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Evaluation critique du modele %t — ¢ classique et
les fonctions de paroi pour les écoulements
instationnaire autour de corps complexes

Résumé : On présente I’étude du modele k—¢ classique et des nouvelles lois de paroi
pour des écoulements instationnaires turbulents autour de cylindres a sections carrée
et circulaire. Nous montrons qu’une bonne méthode numérique conduit a de tres
bons résultats. Pour la premiere configuration (cas-test de Lyn), nous remarquons
une bonne correlation avec léxpérience. Pour le cylindre circulaire les résultats sont
satisfaisants pour le régime sous-critique tandis que des lacunes apparaissenet apres
la crise de la trainée.

Mots-clé : turbulence, instationnaire, k — ¢, loi de paroi
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1 Introduction

It is usually stated that the standard & — ¢ model even including a low-Reynolds
modeling can not predict the details of an unsteady flow such as the flow over square
or circular cylinders. In this paper, the standard k — & model and wall-laws are used
for such a computations and it is shown that our wall-laws implementation based
on four ingredients leads to very good results. These ingredients are:

1. global wall-laws (i.e. valid Vy™),

2. use of weak formulation,

3. use of small ¢ in wall-laws (to keep the computational domain not too far from
the wall),

4. use of reasonably fine meshes.

As this paper is about the impact of the numerics on the results, the influence
of the following implementation details has also been analyzed:
1. use of different wall-laws (logarithmic wall function, Reichardt wall function,
Reichardt wall function with convection and pressure gradient correction and the
combination of wall-laws with two-layer technique),
2. the mesh dependency of the solution, and in particular the influence of mesh
refinement near walls,
3. the influence of the artificial dissipation.

Results have been compared with available experimental data and other com-
putations (using LES, RSE or other k — ¢). In particular, we use the review paper
of Rodi [14] for these problems. Our results are comparable with the best results
available in the literature for the Lyn’s configuration but not entirely satisfactory
for the circular cylinder above the critical Reynolds number. This is not surprising
as the flow has a three dimensional feature then.



2 Model and Numerics

2.1 Mathematical model

We split the variables into mean and fluctuating parts. We use the Reynolds average
for the density and pressure and the Favre average for the other variables. We
then consider the Reynolds averaged Navier-Stokes equations. Once the unknown
correlations are modeled [2], we have:
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Where p and p; are the inverse of the laminar and turbulent Reynolds numbers. In
what follows, we call them viscosity. The laminar viscosity u is given by Sutherland
law but this is not very important for the cases presented here:

T . To+110.
= oo ()P (), 2

where oo denotes reference quantities.

We do not take into account the turbulent kinetic energy contribution to the
pressure and total energy and keep the usual laws for perfect gas.

The k — ¢ model [1] we use is classical and is an extension to compressible flows
of its incompressible version [2] and is defined by:

dpk

=0+ V(puk) = V(( + u) Vk) = Sy, (3)
and
% + V.(pue) = V((pt + c.1)Ve) = S.. (4)

The right hand sides of (3)-(4) contain the production and the destruction terms
for pk and pe:

2
Sk = e P — g,okv.u — pe, (5)
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2c e?
Se = e1pk P — é,oev.u — P (6)

The eddy viscosity is given by:
12
fe = Cup™ (7)

The constants ¢, ¢1, ¢2, ¢. are respectively 0.09,0.1296,11/6,1/1.4245 and P =
S : Vu. The constant ¢, and ¢, are different from their original values of 1.92 and

1/1.3.

The ¢y constant comes from the behaviour of k£ in isotropic turbulence:
& =1
k= ko(1+ (¢ — 1)=2)T,
ko

which is consistent with the experimental results of Comte-Bellot [5] giving a decay
of k in t=12 if and only if ¢; = 11/6 while ¢; = 1.92 leads to a decay in t~1%7 and
therefore to an overestimation of k. This has also been reported in [6], where the
author managed to compute the right recirculating bubble length for the backward
step problem using the standard k — ¢ model with ¢; = 11/6 and wall-laws but with
¢. = 1/1.3. In this work we have used the compatibility relation between the k& — ¢
constants to deduce c.:

1
/432\/@

which comes from the requirement of a logarithmic velocity profile in the boundary
layer.

