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Abstract: We present the extension of our wall-laws developed for low-speed �ows
to super and hypersonic con�gurations. In particular, we are interested in �ows over
isothermal walls and account for heat transfer. We recall the main steps of the devel-
opment:

� Obtaining generalized wall functions for low-speed �uids, valid for all y+,
� Taking into account transversal e�ects.
� Accounting for the compressible feature of the �ow on adiabatic walls without using
informations on the local boundary layer structure but only those available at the �cti-
tious wall.
� Extension to isothermal walls. A posteriori evaluation of the heat �ux at the real wall
using informations at the �ctitious one.
� Only use informations available on unstructured meshes and avoid those coming from
a Cartesian hypothesis for the mesh in near-wall regions.

These ingredients are validated on hypersonic con�gurations on adiabatic and isother-
mal walls for expansion and compression ramps as well as for reentry geometries.
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Lois de Paroi pour Ecoulements à Grande Vitesse

sur Parois Adiabatiques et Isothermes

Résumé : Ce travail concerne l'extension des lois de paroi généralisées développées
jusque là pour les écoulements à faible vitesse aux con�gurations super et hyperso-
niques. De plus, on s'intéresse aux transferts thermiques et à la modélisation des parois
isothermes. On rappelle les étapes principales du développement:

� Obtention des lois généralisées pour les �uides incompressibles valable pour tout y+.
� Prise en compte des e�ets transverses.
� Prise en compte de l'aspect compressible des �ots pour parois adiabatiques, cette prise
en compte ne devant pas nécessiter la connaissance a priori de l'épaisseur locale de la
couche limite mais uniquement des variables à la paroi �ctive de calcul.
� Prise en compte des échanges thermiques sur parois isothermes. En particulier, on
accéde aux �ux thermiques à la paroi réelle par une évaluation a posteriori en utilisant
l'information calculée sur la paroi �ctive.
� Utilisation uniquement des informations disponibles en maillage non-structuré : on
évite celles utilisant une hypothèse a priori sur l'orthogonalité des mailles à la paroi.

Ces ingrédients ont été validés sur des con�gurations hypersoniques sur parois adia-
batiques puis isothermes, notamment de rampes de détente et de compression et sur des
corps de rentrée.

Mots-clé : Lois de paroi généralisées, relation de Crocco, relation de Reynolds, adia-
batique, isotherme.
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1 Introduction

The general idea in wall-laws is to remove the sti� part from boundary layers, replacing
the classical no-slip boundary condition by a more sophisticated relation between the
variables and their derivatives [1]. In the past, we have developed a global strategy for
boundary layer computations using this idea. We showed that the approach is enough
general for the simulation of separated and unsteady �ows for incompressible and weakly
compressible �uids and leads to good agreement with experiments [2, 3].

The aim of this paper is to present the generalization of our wall functions formulation
and implementation for high speed separated �ows on adiabatic and isothermal walls.
The turbulence modeling is done using either a two-layer k�" model [4, 5, 6] to account
for low-Reynolds regions existing in separated �ows or a high-Reynolds k � " coupled
with the wall functions presented here. The aim is to recover by the former approach
what obtained with the �rst one. As a consequence, the motivation is to predict the
�uxes at the real wall thanks to informations coming from the �ctitious one: we do not
take into account the region stated between them, and that contains most of the physics
of the �ow.

The particular ingredients of our wall functions implementation are:

1. Global wall-laws in y+ : valid up to the wall.
2. Weak formulation: this permits to easily take pressure e�ects into account in the
boundary integrals.
3. Small � in wall-laws: this means that the computational domain should not be too
far from the wall.
4. Fine meshes: the computational mesh should be �ne enough so that the numerical
results become mesh independent. Something which has not been always satis�ed when
using wall- laws.
5. Global wall-laws in Mach number: to account for compressibility e�ects.
6. Temperature dependence: to account for both adiabatic and isothermal walls.
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�c is the �ctitious computational wall whereas �w is the real wall. In practice, we
have �c = �w and we use the same mesh, the e�ective Reynolds number is therefore
Re0 = Re L+�

L
.

