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ABSTRACT. The Hodgkin-Huxley (H–H) landmark model is described by a system of four nonlin-
ear differential equations which describes how action potentials in neurons are initiated and propa-
gated. However, obtaining some of the parameters of the model requires a tedious combination of
experiments and data tuning. In this paper, we propose the use of a minimal error iteration method to
estimate some of the parameters in the H–H model, given the measurements of membrane potential.
We provide numerical results showing that the approach approximates well some of the model’s
parameters, using the measured voltage as data, even in the presence of noise.

1. INTRODUCTION.

The seminal work (Hodgkin and Huxley, 1952) uses voltage- and space-clamp techniques to
obtain the parameters of the ionic channel model of the squid giant axon. In the space-clamped
version of the H–H model, the membrane electrical potential V : [0, T ]→ R solves

(1) CM V̇ (t) + Iion(t) = Iext in (0, T ],

where Iext is the specific external current applied on the membrane, CM is the specific membrane
capacitance, V is the membrane potential, V̇ = dV/dt is the rate of voltage change (dots denote
time derivatives). The specific ionic current Iion(t) = INa(t)+IK(t)+IL(t) is the sum of potassium,
sodium and leak currents satisfying:

(2) IK = GK (V − VK), INa = GNa (V − VNa), IL = gl (V − Vl),
where GK, GNa and gl are the conductances for potassium, sodium and leakage channels, and
the constants VK, VNa and Vl are Nernst equilibrium potentials. The conductances GNa and GK

are functions that depend on time and the membrane potential, and the leakage conductance gl is
constant. The K+ and Na+ conductances behave as

(3) GK(V, t) = gKn
a(t), GNa(V, t) = gNam

b(t)hc(t),

where gK and gNa are maximum conductances for K+ and Na+, and the exponents a, b and c
are positive numbers modeling the number of gates in each channel. The functions m and h
are the activation and inactivation variables for Na+, and n is the activation function for K+.
These functions are unit-less gating variables taking values between 0 and 1. The kinetics of the
potassium and sodium channels is governed by,

(4) Ẋ (t) = αX (V )(1−X (t))− βX (V )X (t) for X = m,n, h,
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where

αm(V ) =
(25− V )/10

exp((25− V )/10)− 1
, βm(V ) = 4 exp(−V/18),(5)

αn(V ) =
(10− V )/100

exp((10− V )/10)− 1
, βn(V ) = 0.125 exp(−V/80),(6)

αh(V ) = 0.07 exp(−V/20), βh(V ) =
1

exp((30− V )/10) + 1
.(7)

See (Hodgkin and Huxley, 1952; Ermentrout and Terman, 2010) and references therein for further
details.

The initial condition for X is unknown, and we now describe a way to impose such value based
on “steady values” forX (Bower and Beeman, 2012; Cox and Griffith, 2001; Hodgkin and Huxley,
1952). From Eq. (4), we have

(8) Ẋ (t) =
1

τX (V )

(
X∞(V )−X (t)

)
,

where the steady-state solution and the time constant are, respectively,

X∞(V ) =
αX (V )

αX (V ) + βX (V )
and τX (V ) =

1

αX (V ) + βX (V )
.

In the experiments illustrated in (Hodgkin and Huxley, 1952, Figure 3), the membrane potential
starts at its resting state V0 and almost immediately jumps to a new clamp voltage Vc (Bower and
Beeman, 2012, Page 40). Then, considering a constant membrane potential V (t) = Vc, we gather
from Eq. (8) that

Ẋ (t) =
1

τX (Vc)

(
X∞(Vc)−X (t)

)
.

The solution to the previous equation is

(9) X (t) = X∞(Vc)− (X∞(Vc)−X∞(V0)) exp(−t/τX ),

where we imposed X (0) = X∞(V0), for a given V0. Note that X → X∞ as t → ∞. From the
above, we have

(10) X (0) = X∞(V0) = αX (V0)/(αX (V0) + βX (V0)) for X = m,n, h.

We use the above approximation to fix the initial conditions of m, n, h.
Eqs. (1-10) yield the system of ordinary differential equations (ODEs):

(11)


CM V̇ + gKn

a(V − VK) + gNam
bhc(V − VNa) + gl(V − Vl) = Iext for t ∈ (0, T ],

Ẋ = (1−X )αX (V )−XβX (V ) for t ∈ (0, T ],
V (0) = V0, X (0) = X∞(V0),

for X = m,n, h, and CM , Iext, VK, VNa and Vl are known. Also, Eq. (10) defines the initial
conditions for m, n and h. The units of the parameters are as in Table 1.

Using experimental data from the squid neuron, Hodgkin and Huxley obtained the parameters
a = 4, b = 3 and c = 1. Note, however, that other models produce different parameters, e.g.
for INa,p + IK-model (a, b, c) = (1, 1, 0), for INa,t-model (a, b, c) = (0, 3, 1) and for IA-model
(a, b, c) = (0, 1, 1); see (Izhikevich, 2007).
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Parameters Units Units name
CM µF/cm2 microfarad per square centimeter
V mV millivolt
V̇ V/s volts per second
Iext, Iion µA/cm2 microampere per square centimeter
gK, gNa, gl mS/cm2 millisiemens per square centimeter
VK, VNa, Vl mV millivolt
t ms milliseconds

TABLE 1. Units of the parameters; see (Hodgkin and Huxley, 1952, Table 3).

Parameter determination is an important issue in neuroscience. In a previous paper (Valle et al.,
2020), the authors determine conductances with nonuniform distribution in the equation of the
cable with and without branches, using the minimal error iterative method. See also (Avdonin and
Bell, 2013, 2015; Bell and Craciun, 2005; Tadi et al., 2002), for identification of parameters in the
cable equation.

Parameter identification for the FitzHugh-Nagumo model is considered in (Cox and Wagner,
2004; Cox and Ji, 2001), where the authors determine the nonlinear conductance among other
parameters. Also, (He and Keyes, 2007) study the reactive coefficient identification problem for
the the same system, using Newton-Krylov iterations.

In the following, we describe the different studies that estimated parameters in the H–H model.
Given the conductance from a clamp-tension experiment, (Wang and Beaumont, 2004; Willms
et al., 1999) estimate the steady-state constants m∞, n∞, h∞, the time constants τm, τn,τh, and ki-
netic properties. The identifiability analysis of the H-H model parameters is discussed in (Csercsik
et al., 2012; Walch and Eisenberg, 2016), where the authors show that is possible to estimate the
model parameters from voltage-clamp data.