(cac, — 1), K =041,

Ce. =

2.2 Numerics

Spatial discretization of the Navier-Stokes equations is based on a Finite-Volume-
Galerkin formulation. In this paper we use a Roe [7] Riemann solver for the convec-
tive part of the equations together with MUSCL reconstruction with Van Albada [8]
type limitors. However, the limitors are only used in presence of shocks. The vis-
cous terms are treated using a Galerkin Finite Element method on linear triangular
elements.

We give a brief description of this technique applied to 1. Consider the following
form of the Navier-Stokes equations:
ow
-5 TV-(FW) = NW)) =0, (8)
where W = (p, pu, pv, pE)" is the vector of conservation variables, I and N are the
convective and diffusive operators.



Let ), = U;T; be a discretization by triangles of the computational domain
and let Q) = U;C; be its partition in cells.

o

“hk :

Thus, we can associate to each w;, € V),, where V), is the set of the continuous
affine functions on our triangulation, a wj piecewise constant function on cells by

1

Conversely, knowing wj piecewise constant, wy, is obtained as w(.S;) = w},|C;.

The weak formulation of (8) is:

Find W), € (V)¢ such that, V¢, € V;,

o= (= N )

‘|‘/89(Fh_Nh)'n¢h = 0.

This is equivalent to the following weak formulation obtained by taking in the

convective part of (9) for ¢, the characteristic function of C; and by using an explicit
time integration:

mﬂ-l-l _ I/Vzn

|3 ( x

)+/ Fy(W™) -n = RS, (10)
aCy
We use a centered scheme to compute the right hand side:

RHS:—/
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Moreover, Fy(W}) = F(Waq) on 9C; N I and elsewhere Fy is a piecewise
constant upwinded approximation of F'(W) satisfying

Fyon=Y oW Ci,wwcj)/ n. (11)

aC; J#i QCmCJ

After, writing B for the jacobian of I at Roe’s mean values, we take for ® the Roe
(v —u)
5

Spatial second order accuracy is obtained by using a MUSCL like extension involving

flux

B, 0) = 5(Flu) + F(v)) — |B

a combinations of upwind and centered gradients. More precisely, let VW, be an
approximation of the gradient of W at node i. We define the following quantities
on the segment [z, j]

Wij = Wi + 0.5Lim(B(VIW )iag, (1 = 8)(W; — W),

and
Wi = W; = 0.5Lim(B(VW);ij. (1 — B)(W; — W),
with Lim being a Van Albada type limitor [7]:

(a* 4+ a)b+ (b* + a)a
a? + b2 4 2a

Lim(a,b) = 0.5(1 + sgn(ab))

with 0 < o << 1 and (8 a positive constant containing the amount of upwinding
B € 10,1] (here 8 = 2/3). Now, the second order accuracy in space is obtained by
replacing W/ and W in (11) by W;; and W;;. These techniques have been successfuly
extended to unstructured meshes in the past [9].

However, the limitors presented above were not used in the computations pre-
sented in this analysis.

This approach does not guarantee the positivity of pk and pe. Therefore, the
convective fluxes for the turbulent equations are computed using the PSI fluctuation
splitting scheme [10] which is positive and linear preserving.

The boundary and initial conditions are classical. In particular, a Stegger-
Warming [11] flux splitting scheme is used for in and outflow boundaries.

The spatial discretization (10) has been presented together with a first order
scheme in time but as we are targeting unsteady computations, it is important to
have a precise time integration scheme. In this paper, a low-storage four steps
Runge-Kutta scheme has been used. Lets rewrite (8) as

ow



where RHS contains the nonlinear operators. The Runge-Kutta scheme we use is
given by:

WO — Wn
Wk =W+ apAtRHS(W*) for k=1,..,4
Wn—l—l — W4

with the following choices [12] for ay:
ar = 0.11, a5 = 0.2766, a5 = 0.5, a4 = 1.0,

This scheme has been detailly studied in [12].