Another motivation for the development of wall-laws is that we are interested by an
approach which avoids the need for the distance to the wall in turbulence models. This is
why we use the wall functions with the high-Reynolds version of the turbulence models.
This is important for parallel computation, especially when targeting moving domain on
multi-body con�gurations simulation on distributed platform (using an ALE approach
for instance). The question arises also in shape optimization where after shape and mesh
deformation we need to recover the distance to the wall [7, 8, 9]. Another motivation
comes from the industrial needs for simulations over rough boundaries. Indeed, this wall
function approach has been extended in the past for low-speed �ows [10, 11] over rough
surfaces and we are today targeting a similar extension for high-speed con�gurations.
A last point of importance is that wall functions coupled with RANS models for near-
wall regions seem to be a realistic way to provide near-wall treatment and boundary
conditions for LES simulations.

2 Governing Equations

Consider the non-dimensionalized Navier-Stokes system in conservation variables. We
split the variables into mean and �uctuating parts. We use a Reynolds average for the
density and pressure and a Favre average for the other variables [12]. Following [12] for
the modeling, this leads to the Reynolds averaged Navier-Stokes equations:

@�

@t
+r � (�u) = 0 ;

@�u

@t
+r � (�u
 u) +rp = r � ((�+ �t)S) ; (1)

@�E

@t
+r � ((�E + p)u) = r � ((�+ �t)Su) +r((�+ �t)rT ) ;

with
� =


�

Pr
; �t =


�t
Prt

;


 = 1:4; P r = 0:72 and Prt = 0:9 :

� and �t are the inverse of the laminar and turbulent Reynolds numbers. In what
follows, we call them viscosity. The laminar viscosity � is given by Sutherland law:

� = �1(
T

T1
)1:5(

T1 + 110:4

T + 110:4
); (2)

where 1 denotes reference quantities.
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We do not take into account the turbulent kinetic energy contribution to the pressure
and total energy and keep the usual laws for a perfect gas [1].

2.1 Turbulence modeling

To close the previous system, we use two low-Reynolds versions of the Chien k � "
model [13, 5, 1, 6]: the classical Chien model which is shortly described in appendix
2 and a two-layer reduction of the model which has shown more numerical robustness.
We introduce YL, a maximum limit where the low-Reynolds model is applied. This is
to avoid numerical problems when starting from uniform �ows which leads to small y+.

In high-Reynolds regions Y + > 200 or y > YL

@�k

@t
+r:(�uk)�r((�+ �t)rk) = Sk; (3)

and

@�"

@t
+r:(�u")�r((�+ c"�t)r") = S": (4)

The right hand sides of (3)-(4) contain the production and the destruction terms for
�k and �":

Sk = �tP � 2

3
�kr:u� �"; (5)

S" = c1�kP � 2c1
3c�

�"r:u� c2�
"2

k
: (6)

The eddy viscosity is given by:

�t = c��
k2

"
: (7)

The constants c�; c1; c2; c" are respectively 0:09; 0:1296; 11=6; 1=1:4245 and P = S :
ru. The constant c2 and c" are di�erent from their original values of 1:92 and 1=1:3
but this is more in agreement with recent experiences [14, 15].

In Low-Reynolds regions y+ < 200 and y < YL

The eddy viscosity is given by:

�t = c��
p
kl� ; with l� = �c�3=4� y

 
1 � exp(

�y+
0:0142

)

!
:

The right hand side of k equation comes from the Chien model:

Sk = �tP � 2

3
�kr:u� �"� 2�

k

y2
:
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and " is deduced from:

" =
k3=2

l"
; with l" = �c�3=4� y

 
1 � exp(

�y+
2�c�3=4�

)

!
: (8)

Remark:

One interesting feature of this two-layer formulation is that it enables for the analysis
of the low-Reynolds behavior of the model and the impact of coupling later the full
model or only its high-Reynolds part with wall functions. Of course, we are interested
by the former choice as said before.

3 Boundary and Initial Conditions

In�ow and out�ow: in�ow and out�ow boundary conditions are of characteristic
types where we impose the value of a variable if the corresponding wave is entering the
domain (following the sign of the eigenvalue of the system). A Stegger-Warming [16]
�ux splitting scheme is used for in and out�ow boundaries.

Symmetry: slipping boundary condition is imposed in weak form for these boundaries.

u:n = 0,
@

@n
(u:t) = 0,

@k

@n
= 0 and

@"

@n
= 0:

Solid walls: The classical boundary condition is no-slip boundary condition for the
velocity (u = 0) and for the temperature, according to the physics of the problem,
either adiabatic (@T

@n
= 0) or isothermal (T = Tgiven) condition, k = 0 and " = 0 for the

two-layer formulation of the Chien model above.

When using wall functions, we remove part of the near-wall region and replace the
previous conditions by Fourier type conditions: u�:n = f1(

@u�
@n
; @T�
@n

) and T� = f2(
@u�
@n
; @T�
@n

)
for isothermal walls. Our aim through this paper is the description of this point.