In (Cox and Griffith, 2001), the authors consider a linearized model to determine the resistivity,
membrane capacitance, and maximal conductances in dendritic neurons with the moment method.
The constant parameters of an ionic channel are estimated simultaneously in (Buhry et al., 2011,
2012) using the differential evolution algorithm. Also, (Daly et al., 2015) investigate the use of
approximate Bayesian computation to infer parameters in the sodium and potassium channels. For
most of the above references, it is not clear how to extend the methods to compute the exponents
modeling the number of gates in each channel, or to consider spatially dependent problems for spa-
tially heterogeneous neurons. Although not explored in the present work, we believe that methods
that deal with spatial properties will become more relevant in the near future, in particular in view
of more advance imaging techniques (Casale et al., 2015; Grinvald and Hildesheim, 2004). And
the present method can be, in principle, extended to spacial problems (Valle et al., 2020).

We propose an iterative method to determine unknown parameters in the H–H system (11),
given the measurements of membrane potential (data with noise). The method is an alternative
to the classical estimation methods associated with voltage clamp measurements. In this work,
we present two different inverse problems. The first problem is to estimate maximum conduc-
tances (gK, gNa and gl), while the second problem is to determine exponents of the activation and
inactivation variables (a, b, and c). Our approach can also recover functions with non-uniform
distribution (Valle et al., 2020).



4 JEMY A. MANDUJANO VALLE, ALEXANDRE L. MADUREIRA

Inverse problems are said to be ill-posed, in the sense of (Hadamard, 2014). A problem is
well-posed if there is a unique solution, which has a continuous dependence on the input data
(stability). Here we admit the existence of a single solution to the problem. However, stability is
not guaranteed. Stability is necessary if we want to ensure that small variations in the data lead to
small changes in the solution. Problems of instability can be controlled by regularization methods,
in particular the minimal error iterative scheme (Binder et al., 1996; Chapko and Kügler, 2004;
Hanke et al., 1995; Neubauer, 2000).

There are several iterative regularization methods; see (Benning and Burger, 2018) for a thor-
ough review on the subject. One instance is the minimal error method, that we employ here.
Methods like these have the advantage of avoiding big matrix-invertions (as in Newton-like meth-
ods), although they might require more iterations to converge; see (Nayak, 2021). We remark that
the minimal error method is an improvement on the classical Landweber and modified Landweber
methods, that might not even converge at all in general, see Appendix C.

The four dimensional H-H model presents hurdles that simpler models try to overcome by bring-
ing down its dimension. Well-known examples include the FitzHugh-Nagumo model, the Krinsky-
Kokoz model and the Morris-Lecar model (FitzHugh, 1961; Krinskiı̆ and Kokoz, 1973; Morris and
Lecar, 1981). These mathematical formulations also describe how action potentials, in a neuron,
are initiated and propagated. Moreover, since recording the activity of a single neuron is far from
being trivial, recording a population of neurons is more realistic. The mean field models or pop-
ulation models, describe the temporal evolution of the electrical activity of neuronal populations,
these formulations are coupled ordinary differential equations (Bojak et al., 2010; Buzsáki et al.,
2012; Liley et al., 2001).

All the above models involve varying number of hard to compute unknown parameters. We
believe that our scheme is general enough to estimate unknown parameters of those models even
under the presence of measurements errors.

We now describe the contents of the present paper briefly. Section 2 presents our inverse prob-
lems for the H–H model along with some theoretical results, and in Section 3 we show numerical
results to describe the effectiveness of our strategy. Finally, we include in the Appendices some
more technical arguments.

2. INVERSE PROBLEM IN THE H–H MODEL

In what follows, we describe an abstract formulation of the minimal error method; see (Kaltenbacher
et al., 2008).

Consider ODE (11), and let x = (gK, gNa, gl) ∈ R3 or x = (a, b, c) ∈ R3. Consider also the set
of square integrable functions L2[0, T ], and the nonlinear operator

(12) F : R3 → L2[0, T ],

defined by F (x) = V , where V solves the system of ODEs (11). In practical terms, the “real” data
V are obtained by noisy measurements denoted by V δ, of the which we assume to know the noise
level δ, where

(13) ‖V − V δ‖L2[0,T ] :=

√∫ T

0

(V (t)− V δ(t))2 dt ≤ δ.

We assume that the equation F (x) = V has a unique solution x∗, and denote V δ = F (xδ).
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To obtain an approximation of x, given V δ, we used the minimal error iteration

(14) xk+1,δ = xk,δ + wk,δF ′(xk,δ)∗(V δ − V k,δ),

where F ′(xk,δ) is the Gateaux-derivative of F computed at xk,δ, F ′(xk,δ)∗ is its adjoint, and V k,δ =
F (xk,δ). We also define

wk,δ =
‖V δ − V k,δ‖2L2[0,T ]

‖F ′(xk,δ)∗(V δ − V k,δ)‖2R3

,

where ‖ · ‖R3 is the Euclidian norm.
The iteration (14) begins with a guess x1,δ and stops at the minimum k∗ = k(δ, V δ), such that,

for a given τ > 1,

(15) ‖V δ − F (xk∗,δ)‖L2[0,T ] = ‖V δ − V k∗,δ‖L2[0,T ] ≤ τδ.

It is possible to show that, under certain conditions, xk∗,δ converges to a solution of F (x) = V as
δ → 0; see (Neubauer, 2018).

Remark 1. The computation of the action of adjoint of the Gateaux-derivative of F is far from
trivial, and has to be found in a case-by-case basis. That is done for the Gompertz model (Valle,
2020) and the linear cable equation (Valle et al., 2020). See also the supplementary material,
where we compare the current approach with other methods.

2.1. Inverse Problem to obtain conductances in the H–H model. The present goal is to estimate
the maximum conductances x = g = (gK, gNa, gl) while assuming that (11) holds and that the
exponents a, b, and c are known. From iteration (14), we have

(16) gk+1,δ = gk,δ + wk,δF ′(gk,δ)∗(V δ − V k,δ),

where gk,δ = (gk,δK , gk,δNa , g
k,δ
l ).

The action of the operator F ′(gk,δ)∗ is non-trivial, and we describe it in the following theorem
while postponing the proof for the appendix.

Theorem 2.1. Assume that a, b, c, VNa ,VK, Vl, CM , Iext, V0, m0, n0, h0 and T are known data.
Assume also that gk,δ = (gk,δK , gk,δNa , g

k,δ
l ) are known, and that V δ = F (gδ) and V k,δ = F (gk,δ).