2.3 The implementation of wall-laws

In weak form (finite element or finite volume approach) the following boundary
integral appears in the momentum equation ( (s,7) denotes the local orthogonal
basis for a wall node):

/ ()i

where S = (v + 11)(Vu + Vu') is the Newtonian strain tensor. We decompose S.ii
over (8,1):

S.7i = (S.i.77)i + (S.71.5).5. (12)

In our implementation, the first term (.5,,,,) in the right hand side of (12) is computed
explicitly. It becomes important for the separation and reattachement points, but
from numerical point of view, it decreases the robustness of the flow solver, and
was therefore neglected in the presented computations. Furthermore, the following
wall-laws are used:

u.n =10

(Sit.5)5 = —ul3,

where w; is the friction velocity, solution of «.5 = u, f(u,). We decompose f(u.) in
two parts:

Juz) = folur) + folus),

with f.(u,) the nonlinear Reichardt equation:

_l_
f(y™) = 25log(1 + ky™) + 7.8(1 — e~V _ yl—le_o'?’?’er)

Y

with y* = *% and with f. a new contribution when pressure and convection effects
exist: P P P
D u u
C=—+u—+v—
Js + Js an



In this case, f. is given by:

+)2
1) = B tog(1 4 s L) ity <526, (13)
Kus 70
and s

T

Of course, this correction vanishes with €' and we recover the Reichardt law. This
additional convection and pressure gradient correction f.(u.) has been validated and
successfully used for the backward facing step computation in [3] predicting a main
recirculation of length 7 and a secondary bubble of length and height of about 0.2
and 0.3.

Once u, i1s computed, k and & are set to:

2 3 k(] = 2

© Ké Ve

where ¢ is the distance of the fictitious computational domain from the solid wall
and a = min(1, %) reproduces the behavior of k£ when ¢ tends to zero. The distance
d is given a priori and is kept constant during the computation. As we said, d is
choose-d such that y* remains small (less than 100). But, therefore, in regions where
yT is small, the standard k — ¢ model is no longer valid. To see the influence of

this on the results, we use a modified two-layer k — ¢ model [2, 4] coupled with the

)7

previous wall-laws as follows:

For internal mesh nodes where y* < 200, the ¢ equation and the eddy viscosity
expression are respectively replaced by the following algebraic expressions:

o

k
=T ni= cu\/zlﬂ

and /. and [, are two length scales containing the damping effects in the near wall

regions.
_t

L= re Myl — 7)),

l. = /ic;3/4y(1 —e )

where ¢ = 70 and x = 0.41 and y™ is defined as
v b

where y is the distance of the current point to the wall (i.e. distance to the fictitious
boundary plus ).
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3 Numerical results

In this section we present numerical results for two test cases of unsteady flows
past cylinders. These results are compared with experimental data and also with
other existing simulations based on various approach ranging from eddy viscosity
and Reynolds stress models to LES.

As the purpose of this analysis is to analyze the behavior of the standard k& —
¢ model with wall laws, and its competitiveness with other turbulence modeling
approaches for this test case, special attention was payed on the impact of different
implementation factors (mesh refinement, additional two layer technique and spatial
accuracy) on both the global (integral) parameters of the flow and the detailed
distribution of field values in the vicinity of cylinders.

All these computations have been done using NSC2KE flow solver [4] which is
in free access (anonymous ftp on piranha.inria.fr under pub/) on a HP workstation

making 10 MFlops.

3.1 Flow past a square cylinder

This is the Lyn’s vortex shedding past a square cylinder test case at Re./p = 22000.
Detailed experimental results obtained by Lyn’s LDA measurements and a variety
of simulation results using different models can be found in [13, 14, 15].