Initial conditions: The initial �ow is taken to be uniform with small values for k and
".

4 Numerics

The spatial discretization of the Navier-Stokes equations is based on a Finite-Volume-
Galerkin formulation. In this paper we use a Roe [17] Riemann solver for the convective
part of the equations together with MUSCL reconstruction with Van Albada [18] type
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limiters. The viscous terms are treated using a Galerkin Finite Element method on
linear triangular elements.

We give a brief description of this technique applied to (1). Consider the following
form of the Navier-Stokes equations:

@W

@t
+r:(F (W )�N(W;rW )) = S(W;rW ); (9)

where W = (�; �u; �v; �E; �k; �")t is the vector of conservation variables, F and N are
the convective and di�usive operators. S = (0; 0; 0; 0; Sk; S")t accounts for the turbulence
model right hand sides.

Let 
h = [jTj be a discretization by triangles of the computational domain 
 and
let 
h = [iCi be its partition in cells.

us
i

h u

uu

u

u u

� Ci
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

�
��

�
��QQQ

Q
QQ

Thus, we can associate to each wh 2 Vh, where Vh is the set of the continuous a�ne
functions on our triangulation, a w0h piecewise constant function on cells by

w0hjCi =
1

jCij
Z
Ci

wh:

Conversely, knowing w0h piecewise constant, wh is obtained as wh(shi ) = w0hjCi

The weak formulation of (9) is:

Find Wh 2 (Vh)6 such that, 8�h 2 Vh

Z

h

@Wh

@t
�h �

Z

h

(Fh �Nh)(Wh;rWh)r(�h) (10)

+
Z
@
h

(Fh �Nh) � n�h =
Z

h

Sh(Wh;rWh)�h:
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This is equivalent to the following weak formulation obtained by taking in the convec-
tive part of (10) for �h the characteristic function of Ci and by using an explicit time
integration:

jCij(W
n+1
i �W n

i

�t
) +

Z
@Ci

Fd(W
n) � n = R:H:S: (11)

We use a centered scheme to compute the right hand side:

R:H:S: = �
Z

h

N(W n)r(�h) +
Z
@
h

N(W n) � n�h +
Z

h

Sh(Wh;rWh)�h:

We show below how the boundary integral above accounts for wall functions in weak
form. Moreover, Fd(W

n
h ) = F (W@
h

) on @Ci \ @
h and elsewhere Fd is a piecewise
constant upwinded approximation of F (W ) satisfying

Z
@Ci

Fd � n =
X
j 6=i

�(W 0jCi
;W 0jCj

)
Z
@Ci\Cj

n: (12)

After, writing ~B for the jacobian of F at Roe's mean values, we take for � the Roe �ux

�Roe(u; v) =
1

2
(F (u) + F (v))� j ~Bj(v � u)

2
:

Spatial second order accuracy is obtained by using a MUSCL like extension involving
a combinations of upwind and centered gradients. More precisely, let rWi be an ap-
proximation of the gradient of W at node i. We de�ne the following quantities on the
segment [i; j]

Wij = Wi + 0:5Lim(�(rW )i ~ij; (1� �)(Wi �Wj));

and
Wji = Wj � 0:5Lim(�(rW )j ~ij; (1� �)(Wj �Wi));

with Lim being a Van Albada type limiter [18]:

Lim(a; b) = 0:5(1 + sgn(ab))
(a2 + �)b + (b2 + �)a

a2 + b2 + 2�

with 0 < � << 1 and � a positive constant containing the amount of upwinding � 2 [0; 1]
(here � = 2=3). Now, the second order accuracy in space is obtained by replacing W 0jCi

and W 0jCj

in (12) by Wij and Wji [19].

The spatial discretization (11) has been presented together with a �rst order scheme
in time but it is important to have a precise time integration scheme. In this paper, a
low-storage four step Runge-Kutta scheme has been used. Let us rewrite (9) as

@W

@t
= RHS(W );
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where RHS contains the nonlinear operators. The Runge-Kutta scheme we use is given
by:

W 0 = W n ;

W k = W 0 + �k�tRHS(W k�1) for k = 1; ::; 4 ;

W n+1 = W 4 ;

with the following choices for �k:

�1 = 0:11; �2 = 0:2766; �3 = 0:5; �4 = 1:0 :

More details can be found in [20].