Then

(17) F ′(gk,δ)∗(V δ − V k,δ) =
(
Xk,δ

K , Xk,δ
Na , X

k,δ
l

)
,

where

Xk,δ
K =

∫ T

0

(
nk,δ
)a

(V k,δ − VK)Uk,δ dt,(18)

Xk,δ
Na =

∫ T

0

(
mk,δ

)b(
hk,δ
)c

(V k,δ − VNa)U
k,δ dt,(19)

Xk,δ
l =

∫ T

0

(V k,δ − Vl)Uk,δ dt.(20)
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The functions mk,δ, nk,δ, hk,δ and V k,δ solve,

(21)


CM V̇

k,δ + gk,δK

(
nk,δ
)a

(V k,δ − VK) + gk,δNa

(
mk,δ

)b(
hk,δ
)c

(V k,δ − VNa)

+gk,δl (V k,δ − Vl) = Iext,

Ẋ k,δ = (1−X k,δ)αX (V k,δ)−X k,δβX (V k,δ) for X = m,n, h,

V k,δ(0) = V0, mk,δ(V0, 0) = m0, nk,δ(V0, 0) = n0, hk,δ(V0, 0) = h0,

and αX , βX are defined by (5-7). Finally, Uk,δ solves, given mk,δ, nk,δ, hk,δ and V k,δ,

(22)



CM U̇
k,δ −

(
gk,δK

(
nk,δ
)a

+ gk,δNa

(
mk,δ

)b(
hk,δ
)c

+ gk,δl

)
Uk,δ

−[(1−mk,δ)α′m(V k,δ)−mk,δβ′m(V k,δ)]P k,δ

−[(1− nk,δ)α′n(V k,δ)− nk,δβ′n(V k,δ)]Qk,δ

−[(1− hk,δ)α′h(V k,δ)− hk,δβ′h(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αm(V k,δ) + βm(V k,δ)]P k,δ = −bgk,δNa

(
mk,δ

)b−1(
hk,δ
)c

(V k,δ − VNa)U
k,δ,

Q̇k,δ − [αn(V k,δ) + βn(V k,δ)]Qk,δ = −agk,δK

(
nk,δ
)a−1

(V k,δ − VK)Uk,δ,

Ṙk,δ − [αh(V
k,δ) + βh(V

k,δ)]Rk,δ = −cgk,δNa

(
mk,δ

)b(
hk,δ
)c−1

(V k,δ − VNa)U
k,δ,

Uk,δ(T ) = 0, P k,δ(T ) = 0, Qk,δ(T ) = 0, Rk,δ(T ) = 0,

where the derivatives of αm, αn, αh, βm, βn and βh with respect to V are given by

α′m(V ) = 0.01
10 + (15− V ) exp((25− V )/10)

(exp((25− V )/10)− 1)2
, β′m(V ) = −2

9
exp(−V/18),

α′n(V ) = 0.001
10− V exp((10− V )/10)

(exp((10− V )/10)− 1)2
, β′n(V ) = −0.125

80
exp(−V/80),

α′h(V ) = −0.07

20
exp(−V/20), β′h(V ) = 0.1

V exp((30− V )/10)

(exp((30− V )/10) + 1)2
.

Proof: See Appendix A.

Given an initial approximation g1,δ and V δ, we obtain a regularizing approximation gk∗,δ for g,
from minimal error iteration (see Eqs. (16) and (17)).
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We next describe the computational scheme.

Algorithm 1: Minimal error iteration to obtain conductances. The norm ‖ · ‖RJ ≈
‖ · ‖L2[0,T ] is defined in Eq. (23). The ODEs (21) and (22) are solved with a finite differ-
ence method, and we obtain numerical solutions V k,δ ≈ V k,δ, mk,δ ≈ mk,δ, nk,δ ≈ nk,δ,
hk,δ ≈ hk,δ and U k,δ ≈ Uk,δ. The numerical solution from ODE (11) is V ≈ V , the
parameter V δ is an approximation of V , satisfying Eq. (28). We use the trapezoidal rule
to estimate the integral.

Data:
Parameters: a, b, c, VNa ,VK, Vl, CM , Iext, T , V δ, δ and τ
ODE initial condition: V0
Initial approximation: g1,δ

Result: Compute an approximation for g using minimal error iteration scheme
k=1;
Compute m0, n0, h0 from Eq. (10);
Compute m1,δ, n1,δ, h1,δ and V 1,δ from Eq. (21), replacing gk,δ by g1,δ;
while τδ ≤ ‖V δ − V k,δ‖L2(0,T ) do

Compute Uk,δ from Eq. (22);
Compute gk+1,δ using Eq. (17);
Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from Eq. (21), replacing gk,δ by gk+1,δ;
k ← k + 1;

end

Remark 2. Each while-loop of the Algorithm 1 involves solving two nonlinear systems of ODEs.
Of course, there is no analytical solution for those equations, and the use of numerical methods is
necessary. We use explicit Euler method with a fixed time step ∆t to find approximate values of the
systems of ODEs. Accordingly, the norms involved in the estimation are discrete approximations
of the L2(0, T ) norm. We discretize the time variable tj = (j − 1)∆t for j = 1, 2, . . . , J , with
time steps ∆t = T/(J − 1). The points Vj = V (tj), for all j = 1, 2, . . . , J . We denote V =
(V1, V2, . . . , VJ) and x = (x1, x2, x3), and consider

(23) ‖V ‖2L2[0,T ] ≈ ‖V ‖
2
l2 := ∆t‖V ‖2RJ = ∆t

J∑
j=1

|V (tj)|2.

2.2. Inverse Problem to obtain exponents in the H–H model. Assume again that (11) holds and
that gK, gNa and gl are known. The goal of this subsection is to estimate the exponents a, b and c in
the system of ODEs (11). Denoting the unknown parameters by x = a = (a, b, c) it follows from
iteration (14) that

(24) ak+1,δ = ak,δ + wk,δF ′(ak,δ)∗(V δ − V k,δ),

where ak,δ = (ak,δ, bk,δ, ck,δ).
In Theorem 2.2, we calculate the action of the unknown operator F ′(ak,δ)∗, and obtain the

Algorithm (25).

Theorem 2.2. Assume that gK, gNa, gl, VNa ,VK, Vl, CM , Iext, V0, m0, n0, h0 and T are known
data. Assume also that V δ, V k,δ and gk,δ = (gk,δK , gk,δNa , g

k,δ
l ) are known, and that V δ = F (gδ) and
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V k,δ = F (gk,δ). Then

(25) F ′(ak,δ)∗(V δ − V k,δ) =
(
Xk,δ
a , Xk,δ

b , Xk,δ
c

)
,

where

Xk,δ
a =

∫ T

0

gK(V k,δ − VK)
(
nk,δ
)ak,δ

Uk,δ ln(nk,δ) dt,

Xk,δ
b =

∫ T

0

gNa(V
k,δ − VNa)

(
mk,δ

)bk,δ(
hk,δ
)ck,δ

Uk,δ ln(mk,δ) dt,

Xk,δ
c =

∫ T

0

gNa(V
k,δ − VNa)

(
mk,δ

)bk,δ(
hk,δ
)ck,δ

Uk,δ ln(hk,δ) dt.