Franke and Rodi [16] performed computations using the Reynolds averaged
Navier-Stokes equations, with both the k& — ¢ and the Reynolds-stress equations
models (the standard RSE model of Launder, Reece and Rodi with wall corrections
for the pressure-strain term due to Gibson and Launder). In both cases they tes-
ted the use of wall functions and the two-layer approach for the treatment of the
near-wall regions. Murakami et al [14] employed the standard Smagorinsky model
in their LES computations where the near-wall region, due to very small scales of
motion contributing to the turbulent momentum transfer, was not resolved. It was
rather modeled using a relation between the wall shear stress and the velocity at
the first grid-point away from the wall. Haroutunian and Engelman’s [13] compu-
tations is based for the high-Reynolds region on the standard & — ¢ model or the
extended k& — ¢ model of Chen and Kim, (with the additional source term 035—2132 in
the dissipation equation and different values for model constants) or an RNG k — ¢
model. While they used a two-layer model for the low-Reynolds regions.

The main feature of the flow (i.e.the periodic shedding) is in general well predic-
ted with most of the models and numerical methods used so far. Although, Rodi [14]
reports that Franke and Rodi’s calculations [16] with the standard k — & model and
wall functions remained steady. Nevertheless, Rodi [14] also reports that the same

11



calculations [17] with a newly developed code that uses non-staggered grids (the first
calculations were performed on staggered grids) yield to sustained vortex-shedding.
However, so far, no single calculation was entirely satisfactory.

Until now the results obtained with the standard k—e model were always reported
as being worse than the ones obtained with the Reynolds stress equations models and
especially the ones obtained with large eddy simulations. Our aim is to show that
in these results the use of inadequate near-wall models and over-diffusive numerical
schemes obscured the true performance of the £k — & model.

In [13] the authors have shown that by using anti-diffusive terms in the standard
k — e model and changing the constants, a serious improvement can be obtained for
this case. Here, we would like to avoid the introduction of any anti-diffusive term
or any particular tuning of the constants.

The computations were carried out on a mesh having about 7000 nodes. The
mesh is unstructured but symmetric in y. No perturbation has been introduced for
getting the unsteadiness. The parameter § is set to 5.107°D which corresponds to
a y1 of less than 50.

The integral parameters, the dimensionless shedding frequency (Strouhal number
St = f%), the time-mean drag coefficient ¢p, the amplitudes of the oscillations in
drag coefficient ép and lift coefficient ¢ obtained in the Franke and Rodi’s calcula-
tions [16] with the £ — & model and the Reynolds stress equations model, Murakami
et al’s LES calculations and Haroutunian and Engelman [13] calculations with dif-
ferent variants of the k — ¢ model, and the results obtained in the present analysis
are compared in Table 1.

St cp ¢p cr,
two-layer k — ¢ [16] 0.124 | 1.79 | 0.0 0.323
RSE with wall functions [16] | 0.136 | 2.15 | 0.383 | 2.11
two layer RSE [16] 0.159 | 2.43 | 0.079 | 1.84
LES (Murakami et al.) [14] | 0.132 | 2.10 | 0.12 | 1.58
extended k — ¢ [13] 0.131 | 2.56
RNG £k — ¢ [13] 0.133 | 2.38
experiments [14] 0.135 | 2.05 -

0.139 | 2.39

present analysis

k — ¢ with wall functions 0.138 | 2.10 | 0.17 | 1.9
k — ¢ with wall functions + | 0.133 | 1.88 | 0.14 | 1.43
two layer technique

Table 1. Integral parameters.

12



We can see that LES [14] and RSE [16] computations produce quite different
results. LES results seem to be the best, giving the Strouhal number value St and
the time mean drag coefficient ¢p in very good agreement with the experimental
data. The computations using RSE model with wall functions seem to produce
better results for these integral parameters than the computations with the same
model using the two-layer technique. On the other hand, the results obtained with
various variants of the k —e model by Haroutunian and Engelman [13], indicate that
these computations produce too high values for the time mean drag coefficient ¢p.
The same authors [13] have also carried an analysis with the standard k& — & model
obtaining too diffusive results in general, with a Strouhal number of St = 0.128 and
time mean drag coefficient of ¢p = 1.68.