5 Wall-Laws

The �rst level in the modeling for wall-laws is to consider attached �ows (i.e. without
separations) on adiabatic walls (i.e. @yT j0= 0). We are looking for laws valid up to
the wall. This means that we would like to include as much as possible the physic
represented by a low-Reynolds turbulence model. We consider the following approxima-
ted momentum equation in near-wall regions (x and y denote the local tangential and
normal directions):

@

@y

 
(�+ �t)

@u

@y

!
= 0; (13)

with

�t = �
p
��w y u� (1� e�y

+=70) and y+ =
�wu�y

�w
: (14)

The equation (13) means that the shear stress along n is constant. u� is a constant
called the friction velocity and is de�ned by:

u� = (
�+ �t
�w

@u

@y
)1=2; (15)

where w means at the wall.

5.1 High-Reynolds regions

In high-Reynolds regions, the eddy viscosity becomes �t = �
p
��wyu� and dominates

the laminar one; this point leads to the logarithmic law:

@u

@y
=

u�
�y

s
�w
�
; u = u�

s
�w
�
(
1

�
log(y) + C);
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provided that @y� � @yu. This hypothesis is realistic because @yp � 0 and @yT = 0,
as the wall is adiabatic. Therefore, @y� � 0. At this level, the presence of the Reynolds
number is implicit in the constant C. To have a universal expression, we write:

u = u�

s
�w
�
(
1

�
log(y+) + �);

where � = �1

�
log(

u��w
�w

)+C is found to have a universal value of 5 for incompressible

�ows.

5.2 Low-Reynolds regions

In low Reynolds regions, �t is neglected in (13) which leads to a linear behavior for u
vanishing at walls:

�wu
2
� = �

@u

@y
� �u

y
:

This means that:

u+ =
u

u�
=

yu��w
�w

= y+:

5.3 General expression

To have a general expression, we de�ne the friction velocity u� , solution of

u = u�

s
�w
�
f(u� ); (16)

where f is such that w = u�
q

�w
�
f(u�) is solution of (13-14). The wall-function therefore

is not known explicitly and depends on density distribution. Unfortunately, it is not
easy to solve this system for both low and high Reynolds regions. We make the choice
to propose a hierarchie of laws taking into account compressibility e�ects starting from
low-speed laws.

For low-speed �ows, where density variations are supposed negligible, a satisfactory
choice for f is the nonlinear Reichardt function fr de�ned by:

fr(y
+) = 2:5 log(1 + �y+) + 7:8 (1 � e

�y+

11 � y+

11
e�0:33y

+

); with y+ =
yu��w
�w

: (17)

This expression �ts both the logarithmic and the linear velocity pro�les. In what follows,
we will try to �nd extensions for this law for high-speed �ows.
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6 Corrections for adiabatic walls for compressible

�ows

Note that the previous wall-laws are valid for incompressible �ows. We need to
introduce therefore some corrections to take into account the compressible feature of
the �ow. By now, 1 will denote in�ow quantities and e will refer to the nearest local
value outside boundary layer. We need to account for density variation in (16) and for
the fact that Reichardt law has been suggested for low-speed �ows.

6.1 Prescribing �w

Let us de�ne the recovery factor [21]:

r =
Tf � Te
Tie � Te

;

where Tf is called the friction temperature and Tie is given by:

Tie = Te (1 +

 � 1

2
M2

e ):

For turbulent �ows, it is admitted that r = Pr1=3 [21]. We obtain

Tf = Te (1 + Pr
1

3


 � 1

2
M2

e ):

In the adiabatic case, the wall temperature is the friction temperature Tf [21] (i.e. Tw =
Tf).

To close (14) in the adiabatic compressible case, we have to provide �w and �w. The
viscosity at the wall �w is obtained thanks to the Sutherland law:

�w = �e (
Tw
Te

)1=2
1 + 110:4=Te
1 + 110:4=Tw

: (18)

For the second quantity, we use the Crocco relation [21].
Crocco's law expresses that:

T = Tw + (Tie � Tw)
u

ue
� (Tie � Te) (

u

ue
)2 ;

As a consequence, we have:

T

Tw
= 1 + [(1 +


 � 1

2
M2

e )
Te
Tw

� 1]
u

ue
� 
 � 1

2
M2

e

Te
Tw

�
u

ue

�2
:
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We suppose the static pressure constant in the normal direction (i.e. @yp = 0), therefore,
from the perfect gas law, we obtain:

�w
�

=
T

Tw
:

So, we evaluate �w thanks to:

�w = �

 
1 + [(1 +


 � 1

2
M2

e )
Te
Tw

� 1]
u

ue
� 
 � 1

2
M2

e

Te
Tw

�
u

ue

�2!
: (19)

Remark:

The implementation of (18) and (19) is not straightforward on unstructured meshes
as it is di�cult to determinate (ue; Te;Me). We therefore choose to use only quantities
known for any unstructured meshes: at the '�ctitious' wall or at in�ow. In particular,

Me is replaced by M� =
r

u2+v2

P

�

: More precisely, knowing (��; T�;M�; u1; Tw) we �nd �w

by:

�w = ��

 
1 + [(1 +


 � 1

2
M2

� )
T�
Tw

� 1]
u�
u1

� 
 � 1

2
M2

�

T�
Tw

�
u�
u1

�2!
: (20)

This expression therefore uses only local informations at the wall.

6.2 Correction for Reichardt law

The next step is to introduce a correction for the Reichardt law. Three approaches have
been tested.

A - Following Cousteix [21], we express the turbulent tension thanks to the mixing-
length formula for high-Reynolds region (�y@yu = u� ):

�wu
2
� = ��2y2(@yu)

2 ;

so that:
@u

@y
=

s
�w
�

u�
�y

:

We express �w=� thanks to the Crocco law and obtain:

@u

@y
=

u�
�y

 
1 + b

u

u1
� a2

�
u

u1

�2!
; (21)

with a2 =

 � 1

2
M2

�

T�
Tw

and b = (1 +

 � 1

2
M2

� )
T�
Tw

� 1. The weakness of this

approach is that it is not valid up to the wall. A global correction needs a global mixing
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length formula as starting point using (16):

@u

@y
= u�(@yf(y

+)

s
�w
�

+ f(y+)@y(

s
�w
�
)); (22)

which is hardly computable.

B - To avoid the di�culty above, we would like to restart from (13-14):

�
�+

p
��w�u�y(1� e�y

+=70)
� @u
@y

= �wu
2
� : (23)

Now, suppose that the Reichardt law is obtained after integration of:

u� =
@u

@y

�
� + �y(1� e�y

+=70)
�
: (24)

First consider the case y+ > 100 and drop the laminar viscosity. Hence, replacing u�
by (24) in the left hand side of (23), leads to:

@u

@y
= 4

s
�w
�

u�
�y(1 � e�y+=70)

: (25)

The Crocco law links density and temperature and (25) becomes:

@u

@y
= 4

s
1 + b

u

u1
� a2

�
u

u1

�2 u�
�y(1� e�y+=70)

; (26)

The integration of relation (26) is not possible. At this level, we use the following
approximation:

�
1

a
(arcsin

2 a2 u=u1 � bp
b2 + 4 a2

+ arcsin
b

(b2 + 4 a2)1=2
)
�1=2

= u� fr(y
+):

If laminar viscosity dominates the eddy one (y+ < 20),

�wu
2
� = �

@u

@y
: (27)

For 20 < y+ < 100, we use a linear interpolation between the two expressions above.

Remark:

This formula gives the best results for the numerical simulations and is valid up to
the wall.

C - Another way to proceed is due to Van Driest [21, 22], considering the log law
relation as starting point in (24), this leads to a relation only valid for high Reynolds
region. But experience shows that it does not extend well up to the wall.
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6.3 Energy equation

Consider the viscous part of the energy equation written in the boundary layer (i.e.
@x << @y):

@

@y
(u(�+ �t)

@u

@y
) +

@

@y
((�+ �t)

@T

@y
) = 0:

When we integrate this equation between the �ctitious wall (y = �) and the real one
(y = 0), we obtain:

(�+ �t)
@T

@y
j� ��@T

@y
j0= u(�+ �t)

@u

@y
j0 �u(�+ �t)

@u

@y
j� : (28)

So, thanks to @yT j0= 0 and u j0= 0:

(�+ �t)
@T

@y
j� +u(�+ �t)

@u

@y
j�= 0:

Therefore, in the adiabatic case, there is no term for the energy equation to account for.