The functions mk,δ, nk,δ, hk,δ and V k,δ solve

(26)


Iext = CM V̇

k,δ + gK
(
nk,δ
)ak,δ

(V k,δ − VK) + gNa
(
mk,δ

)bk,δ(
hk,δ
)ck,δ

(V k,δ − VNa)

+gl(V
k,δ − Vl),

Ẋ k,δ = (1−X k,δ)αX (V k,δ)−X k,δβX (V k,δ); X = m,n, h,

V k,δ(0) = V0, mk,δ(V0, 0) = m0, nk,δ(V0, 0) = n0, hk,δ(V0, 0) = h0,

where ak,δ, bk,δ and ck,δ are given. Also, Uk,δ solves

(27)



CM U̇
k,δ −

(
gK
(
nk,δ
)ak,δ

+ gNa
(
mk,δ

)bk,δ(
hk,δ
)ck,δ

+ gl

)
Uk,δ

−[(1−mk,δ)α′m(V k,δ)−mk,δβ′m(V k,δ)]P k,δ

−[(1− nk,δ)α′n(V k,δ)− nk,δβ′n(V k,δ)]Qk,δ

−[(1− hk,δ)α′h(V k,δ)− hk,δβ′h(V k,δ)]Rk,δ = V δ − V k,δ,

Ṗ k,δ − [αm(V k,δ) + βm(V k,δ)]P k,δ =

−bk,δgNa
(
mk,δ

)bk,δ−1(
hk,δ
)ck,δ

(V k,δ − VNa)U
k,δ,

Q̇k,δ − [αn(V k,δ) + βn(V k,δ)]Qk,δ =

−ak,δgK
(
nk,δ
)ak,δ−1

(V k,δ − VK)Uk,δ,

Ṙk,δ − [αh(V
k,δ) + βh(V

k,δ)]Rk,δ =

−ck,δgNa
(
mk,δ

)bk,δ(
hk,δ
)ck,δ−1

(V k,δ − VNa)U
k,δ,

Uk,δ(T ) = 0; P k,δ(T ) = 0; Rk,δ(T ) = 0; Qk,δ(T ) = 0,

given mk,δ, nk,δ, hk,δ and V k,δ. The constants GNa, GK, VNa ,VK, EL, CM , Iext, m0, n0 and h0 are
given data.

Proof: See Appendix (B).
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We next describe the computational scheme. Given an initial approximation a1,δ and V δ, we
obtain a regularizing approximation ak∗,δ for a, from minimal error iteration (see Eqs. (24) and
(25)).

Algorithm 2: Minimal error iteration to obtain exponents. The norm ‖ · ‖RJ ≈ ‖ · ‖L2[0,T ]

is defined in Eq. (23). The ODEs (26) and (27) are solved with a finite difference method,
and we obtain numerical solutions V k,δ ≈ V k,δ, mk,δ ≈ mk,δ, nk,δ ≈ nk,δ, hk,δ ≈ hk,δ

and U k,δ ≈ Uk,δ. The numerical solution from ODE (11) is V ≈ V , the parameter V δ is
an approximation of V , satisfying Eq. (28).
Data:
Parameters: gK, gNa, gl, VK ,VNa, Vl, CM , Iext, T , V δ, δ and τ
ODE initial condition: V0
Initial approximation: a1,δ

Result: Compute an approximation for a using minimal error iteration scheme
k=1;
Compute m0, n0, h0 from Eq. (10);
Compute m1,δ, n1,δ, h1,δ and V 1,δ from Eq. (21), replacing ak,δ by a1,δ;
while τδ ≤ ‖V δ − V k,δ‖L2(0,T ) do

Compute Uk,δ from Eq. (27);
Compute ak+1,δ using Eq. (25);
Compute mk+1,δ, nk+1,δ, hk+1,δ and V k+1,δ from Eq. (26), replacing ak,δ by ak+1,δ;
k ← k + 1;

end

3. NUMERICAL SIMULATION

To design our numerical experiments, we first choose x (x = g or x = a) and approximate
V from (11) using the explicit Euler method, with a fixed time step ∆t. Of course, in practice,
the values of V are given by some experimental measurements, and thus subject to experimen-
tal/measurement errors. Thus, for a fixed and positive ε, we perform M experiments, where in the
i-th experiment we obtain V δi = (V δi

1 , V
δi
2 , . . . , V

δi
J ) by adding multiplicative and additive noise

as

(28) V δi
j = Vj + (Vj + 1) randεj , for all j = 1, 2, . . . , J,

where randεj is a uniformly distributed random variable taking values in the range [−ε, ε].
From Eqs. (13) and (28), let, for i = 1, . . . ,M ,

(29) δi = ‖V − V δi‖l2 = ∆t

√√√√ J∑
j=1

(Vj + 1)2(randεj)
2 ≤ ε‖V + 1‖l2 ,

where V + 1 denotes the vector with components Vj + 1. Note that we replace δ for δi in Algo-
rithms 1 and 2, and we define ε to make the perturbation of the voltage V (see Eq. 28).

For each experiment, from Eqs. (15) and (23), iteration (16) (or iteration (24)) stops after k∗
steps, i.e., as soon as

(30) ‖V δi − V k∗,δi‖l2 ≤ τδi,
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where τ > 1 is defined by the user. Note that the stopping criterion depends on δi, and that k∗
depends on i as well. For the sake of clarity, we do not include that in the notation.

In this section we investigate four different cases. In all instances, we employ a known x to
compute V . Now, for i-th experimental, we define the voltage V δi using Eq. (28), and obtained
the noise level δi from Eq. (29). In this paper, we consider M = 400 experiments for each fixed ε.
Next, we assume V and x unknowns. For each i-th experimental and given the initial guess x1,δi ,
the data V δi , and δi, we use Algorithm 1 (for x = g) or Algorithm 2 (for x = a) to obtain xk∗,δi ,
an approximation for x. In the process, we also compute V k∗,δi , an approximation for V δi .

We define the means and standard deviations

µxε` =
1

M

M∑
i=1

xk∗,δi` , σxε` =

√√√√ 1

M

M∑
i=1

(
xk∗,δi` − µxε`

)2
, ` = 1, 2, 3;

µV k∗,εj
=

1

M

M∑
i=1

V k∗,δi
j , σV k∗,εj

=

√√√√ 1

M

M∑
i=1

(
V k∗,δi
j − µV k∗,εj

)2
, j = 1, 2, . . . , J.

(31)

We denote µxε = (µxε1 , µxε2 , µxε3), σxε = (σxε1 , σxε2 , σxε3), µV k∗,ε = (µV k∗,ε1
, µV k∗,ε2

, . . . , µV k∗,εJ
), and

σV k∗,ε = (σV k∗,ε1
, σV k∗,ε2

, . . . , σV k∗,εJ
) .

µ̄ε =
1

M

M∑
i=1

‖V δi − V ‖l2 , µ̃ε =
1

M

M∑
i=1

‖V δi − V k∗,δi‖l2 , µ̂ε =
1

M

M∑
i=1

‖V − V k∗,δi‖l2 ,

µε = ‖V − µV k∗,ε‖l2 and Errorx =
‖x− µxε‖l2
‖x‖l2

× 100%.