The results of the present analysis, especially the ones obtained with the & — ¢
model and wall functions, seem to agree with experimental data just as well as the
LES results, although the value of Strouhal number is slightly over-predicted. We
can see that the influence of the additional two-layer correction is not clear. The
same computation using limiters in the spatial discretization, leading to a lower
accurate scheme, gives the more smoothed results (¢p = 1.85, é¢p = 0.1 and é;, =
1.24). This is presented to illustrate how important is the influence of the numerical
spatial scheme accuracy (artificial dissipation) on the solution for unsteady flow
simulations.

Using mesh refinement in the near-wall region (about 8000 nodes) lead to a insi-
gnificant modification of all these values for the non-limited computation, showing
that the chosen starting mesh is enough fine for the given value of §. Furthermore,
comparison of the results obtained with different wall functions (Reichardt wall func-
tion, Reichardt wall function with convection and pressure gradient corrections) for
this test case show that in this case they have not such a significant influence on the
solution. However, this was expected, as in this case the main separation points are
defined by the geometry.

The pressure distribution on the cylinder surface obtained with different com-
putations and measurements (Bearman et al and Otsuki et al, see [14]), at slightly
higher Reynolds number, is presented in Figure 1. At the base wall (CD in Fig. 1),
the obtained results seem to agree very well with the measured ¢, value of about -1.4.
Similar results were obtained using LES by Murakami et al [14], but the RSE and
two-layer & — ¢ model computations carried out by Franke and Rodi [16] over and
under-predicted the values of ¢,. In the stagnation approaching flow region (AB)
there is a fairly good agreement between all the computations and measurements.
However, along the side walls of the cylinder (BC) the difference between all the
computations and measurements is more significant. The results obtained in the
present analysis agrees with the experiments slightly better than the other results.

The distribution of the time-mean horizontal velocity component u along the
centerline, giving the information on the time-averaged separation zone behind the
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Figure 1: Pressure distribution along the surface of the cylinder.

cylinder, is presented in Figure 2. Experimental data from Lyn and Durao et al
(see [14]) and the results of other simulations are also included. As for the LES and
RSE computations, the present results under-predict the length of the separation
zone and give poor agreement with the experiments in the free-stream velocity ap-
proaching region. But, in this region, the experimental data of Durao and Lyn are
significantly different from each other. This leaves the free-stream velocity approa-
ching mechanism somehow unclear. In all case, the present results are significantly
better than the two-layer computations carried out by Franke and Rodi [16]. The
results obtained with the simple Baldwin-Lomax model by Deng et al [14] have also
been included, and it seems that their agreement with the experiments is the best,
but it must be emphasized that there are no other results obtained with this model
available.

The streamlines obtained by the RSE model using wall functions [16], LES com-
putations (Murakamai et al) and the experimentally determined ones [14] for two
of the phases are compared with the results obtained with the present approach
using our wall-laws alone and coupled with the two-layer technique (Figure 3). The
agreement between the results obtained with the standard £ —e model with the mea-
surements and the results obtained with RSE and LES computations is surprisingly
good.

The corresponding k-contours are presented in Figure 4. It can be seen that the
standard k—e model used in this analysis and the two-layer RSE model [16] produce
similar results. However, both these results are in a significant disagreement with
the experiments and LES results concerning the location of the maxima of < k >.
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Figure 2: Time mean horizontal velocity component u along the center line.

The details of the flow in the vicinity and in the wake of the cylinder can be
analyzed through figures 5, 6 and 7 where the mean horizontal velocity < u >
distribution along @ = D/2 (x-position of the rear cylinder wall) and the mean
lateral velocity < v > variation along the centerline for phases 1 and 9 are given.