7 Isothermal walls

7.1 The Reynolds relation

For isothermal walls (Tw = Tgiven), we have to provide a law for the temperature, as we
did for the velocity. In weak form, we only need a law for the thermal stress �@yT . A �rst
attempt is to use the classical Reynolds relation between heat and friction coe�cients
[21]:

Ch =
sCf

2
=

1:24

2
Cf = 0:62Cf :

So, we have:

��@yT

�u3

= Ch = 0:62Cf = 1:24

�wu
2
�

�u2
;

Note that, for the isothermal case, as (�+ �t)@yu = �wu
2
� , (28) leads to:

(�+ �t)
@T

@y
j� +u�wu2� = �

@T

@y
j0 :

So, we have:

(�+ �t)
@T

@y
j� +u�wu2� = �1:24�wu2�
u: (29)

Here, the de�nition of the friction and heat coe�cients are based on local values. The
wall density is obtained through the Crocco law.
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7.2 Crocco's method

Instead of using the Reynolds relation between heat and friction coe�cients, as the only
term that we have to evaluate is @yT , we can obtain this gradient from Crocco's law:

T

Tw
= 1 + [(1 +


 � 1

2
M2

� )
T�
Tw

� 1]
u

u1
� 
 � 1

2
M2

�

T�
Tw

�
u

u1

�2
:

Using u(y = 0) = 0, we have:

@T

@y
j0=

�
T� +


 � 1

2
M2

� T� � Tw

�
@

@y
(
u

u1
) j0

so:

�
@T

@y
j0= �

�

�
T� +


 � 1

2
M2

� T� � Tw

�
�wu

2
� : (30)

Moreover, we can assume that the modelisation is not achieved because it is obvious that
in the recirculation areas, the friction velocity u� is small (and u also). As a consequence,
the prediction of the boundary condition for the energy equation will be too small in
these areas. As a matter of fact, we will have to change the previous relations (29,30)
in areas with recirculation.

7.3 The recirculation areas

The problem with separation and recirculation areas comes from the fact that the va-
riables u and u� needed by our wall-laws are very small. As a consequence, this leads to
an underestimation of the heat �ux. So, we have to de�ne another expression to replace
�wu

2
� = (�+ �t)@yu in relations (29) and (30). One issue is to change the velocity scale.

By a dimension argument, we choose the local velocity scale to be u = c�3=4�

p
k.

Hence, the friction �ux is given by:

(�+ �t)
@u

@y
= c�3=4� (� + �t)

@
p
k

@y
: (31)

8 k and " boundary conditions at the �ctitious wall

Once u� is computed, k and " are set to:

k =
u2�p
c�
� ; " =

k
3

2

l"
;

where � = min(1; (y
+

10
)2) reproduces the behavior of k when � tends to zero ( � is the

distance of the �ctitious computational domain from the solid wall). The distance � is
given a priori and is kept constant during the computation. l" is given by (8).
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9 Wall-Laws Implementation

We de�ne S = (� + �t)(ru+rut � 2
3
r:uI) and (~t; ~n) as the local orthogonal basis for

a wall node. In weak form (�nite element or �nite volume approaches),

Z
�w

(S:~n)d�

appears in the momentum equation and

Z
�w

((uS:~n) + (�+ �t)rT:n) d�

appears in the energy equation . This former quantity vanishes in the adiabatic case as
seen above and for the isothermal case, it reduces to:

Z
�w
�1:24�w Tw � Tf

u
(�+ �t)

@u

@n
d� using the Reynolds relation,

or to

Z
�w

 
�

�
(

 � 1

2
M2T + T � Tw)

!
(� + �t)

@u

@n
d� using the Crocco method.

10 Numerical Experiments

This section is devoted to the validation of these wall functions for unstructured meshes
for separated hypersonic �ows over expansion and compression ramps and for a super-
sonic �ow on a circular cylinder.

10.1 The adiabatic expansion ramp

We consider an adiabatic expansion ramp at M1 = 4 and Re1 = 4:5 107. We use
a 1D boundary layer code to generate the in�ow pro�les for all the variables for a
boundary layer corresponding to Re�0 = 1:7 105 (see appendix 1). The angle of the
ramp is �25 degrees [23]. The mesh used has about 6000 nodes with the �rst point
in the normal direction at 7 10�5m from the wall. The wall is considered as adiabatic.
The �ow con�guration is shown in �gure (1). The pressure distribution agrees well with
experimental values available in [23] (see �gure (2)). The friction coe�cient prediction
(�gure 3) has been improved using our compressibility corrections, without them and
with a correction extracted from (22). In fact, these results improve our compressibility
modi�cations based on local informations at the �ctitious wall. The results presented
in [23, 24] show a lower estimation of the skin friction coe�cient using k � ", q�! and



Wall-Laws for High Speed Flows over Adiabatic and Isothermal Walls 19

various two-layer models, than the present. In addition to this satisfactory predicting
level, we notice also that the recirculation has been captured despite the fact that it is
only driven by pressure e�ects and not the geometry. This is coherent with our previous
observations about the ability of wall-laws in capturing complex separations [2, 3].