(32)

In Examples 3.1 and 3.2, we estimate the conductances gK, gNa and gl, and in Examples 3.3
and 3.4, we estimate the exponents a, b and c. In Examples 3.1 and 3.3, all parameters were taken
from (Hodgkin and Huxley, 1952). In Examples 3.2 and 3.4, we also consider the parameters
from (Hodgkin and Huxley, 1952), except gK, gNa and gl for Example 3.2 and a, b and c for
Example 3.4.

In the following, we set the parameter values for the system of ODEs (11), according to (Hodgkin
and Huxley, 1952). For all examples computed: CM = 1 [µF/cm2], VK = −12 [mV ], VNa =
115 [mV ], Vl = 10.61 [mV ], ∆t = 0.01 [ms] and T = 10 [ms]. For Examples 3.1 and 3.2,
a = (4, 3, 1). For Examples 3.3 and 3.4, g = (36, 120, 0.3) [mS/cm2].

For all our numerical tests, we consider V0 = −10 [mV ] and Iext = 30 [µA/cm2]. Initial
conditions m0, n0 and h0 are obtained from Eq. (10). In our numerical scheme we set the initial
guess x1,δ = (0, 0, 0) and τ = 1.02, where x1,δ = g1,δ or x1,δ = a1,δ.

Our simulation were computed with Matlab R2019a on a Dell PC, running on a Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz with 16 GB of RAM. The code was made available at https://
github.com/MandujanoValle/Conductances-HH, to estimate the conductances gK, gNa

and gl, and URL:https://github.com/MandujanoValle/Exponents-HH, to estimate
the exponents a, b and c.

https://github.com/MandujanoValle/Conductances-HH
https://github.com/MandujanoValle/Conductances-HH
https://github.com/MandujanoValle/Exponents-HH


PARAMETER IDENTIFICATION PROBLEM IN THE HODGKIN-HUXLEY MODEL 11

Example 3.1. In this numerical test we follow (Hodgkin and Huxley, 1952) and set the maximum
conductances as g = (gNa, gK, gl) = (120, 36, 0.3) [mS/cm2]. We next consider g unknown and
approximate it using V δ generated for various values of ε.

The minimal error method yielded good estimates, in this case, as displayed in Table 2. For ex-
ample, for 5% of noise in the membrane potential measurements we obtain gNa = 119.34 [mS/cm2],
gK = 35.98 [mS/cm2] and gl = 0.28 [mS/cm2]. At each line of the table, the noise is reduced by
a factor two.

In Figure 1, we show the mean µV k∗,ε and standard deviation σV k∗,ε of the membrane potential
approximations for ε = 10% of noise and with M = 400. We also present the difference between
V and µV k∗,ε . In Figure 2, we display the means, standard deviations and histograms of the
maximum conductances approximations.

Example 3.2. The pyramidal neuron in the rat hippocampus has maximum conductances g =
(100, 80, 0.1) [mS/cm2] (Börgers, 2017), and we use that to generate the noisy dataV δ for various
values of ε. Now, we consider g as unknown. Table 3 shows results of method when we try to
recover the exact g, for the various noise levels.

In Figures 3 and 4, we plot numerical results for ε = 10% of noise with M = 400 experiments
(see Table 3, line 4). Comparing Figure 1-A (Example 3.1) and Figure 3-A from the present
example, we see that the membrane potential for each example does not change much, but the
conductances undergo a considerable variation.

Example 3.3. We now consider the problem of figuring out what are the correct exponents for
the H–H model. Following (Hodgkin and Huxley, 1952), we set a = (4, 3, 1) and generate noisy
membrane potential. These parameters were determined by (Hodgkin and Huxley, 1952) assuming
the sodium and potassium conductance curves. Next, we consider a unknown.

Given the measurement of the membrane potential V δi , we estimate the unknown parameter g
using our proposed approach. In Table 4, we show good estimates for various noise levels, for
example, for ε = 5% of noise we estimate a = (3.94, 2, 99, 0.99). As we can see in this table, the
relative error of the estimate (Errora) is approximately one quarter of the noise level, i. e., for
ε = 5% we have Errora = 1.2%.

In figures 5 and 6, we plot results for ε = 10% of noise with M = 400 experiments (Table 4,
line 4).

Example 3.4. One of the most fundamental models in computational neuroscience is the IA-
model (Izhikevich, 2007). This formulation considers a = (a, b, c) = (0, 1, 1), and we use these
value to generate the membrane potential with added noise. Now, we consider a unknown.

In Table 5 shows the algorithm results when approximating a, given the noise levels ε. In
Figures 7 and 8, we plot numerical results for ε = 10% of noise with M = 400 experiments (see
Table 5, line 4).

In all above examples, we estimate the unknown parameters based only on measurements of the
membrane potential and without using the conductances GK and GNa.

In the following, we describe the results of Tables 2-5. For all tables, the first column contains
the maximum noise level ε at each point of the voltage, and for each line of the tables, the noise
is reduced by a factor two. In the second column, for each fixed ε, we present the average of the
noise levels µ̄ε. This measure is the average of the absolute errors between the measurements V δi

and exact voltage V . The third column describes the average of the absolute errors between the
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ε µ̄ε µ̃ε µ̂ε µε Errorg µg = (µgNa , µgK , µgl)
40% 29.64 30.19 6.53 5.21 6.6 % ( 111.79, 35.65, 0.15 )
20% 14.81 15.08 3.28 2.52 2.7 % ( 116.65, 36.11, 0.24 )
10% 7.41 7.54 1.65 1.21 1.1 % ( 118.59, 36.01, 0.26 )
5% 3.70 3.77 0.80 0.61 0.5 % ( 119.34, 35.98, 0.28 )

TABLE 2. Numerical results for Example 3.1 with M = 400 experiments for each
noise level ε. The first column describes the noise level, as in Eq. (28). The second,
third and four columns are the arithmetic mean, see Eq. (32). The second column
represents the average of the measurement errors. The third column shows the av-
erage of the errors between the measurements V δi and the approximations V k∗,δi ,
these last values are obtained by the proposed method. The fourth column is the av-
erage of the errors between the exact value V and the approximations V k∗,δi . The
fifth column shows the error between the exact value V and the average approxi-
mations µV k∗,ε . The sixth column is the estimation error for x = g, see Eq. (32).
Finally, the last column shows the approximations for gNa = 120, gK = 36 and
gl = 0.3.

