = 0.5 (ε = 10−6).
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MODIFIED MULTISCALE METHOD

0 0.25 0.5 0.75 1
-0.25

0

0.25

0.5

0.75

1 MULTISCALE METHOD

0 0.25 0.5 0.75 1
-0.25
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0.5

0.75

1
GALERKIN METHOD

0 0.25 0.5 0.75 1
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0

0.25

0.5

0.75

1

Figure 10. Profile of solutions at y = 0.5 (ε = 10−6).

GALERKIN  METHOD

0.4 0.45 0.5 0.55 0.6
0.4

0.45

0.5

0.55 MODIFIED MULTISCALE  METHOD

0.4 0.45 0.5 0.55 0.6
0.4

0.45

0.5

0.55
MULTISCALE  METHOD

0.4 0.45 0.5 0.55 0.6
0.4

0.45

0.5

0.55

Figure 11. Zoom of profile of solutions with Galerkin, modified multiscale

and multiscale methods at y = 0.5 (ε = 10−6).
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5. Appendix

We present in this section the expression of the eigenvalues introduced in Lemma 1,

and we show graphically the behavior of some coefficients and eigenvalues. To simplify the

formulas, we introduce βK defined by

βK =

√

σh2
K

CKε
.

The expression of eigenvalues are given by

λKmin =
1

β2
K

(

1 +
3

βK sinh βK
− 3 coshβK
βK sinh βK

+
βK

2 sinhβK

)

,

λKmax =
1

β2
K

(

1− βK
sinh βK

)

,

−ρKmin = −3/2

(

1 +
2

βK sinh βK
− 2 coshβK
βK sinh βK

)

,

ρKmax =
3

βK

(

cosh βK
sinh βK

− 1

sinh βK

)

,

γKmax =
1

4β2
K sinh(βK)2

(

cosh(βK)2 − 8 cosh(βK)− β2
K + 4β sinh(βK) + 7

)

,

ζKmax =
1

8 sinh (βK)2

(

2 cosh (βK)2 − 2 cosh (βK) sinh (βK)− 1
)

(

6 cosh (βK)4 + 6 cosh (βK)3 sinh (βK)− 9 cosh (βK)2 − 6 cosh (βK) sinh (βK) + 3

+6βK
2 cosh (βK)2 + 6βK

2 sinh (βK) cosh (βK)− 3βK
2

−
((

cosh (βK)4 − 2 cosh (βK)2 + 34βK
2 cosh (βK)2 + 1− 34βK

2 + βK
4
)

(

1 + 8 cosh (βK)4 − 8 cosh (βK)2 + 8 cosh (βK)3 sinh (βK)− 4 cosh (βK) sinh (βK)
))1/2

)

,

θKmax =
3

βK sinh βK

(

1 +
−21 (coshβK)2 − 24 coshβK − 5 βK

2 + 45 + 2βK
2 (coshβK)2

36 sinhβKβK

)

,

ξKmax =
1

8 (βK sinh βK)2

(

βK
4F (βK) + βK

2G(βK) + βKH(βK)
)

,

where the functions F , G and H are given by an intricate nonlinear combination of sinhβK

and coshβK . Instead of presenting such expressions here, we simply plot ξKmax
β4
K

with respect

to βK .
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Figure 12. Behavior of parameters αK and
αK
β2
K

in terms of βK . We note

that γKmaxβ
2
K and the quotient

θKmax
αK

are bounded.
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Figure 13. The eigenvalue ζKmax is bounded.
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is bounded.
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Av. Getúlio Vargas, 333, 25651-070 Petrópolis - RJ, Brazil
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