10.2 The adiabatic circular cylinder

We consider the �ow over the upper left quarter of an adiabatic circular cylinder which
diameter is 1m. The in�ow Mach number is 2 and the Reynolds one is 107. Moreover,
the in�ow �uid temperature is 161K. The aim of this study is to test the validity of
our wall-laws on curve walls. As we did not have any experimental data, the results
evaluated thanks to the two-layer k � " model (8) will give us reference quantities.

We have used three meshes: one with �rst nodes in the normal direction at 3: 10�5m
from the wall is used for wall-laws computations, a re�ned mesh with �rst node at
1: 10�5m from the wall demonstrates the mesh-independence of the results, while the
third one, with the �rst nodes in the normal direction at 1: 10�6m from the wall, is used
for two-layer computations.
The CPU cost is much more lower with wall-laws as the mesh is coarser and time steps
higher (by three orders of magnitude here).

Figures (5) show a good agreement for the behavior of the velocity at the 135 degrees
cross-section with both the methods. The results obtained with our wall-laws for the
temperature at this cross-section have the same property (�gures 6). The turbulent
kinetic energy behavior is the same with wall-laws and the two-layer model (�gure 7).
So, the good agreement of the results obtained with the di�erent method validate our
wall-laws on curve walls.

10.3 The isothermal compression ramp

We consider the isothermal Delery 35 degrees compression ramp presented at Hermes
Workshop [25]. Experimental results are available for the pressure and heat �ux dis-
tributions. The in�ow Mach and Reynolds numbers are respectively 5 and 4:107. The
mesh used has about 8000 nodes and the �rst point in the normal direction is at a dis-
tance of 5: 10�6m from the wall, the corner being at 0:25m from the leading edge. The
in�ow temperature is T1 = 83K and the wall temperature Twall = 288K. The pressure
coe�cient distribution agrees with experimental results, with some overestimation in
the plateau region (�gure 9). We use the formulation presented in (29) to evaluate the
heat �ux (�gure 10). The e�ects of our post-processing formula (29) compared to the
heat contribution alone (i.e. (�+ �t)@yT=(�u3
)) are shown in �gure (11). We can see
a correct behavior in the �at region and a better �t with experience after separation.
As we have said, a good �t with the experimental data in the recirculation areas was
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impossible with either formulation (29) or (30) because of the speeds u and u� too much
small. In �gures (13) and (12), we present the results obtained with the formulation
(31) and the �t with experimental data is better for the heat transfer coe�cient. As
before, the recirculation length is under-predicted.

We present on �gure (14) the heat transfer coe�cient obtained thanks to the two
layer model. For this case, a re�ned mesh has been used : more than 14000 nodes,
and with the �rst ones in the normal direction at less than 2:10�7m from the real wall.
This �gure shows that the behavior are the same using wall-laws with coarse meshes or
using the two-layer k � " model with very re�ned meshes near the real wall. Moreover,
�gures (12) and (14) shows that the �t with experimental data is better on attached
with wall-laws than with the two-layer technique. Furthermore, as when wall-laws are
applied, the recirculation length is under estimated and the numerical error is the same.
So, the error in predicting the recirculation length is not a problem of wall-laws, but a
problem of modelisation.

As a consequence, this is a numerical validation of our thermal wall-laws.