ε µ̄ε µ̃ε µ̂ε µε Errorg µg = (µgNa , µgK , µgl)
40% 24.64 25.10 5.78 4.71 7.3 % ( 92.67, 74.26, 0.004 )
20% 12.30 12.53 2.70 2.13 3.2 % ( 97.14, 77.05, 0.053 )
10% 6.17 6.28 1.40 1.12 1.8 % ( 98.41, 78.30, 0.084 )
5% 3.09 3.15 0.72 0.57 1.3 % ( 98.84, 78.80, 0.091 )

TABLE 3. Numerical results for Example 3.2 with M = 400 experiments for each
noise level ε. In the last column, we estimate gNa = 100, gNa = 80 and gl = 0.1.
See Table 2 for a description of the columns.

measurements V δi and the approximation V k∗,δi , and we denote this value by µ̃ε. In all tables,
we have µ̄ε ≈ µ̃ε, since τ = 1.02 ≈ 1; see Eq. (30). The fourth column represents the average
of the absolute errors between the exact value V and the approximations V k∗,δi , and this value is
represented by µ̂ε. In all tables, we obtain µ̄ε ≈ 4.5µ̂ε, because V δi is noisy, and V and V k∗,δi are
smooth. The fifth column displays the absolute error between the exact value V and the average
of the approximations µV k∗,ε , denoted by µε. Note that µ̄ε ≈ 5.3µε, because V δi is noisy, and V
and µV k∗,ε are smooth. The sixth column shows the estimation error for x, denoted by Errorx. In
all tables, we obtain ε/10 ≤ Errorx ≤ ε/4. Finally, the last column presents the mean of M = 400
approximations for x, represented by µx.

The histograms, in Figures 2, 4 and 6, approximate the Gaussian distribution when we increase
the number of experiments M .

4. CONCLUSIONS

In this paper, we solve two inverse problems related to the H–H model. In the first problem
estimate maximum conductances, while in the second one we determine the exponents of the
activation and inactivation variables. To calculate the unknown data, we propose the minimal
error iteration. The adjoints of some Gateaux derivatives are unknown for each problem, and
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ε µ̄ε µ̃ε µ̂ε µε Errora µa = (µa, µb, µc)
40% 29.64 30.23 6.64 6.09 10.0 % ( 3.497, 2.928, 0.959 )
20% 14.80 15.10 3.27 2.98 4.8 % ( 3.760, 2.974, 0.980 )
10% 7.42 7.57 1.64 1.49 2.4 % ( 3.880, 2.985, 0.991 )
5% 3.70 3.78 0.83 0.75 1.2 % ( 3.940, 2.994, 0.995 )

TABLE 4. Numerical results for Example 3.3 with M = 400 experiments for each
noise level ε. In the last column, we estimate a = 4, b = 3 and c = 1. See Table 2
for a description of the columns.

ε µ̄ε µ̃ε µ̂ε µε Errora µa = (µa, µb, µc)
40% 17.00 17.33 3.79 3.54 7.3 % ( −0.089, 0.950, 0.985 )
20% 8.50 8.67 1.94 1.82 3.9 % ( −0.048 , 0.979, 0.991 )
10% 4.24 4.33 0.98 0.92 2.0 % ( −0.025, 0.986, 0.996 )
5% 2.12 2.16 0.49 0.46 1.0 % ( −0.012, 0.993, 0.998 )

TABLE 5. Numerical results for Example 3.4 with M = 400 experiments for each
noise level ε. In the last column, we estimate a = 0, b = 1 and c = 1. See Table 2
for a description of the columns.

in Appendices A and B, we show how to compute them. This approach solves two systems of
nonlinear ordinary differential equations in each iteration. We solve these differential equations
with the explicit Euler method, obtaining faster convergences.

The classic Landweber and modified Landweber iterations have wk = 1, for all iterative steps
k. In minimal error method, the parameter wk changes with k. The choice of a different wk
in each iterative step makes the method faster and more stable compared to classic Landweber
and modified Landweber iterations. In our numerical tests, the classic Landweber and modified
Landweber methods diverged for any noise level, while the minimum error method converged to
the exact solution when the noise level goes to zero; cf. Tables 2, 3, 4 and 5.

On the other hand, these gradient-type methods are iterative methods that try to estimate the
solution of the inverse problem from an initial guess x1,δ, if this initial condition is far from the
exact solution, the algorithm may diverge.

In a series of numerical tests, we show that we can compute approximations for the maximum
conductances and activation/inactivation variables under different scenarios. Our methods provide
a way to find out parameters that would have to be discovered by trial and error process.

APPENDIX A. PROOF OF THEOREM 2.1

Consider the operator F defined in (12). Then F (gk,δ) = V k,δ, where V k,δ, mk,δ, nk,δ and hk,δ

solve the ODE system (21). For θ = (θNa, θK, θl) ∈ R3 and λ ∈ R, then F (gk,δ + λθ) = V k,δ
λ ,
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where V k,δ
λ , mk,δ

λ , nk,δλ and hk,δλ solve

(33)



Iext = CM V̇
k,δ
λ +

(
gk,δK + λθK

)(
nk,δλ

)a (
V k,δ
λ − VK

)
+
(
gk,δNa + λθNa

)(
mk,δ
λ

)b(
hk,δλ

)c (
V k,δ
λ − VNa

)
+
(
gk,δl + λθl

)(
V k,δ
λ − Vl

)
,

Ẋ k,δ
λ = (1−X k,δ

λ )αX (V k,δ
λ )−X k,δ

λ βX (V k,δ
λ ); X = m,n, h,

V k,δ
λ (0) = V0; mk,δ

λ (0) = m0; nk,δλ (0) = n0; nk,δλ (0) = n0.

The Gateaux derivative of F at gk,δ in the direction θ is given by

(34) W k,δ = F ′(gk,δ)(θ) = lim
λ→0

F (gk,δ + λθ)− F (gk,δ)

λ
.

Also, we denote the following limits

(35) Mk,δ = lim
λ→0

mk,δ
λ −mk,δ

λ
, Nk,δ = lim

λ→0

nk,δλ − nk,δ

λ
, Hk,δ = lim

λ→0

hk,δλ − hk,δ

λ
,

where Mk,δ, Nk,δ and Hk,δ are the Gateaux derivatives of mk,δ, nk,δ and hk,δ, respectively.
Considering the difference between ODEs (33) and (21), dividing by λ and taking the limit

λ→ 0, we have the following ODE

(36)



CMẆ
k,δ +

(
gk,δK

(
nk,δ
)a

+ gk,δNa

(
mk,δ

)b(
hk,δ
)c

+ gk,δl

)
W k,δ =

−agk,δK

(
nk,δ
)a−1

Nk,δ(V k,δ − VK)− bgk,δNa

(
mk,δ

)b−1
Mk,δ

(
hk,δ
)c

(V k,δ − VNa)

−cgk,δNa

(
mk,δ

)b(
hk,δ
)c−1

Hk,δ(V k,δ − VNa)

−θK
(
nk,δ
)a

(V k,δ − VK)− θNa
(
mk,δ

)b(
hk,δ
)c

(V k,δ − VNa)− θl(V k,δ − Vl),

Ẋ k,δ + [αY(V k,δ) + βY(V k,δ)]X k,δ = [(1− Yk,δ)α′Y(V k,δ)− Yk,δβ′Y(V k,δ)]W k,δ;

(X ,Y) = (M,m), (N, n), (H, h),

W k,δ(0) = 0; Mk,δ(0) = 0; Nk,δ(0) = 0; Hk,δ(0) = 0.