Considering the mean horizontal velocity component < u > distribution, it must
be emphasized that none of the computations presented in [14] has given negative
velocities at the same time on both horizontal walls for the two phases considered,
while the experimental data shows that the velocity near the horizontal walls is al-
ways negative at this location. However, the results obtained in the present analysis
with the & — ¢ model and global wall-laws are the closest ones to the experimental
data.

The mean lateral velocity < v > variation along the centerline for phases 1
and 9 (figures 6 and 7) shows that the results obtained with the k& — ¢ model are
significantly better than any other result with the & — ¢ model. Furthermore, the
results obtained in this analysis with both, the £ — ¢ model with wall-laws and the
k — ¢ model with wall-laws plus the two-layer technique seem to agree with the
experimental data in a similar way than in RSE and LES computations.

Concerning our two-layer correction, we conclude that its influence over the
results remains unclear. In the sense that they are sometime better and sometime
worse than using the original model. Therefore, for the next test case, we only use
the classical £ — ¢ model and wall-laws.

15



T @
?/ /J m‘ lﬁ

\\L,\if

iy/ N § ] i\ ‘

iy

(b) Phase 1,
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Figure 3: Streamlines for two phases.
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(b) Phase 1, (c) Phase 1,

k —¢e 4+ wall k— e 4+ two
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laws

(d) Phase 9, (¢) Phase 9,

k —¢e 4+ wall k— e 4+ two
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Figure 4: Isolines of < k£ > for two phases.
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(a) Comparison with experience and other simulations (Phase 1)
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(b) Idem (Phase 9)

Figure 5: Profiles of the mean horizontal velocity component < u > distribution
along @ = D/2 (x-position of the rear cylinder wall).
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Figure 6: The mean lateral velocity component < v > variation along the centerline

(Phase 1).
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simulations using different k& — ¢ models
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Figure 7: The mean lateral velocity component < v > variation along the centerline

(Phase 9).
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3.2 Flow past a circular cylinder

In this section, the results obtained for the flow past a circular cylinder at various
Reynolds numbers are presented. The computations were carried out for Reynolds
numbers in the range Re = 10* — 10°, including therefore the sub-critical and su-
percritical regimes and the drag crisis phenomenon.

The results are compared with experimental data obtained by Cantwell and Coles
[18] and other simulations presented in [14]. Franke [19] calculated the flow past a
circular cylinder at Re = 1.4 - 10°, with both the & — ¢ and two-layer RSE models.
The general conclusion from that analysis was that the & — ¢ model under-predicts
the periodic shedding motion, while the RSE model tends to over-predict it, but
in the circular cylinder case considerably more than in the square cylinder case.
Deng et al (see [14]) calculated the flow past circular cylinders with both the k& — ¢
model (using various low-Reynolds models near the wall) and the Baldwin-Lomax
model. Their conclusion was that all the versions of the k — ¢ model underestimate
the drag coefficient, but that Baldwin-Lomax gives reasonable results for the global
properties. Tamura et al [20] performed both 2D and 3D computations of the
flow past circular cylinders with their quasi-LES method (they simulated the effect
of smaller-scales turbulent motions by a numerical damping), showing clearly the
advantages of a 3D model. In their 2D computations, strong secondary vortices, not
present in the 3D computations, caused an over-prediction of the drag coefficient ¢p
in the sub-critical regime. On the other hand, their 3D computations reproduced the
behavior of the drag coefficient and in particular its drop with increasing Reynolds
number fairly well. Song and Yuan [21] also performed a 2D LES computations that
yielded fairly realistic pressure and time-mean velocity distributions for the flow past
a circular cylinder at various Reynolds numbers. But they introduced several ad hoc
assumptions for this case ([14]).