11 Concluding remarks

The application of a new wall-laws formulation for compressible �ows over adiabatic
and isothermal walls has been shown. This approach is general in the sense that the
laws are valid up to the wall (for all y+), for a wide range of Mach number and heat
�ux distribution over the wall. The work has been motivated by an industrial demand
for general laws on 3D unstructured type meshes for complex geometries. This is why
only local informations available at the �ctitious wall nodes have been used. Hence, the
extension to 3D is straightforward. We showed that separated �ows can be computed
on relatively coarse meshes using explicit schemes. One advantage of this approach is
the fact that due to the weak formulation, it is not necessary to provide a global law
for the temperature, while a global law was necessary for the velocity. It is well known
that this is quite di�cult because of the complex shape of the temperature boundary
layer. Our current e�ort is therefore to improve our relation for the heat �ux de�nition
and to extend these laws to rough boundaries.
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Figure 1: Adiabatic expansion ramp (M1 = 4, Re1 = 45: 106): iso-Mach contours.
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Figure 2: Adiabatic expansion ramp (M1 = 4, Re1 = 45: 106): pressure distribution.
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Figure 3: Adiabatic expansion ramp (M1 = 4, Re1 = 45: 106): friction coe�cient,
e�ects of the compressibility corrections. The best agreement is obtained with correction
(20).
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Figure 5: Adiabatic circular cylinder: velocity of the �uid at the 135 degrees cross-section
evaluated with our wall-laws or with the two-layer model.
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Figure 9: Isothermal compression ramp (M1 = 5, Re1 = 4: 107, Twall = 288K and
T1 = 83K): pressure coe�cient distribution - Reynolds relation against Crocco's law.
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Figure 10: Isothermal compression ramp (M1 = 5, Re1 = 4: 107, Twall = 288K and
T1 = 83K): heat coe�cient distribution - Reynolds relation against Crocco's law.
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Figure 11: Isothermal compression ramp (M1 = 5, Re1 = 4: 107, Twall = 288K and
T1 = 83K): heat coe�cient obtained with the Reynolds relation before and after the
post processing formula implementation.
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Figure 12: Isothermal compression ramp (M1 = 5, Re1 = 4: 107, Twall = 288K and
T1 = 83K): heat coe�cient after the implementation of the modi�cations for the recir-
culating regions.
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Figure 13: Isothermal compression ramp (M1 = 5, Re1 = 4: 107, Twall = 288K and
T1 = 83K): pressure coe�cient after the implementation of the modi�cations for the
recirculating regions.
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Figure 14: Isothermal compression ramp (M1 = 5, Re1 = 4: 107, Twall = 288K and
T1 = 83K): heat coe�cient obtained thanks to the k � " two-layer model.
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12 Appendix 1: Generating In�ow Pro�les

We have used a 1D boundary layer code to generate the in�ow pro�les of the variables
for adiabatic cases from the in�ow Reynolds number, the in�ow Mach number and
the in�ow �uid temperature and the boundary momentum thickness (�). The iterative
process [26] is as follows:

� step 0: Re;M; T; � known

� step 1: de�nition of y+ for each node

� step 2: evaluation of u+b from:

@u+b
@y+

=
2

1 +
q
1 + 4�y+(1:� e�y+=25:53)

:

� step 3: evaluation of u+c from:

u+c = u+b + 0:55(1:� exp(�0:24
q
Re� � 0:298Re�))

2: sin2( �y
2:�

)

�
;

and evaluation of u+ from:

u+ =
� sin

�
u�
�
u+c
�

u�
:

� step 4: evaluation of the velocity u, of the temperature T and of the density � at
each node.

� step 5: new de�nition of the friction velocity u� and of the friction coe�cient Cf :

u� = u�new and Cf = Cfnew :

� step 6: calculation of �int and �int where:

�int =
Z �

0
�u(1:� u)dy and �int =

Z �

0
(1:� u)dy :

� step 7: de�nition of � = �=�inmt, Re� = �wu��=�w, �1 = ��int, h12 = �1=�.

� step 8: if stop condition false, then go to 1.

Knowing u� , �k and �" are prescribed following the wall-functions approach (8).

�k = �wu
2
�min(1; (y+=10)2) ; and �" = �wk

3=2=(C y (1:� e�y
+=(2C))) ;

where C = 0:419c�3:=4:� .
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13 Appendix 2: The Chien k � " turbulence model

In this model, the right hand sides of the k � " equations (3)-(4) are given by:

Sk = �tP � 2

3
�kr:u� �"� 2:0�

k

y2
;

S" = c1(1� e�c3y
+

)�kP � 2c1
3c�

�"r:u� c2(1:0 � 0:4

1:8
e�R

2
t=36)�

"2

k
� 2:0e�c4y

+

�
"

y2
;

where Rt =
�k2

�"
; and y+ =

q
c���wky

�
:

Moreover, the eddy viscosity is de�ned by:

�t = c�(1:� e�c3y
+

)
�k2

"
:

The constants are the same than for the two-layer model. As a consequence, the major
di�erences between the k�"models are the new terms in k=y2 and "=y2 and the damping
functions linking the constants with y+ and Rt. The existence of the new term in k=y2

comes from the isotropic behavior of ": in the near wall region (y! 0), we have:

" � 2:0�
@2k

@y2
� 2:0�

k

y2
;

so we de�ne "isotropic by "isotropic = "anisotropic � 2:0� k
y2
: Moreover, these terms need the

calculation of the distance between a node and the wall (very di�cult to determinate
for complex geometries).
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Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
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