This last equation is yet another system of coupled nonlinear differential equations, depending
on the parameter θ = (θNa, θK , θl), representing an arbitrary point in R3.

From minimal error iteration (16) and θ ∈ R3 arbitrary, we have

〈gk+1,δ − gk,δ,θ 〉R3 = wk,δ〈F ′(gk,δ)∗(V δ − F (gk,δ)),θ 〉R3 ,

= wk,δ〈F ′(gk,δ)∗(V δ − V k,δ),θ 〉R3 .

By definition of adjoint operator

〈gk+1,δ − gk,δ,θ 〉R3 = wk,δ〈V δ − V k,δ, F ′(xk)(θ) 〉L2[0,T ].

From Eq. (34) and the previous equation, we obtain

〈gk+1,δ − gk,δ,θ 〉R3 = wk,δ〈V δ − V k,δ,W k,δ〉L2[0,T ].
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The internal product in L2[0, T ] is given by 〈V δ − V k,δ,W k,δ〉L2[0,T ] =
∫ T
0

(V δ − V k,δ)W k,δ dt.
Denoting the last equality by Φ, we gather that

(37) Φ =
〈gk+1,δ − gk,δ,θ 〉R3

wk,δ
= 〈V δ − V k,δ,W k,δ〉L2[0,T ].

From the previous equation and the first equality from ODE (22), we obtain

(38) Φ =

∫ T

0

(
CM U̇

k,δW k,δ −
(
gk,δK

(
nk,δ
)a

+ gk,δNa

(
mk,δ

)b(
hk,δ
)c

+ gk,δl

)
Uk,δW k,δ

)
dt

−
∫ T

0

[
(1−mk,δ)α′m(V k,δ)−mk,δβ′m(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′n(V k,δ)− nk,δβ′n(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′h(V k,δ)− hk,δβ′h(V k,δ)

]
Rk,δW k,δ dt.

Integrating the first term from (38) by parts, and from the initial (W k,δ(0) = 0) and final
(Uk,δ(T ) = 0) conditions, we obtain

(39)
∫ T

0

CM U̇
k,δW k,δ = −

∫ T

0

CMU
k,δẆ k,δ.

Replacing equation (39) in (38), we have

Φ = −
∫ T

0

(
CMẆ

k,δ +
(
gk,δK

(
nk,δ
)a

+ gk,δNa

(
mk,δ

)b(
hk,δ
)c

+ gk,δl

)
W k,δ

)
Uk,δ dt

−
∫ T

0

[
(1−mk,δ)α′m(V k,δ)−mk,δβ′m(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′n(V k,δ)− nk,δβ′n(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′h(V k,δ)− hk,δβ′h(V k,δ)

]
Rk,δW k,δ dt.
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Replacing, the first equality from the ODE (36), in the first integral from the previous equation,
we gather

(40) Φ = +

∫ T

0

agk,δK (nk,δ)
a−1

Nk,δ(V k,δ − VK)Uk,δ dt∫ T

0

bgk,δNa (mk,δ)
b−1
Mk,δ

(
hk,δ
)c

(V k,δ − VNa)U
k,δ dt

+

∫ T

0

cgk,δNa

(
mk,δ

)b
(hk,δ)

c−1
Hk,δ(V k,δ − VNa)U

k,δ dt

+

∫ T

0

(
mk,δ

)b(
hk,δ
)c

(V k,δ − VNa)θNaU
k,δ dt

+

∫ T

0

(
nk,δ
)a

(V k,δ − VK)θKU
k,δ dt+

∫ T

0

(V k,δ − Vl)θlUk,δ dt

−
∫ T

0

[
(1−mk,δ)α′m(V k,δ)−mk,δβ′m(V k,δ)

]
P k,δW k,δ dt

−
∫ T

0

[
(1− nk,δ)α′n(V k,δ)− nk,δβ′n(V k,δ)

]
Qk,δW k,δ dt

−
∫ T

0

[
(1− hk,δ)α′h(V k,δ)− hk,δβ′h(V k,δ)

]
Rk,δW k,δ dt.

Multiplying the second equation from (22) by Mk,δ, and integrating in the interval [0, T ] it
follows that∫ T

0

P k,δ
t Mk,δ −

[
αm(V k,δ) + βm(V k,δ)

]
P k,δMk,δ dt =

−
∫ T

0

bgk,δNa

(
mk,δ

)b−1(
hk,δ
)c

(V k,δ − VNa)U
k,δMk,δ dt.

Integrating by parts the first term from the previous equation, and using the initial (Mk,δ(0) = 0)
and final (P k,δ(T ) = 0) conditions, we have∫ T

0

(
Ṁk,δ +

[
αm(V k,δ) + βm(V k,δ)

]
Mk,δ

)
P k,δ dt =∫ T

0

bgk,δNa

(
mk,δ

)b−1(
hk,δ
)c

(V k,δ − VNa)U
k,δMk,δ dt.

Then, from the previous equation and the second equation from ODE (36), for (X ,Y) = (M,m),

(41)
∫ T

0

bgk,δK

(
mk,δ

)b−1(
hk,δ
)c

(V k,δ − VNa)U
k,δMk,δ dt =∫ T

0

[
(1−mk,δ)α′m(V k,δ)−mk,δβ′m(V k,δ)

]
W k,δP k,δ dt.
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Multiplying the third equation from (22) by Nk,δ, and integrating in the interval [0, T ] we gather
that∫ T

0

Q̇k,δNk,δ −
[
αn(V k,δ) + βn(V k,δ)

]
Qk,δNk,δ dt =

−
∫ T

0

agk,δK

(
nk,δ
)a−1

(V k,δ − VK)Uk,δ dt.

Integrating by parts the first term from previous equation, and using the initial (Nk,δ(0) = 0) and
final (Qk,δ(T ) = 0) conditions, we have∫ T

0

(
Ṅk,δ +

[
αn(V k,δ) + βn(V k,δ)

]
Nk,δ

)
Qk,δ dt = ∫ T

0

agk,δK

(
nk,δ
)a−1

(V k,δ − VK)Uk,δ dt.

Then, from the previous equation and the second equation from ODE (36), for (X ,Y) = (Nk,δ, nk,δ),
we have

(42)
∫ T

0

agk,δK

(
nk,δ
)a−1

(V k,δ − VK)Uk,δ dt =∫ T

0

[
(1− nk,δ)α′n(V k,δ)− nk,δβ′n(V k,δ)

]
W k,δQk,δ dt.

Multiplying the fourth equation of (22) by Hk,δ, and integrating in the interval [0, T ] we gather
that∫ T

0

Ṙk,δHk,δ −
[
αh(V

k,δ) + βh(V
k,δ)
]
Rk,δHk,δ dt =

−
∫ T

0

cgk,δNa

(
mk,δ

)b(
hk,δ
)c−1

(V k,δ − VNa)U
k,δ dt.

Integrating by parts the first term from the previous equation, and using the initial (Hk,δ(0) = 0)
and final (Rk,δ(T ) = 0) conditions, we have∫ T

0

(
Ḣk,δ +

[
αh(V

k,δ) + βh(V
k,δ)
]
Hk,δ

)
Rk,δ dt =∫ T

0

cgk,δNa

(
mk,δ

)b(
hk,δ
)c−1

(V k,δ − VNa)U
k,δ dt.

Then, from the previous equation and the second equation from ODE (36), for (X ,Y) = (H, h),
we have

(43)
∫ T

0

cgk,δNa

(
mk,δ

)b(
hk,δ
)c−1

(V k,δ − VNa)U
k,δ dt =∫ T

0

[
(1− hk,δ)α′h(V k,δ)− hk,δβ′h(V k,δ)

]
W k,δRk,δ dt.
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Substituting equations (41), (42), and (43) in (40), we have

(44) Φ =

∫ T

0

(
mk,δ

)b(
hk,δ
)c

(V k,δ − VNa)θNaU
k,δ dt+

∫ T

0

(
nk,δ
)a

(V k,δ − VK)θKU
k,δ dt

+

∫ T

0

(V k,δ − Vl)θlUk,δ dt.

Substituting equations (19), (18) and (20) in equation (44) we gather that

(45) Φ = Xk,δ
Na θNa +Xk,δ

K θK +Xk,δ
l θl =

〈(
Xk,δ

Na , X
k,δ
K , Xk,δ

l

)
, (θNa, θK, θl)

〉
R3
.

From (37) and (45)

〈gk+1,δ − gk,δ,θ 〉R3

wk,δ
=
〈(
Xk,δ

Na , X
k,δ
K , Xk,δ

l

)
,θ
〉
R3
.

Since θ ∈ R3 is arbitrary, we obtain (17).

APPENDIX B. PROOF OF THEOREM 2.2

Let F be as in (12). Then F (ak,δ) = V k,δ, where V k,δ, mk,δ, nk,δ and hk,δ solve the ODE system
(26). Let θ = (θa, θb, θc) ∈ R3 and λ ∈ R, then F (ak,δ + λθ) = V k,δ

λ , where V k,δ
λ , mk,δ

λ , nk,δλ and
hk,δλ solve

(46)



CM V̇
k,δ
λ = Iext − gk,δK

(
nk,δλ

)ak,δ+λθa (
V k,δ
λ − VK

)
−gNa

(
mk,δ
λ

)bk,δ+λθb(
hk,δλ

)ck,δ+λθc (
V k,δ
λ − VNa

)
− gl

(
V k,δ
λ − Vl

)
,

Ẋ k,δ
λ = (1−X k,δ

λ )αX (V k,δ)−X k,δ
λ βX (V k,δ), for X = m,n, h,

V k,δ
λ (0) = V0, mk,δ

λ (0) = m0, nk,δλ (0) = n0, nk,δλ (0) = n0.

Considering the difference between the ODEs (46) and (26), dividing by λ and taking the limit
λ→ 0, we have the ODE

(47)



CMẆ
k,δ +

(
gK
(
nk,δ
)ak,δ

+ gNa
(
mk,δ

)bk,δ(
hk,δ
)ck,δ

+ gl

)
W k,δ =

−bk,δgNa
(
mk,δ

)bk,δ−1
Mk,δ

(
hk,δ
)ck,δ

(V k,δ − VNa)

−bgNa
(
mk,δ

)bk,δ(
hk,δ
)ck,δ−1

Hk,δ(V k,δ − VNa)

−ak,δgK
(
nk,δ
)ak,δ−1

Nk,δ(V k,δ − VK)

−gNa
(
mk,δ

)bk,δ
ln(mk,δ)

(
hk,δ
)ck,δ

(V k,δ − VNa)θb

−gNa
(
mk,δ

)bk,δ(
hk,δ
)ck,δ

ln(hk,δ)(V k,δ − VNa)θc
−gk

(
nk,δ
)b

ln(nk,δ)(V k,δ − VK)θa,

Ẋ k,δ + [αY(V k,δ) + βY(V k,δ)]X k,δ = [(1− Yk,δ)α′Y(V k,δ)− Yk,δβ′Y(V k,δ)]W k,δ,
(X ,Y) = (M,m), (N, n), (H, h),

W k,δ(0) = 0, Mk,δ(0) = 0, Nk,δ(0) = 0, Hk,δ(0) = 0.

where W k,δ is defined in equation (34) by replacing gk,δ by ak,δ. Also, Mk,δ, Nk,δ and Hk,δ are
defined in equation (35).
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This last equation is again a system of coupled nonlinear differential equations, parametrized by
θ = (θa, θb, θc), where θ ∈ R3 is arbitrary. Considering (27), and proceeding as in Appendix A,
we gather (25).

APPENDIX C. SUPPLEMENTARY MATERIAL

Supplementary material associated with this article can be found at https://raw.githubusercontent.
com/MandujanoValle/Teste/master/Supplementary.pdf
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FIGURE 1. Results for Example 3.1 with ε = 10% and M = 400 experiments.
In subplot A, the red line represents the exact membrane potential (V ), and the
blue line is the mean of the approximations of the membrane potential obtained
by the proposed method (µV k∗,ε). Subplot B shows the standard deviation of the
approximations of the membrane potential obtained by the minimal error method.
Finally, Subplot C displays the difference between V and µV k∗,ε .
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FIGURE 2. Results for Example 3.1 with ε = 10% and M = 400 experiments.
Figures A-B, C-D, E-F show the maximum conductances of sodium, potassium
and leakage. Histograms A, C and E show estimates for gNa = 120, gK = 36 and
gl = 0.3, with 400 experiments. The red line shows an “approximate” Gaussian. In
Subplots B, D, F, the bars describe the exact maximum conductance, the mean of
the estimated conductances, the standard deviation of the estimated conductances,
and the absolute value of the difference between the exact maximum conductance
and the mean of its estimates.
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FIGURE 3. Results for Example 3.2 with ε = 10% and M = 400 experiments. See
Figure 1 for the subplots description.
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FIGURE 4. Results for Example 3.2 with ε = 10% and M = 400 experiments.
The figure shows the statistical results when estimating gNa = 100, gK = 80 and
gl = 0.1. See Figure 2 for the Subplots description.
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FIGURE 5. Results for Example 3.3 with ε = 10% and M = 400 experiments. See
Figure 1 for the subplots description.
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FIGURE 6. Results for Example 3.3 with ε = 10% and M = 400 experiments.
This figure presents the statistical results when estimating a = 4, b = 3 and c = 1.
See Figure 2 for the subplots descriptions.
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FIGURE 7. For Example 3.4 with ε = 10% and M = 400 experiments. See Figure
1 for the subplots description.
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FIGURE 8. For Example 3.4 with ε = 10% and M = 400 experiments. The figure
displays the statistical results when estimating a = 0, b = 1 and c = 1. See Figure 2
for the subplots descriptions.
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