The starting mesh has about 5000 nodes and is unstructured but symmetricin y.
Despite this symmetry, the flow becomes unsteady without any initial perturbation
although one could expect the k — ¢ not to produce any unsteadiness at all. Three
other meshes, obtained after refinement in the normal and tangential directions, have
been used. The parameter ¢ is set to (0.001D) for the Reynolds number Re = 10%.
Here, the impact of several implementation details on the standard k£ — & model is
analyzed, keeping in mind the results already obtained for the square cylinder test
case:

- the influence of the convection and pressure gradient corrections in the wall laws,
- the influence of the mesh refinement near the wall in normal and tangential,
- the influence of the value of the parameter ¢.

The periodic motion has a Strouhal number of St = 0.26 for Reynolds number
Re = 104, slightly over-predicting the experimental value of about 0.2 for a wide
range of sub-critical Reynolds number values.
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The most interesting flow parameter and the most difficult to calculate, is the
time-mean drag coefficient. The detailed experimental study of this test case was
carried out by Cantwell and Coles [18]. In figure 8, the values of time-mean drag
coefficient obtained for various Reynolds numbers in experiments and the data from
other simulations are presented. The 3D quasi-LES computations carried out by
Tamura et al [20], seem to yield the best agreement with experiences. The results
obtained by Deng et al [14] with their Baldwin-Lomax model are also presented. In
general, it is reported that the predicted values by the various k — ¢ models are not
satisfactory.

Similarly to the square cylinder test case, the present analysis yields the values
of ¢p in fairly good agreement with experimental data for the sub-critical regime.
For the Reynolds number values that are closer to the critical one (approximately
at 5-10%), the disagreement with the experimental data is more significant. Nei-
ther the mesh refinement in tangential and normal directions near the walls, nor
the convection and pressure gradient corrections improved these values significantly.
The convection and pressure gradient corrections seem to leave some space for im-
provement as they have been obtained only after a first order expansion [3] and also
that the solver is much unstable after their introduction, meaning that improvement
in our numerics is still necessary.
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Figure 8: Drag coefficient vs. the Reynolds number.

The results obtained for Reynolds number of Re = 10° are compared with the
results obtained by Franke [19] in his computations using a two-layer & — ¢ model
and Reynolds stress equations and with the experimental data obtained by Cantwell
and Coles for the Reynolds number value Re = 1.4 - 10°.
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The length of the separation bubble can be an indicator of the quality of the
computations. In figure 9, the predicted instantaneous streamlines at a given phase
are presented. We also present the time-mean streamlines obtained by Franke with
the two-layer & — ¢ model and the two-layer RSE model (we do not produce the
time-mean streamlines for our approach as they have been obtained by an a poste-
riori treatment). We can see that the present approach is quite close to the RSE
computations.

(a) two-layer k — ¢ model two-layer RSE model

(b) present analysis k — ¢
model + wall-laws

Figure 9: Instantaneous streamlines and time-mean streamlines (Re = 107).

The quality of the results obtained in the vicinity of the cylinder can be evalua-
ted through the values of the time-mean velocity distribution along the center-line
behind the circular cylinder. The results from experiments (Cantwell and Coles
[18]), Franke’s computations [19] and the present analysis are compared in figure
10. It can be seen that none of the computations yield satisfactory results, but the
results obtained in the present analysis, again seem to be the best ones. However,
there are again some discrepancies in the free-stream velocity approaching region.
From the figures 9 and 10, it can be concluded that the model used in the present
analysis yields fairly good agreement with the experiments considering the size of
the separation region for this Reynolds number value.
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Figure 10: Time-mean horizontal velocity distribution along the center-line behind

the circular cylinder (Re = 10°).
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Figure 11: Time-mean horizontal velocity distribution at #/D =1 (Re = 10°).

The time-mean horizontal velocity distribution at x/D = 1 obtained in this
analysis is compared with experience in figure 11. We can see that, despite being
the best, the model over-predicts the horizontal velocity at the boundary of the wake

of the cylinder, leading to an unrealistic pressure drop (see figure 12).
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Figure 12: Time-mean pressure distribution on the cylinder surface (Re = 10°).
4 Conclusions

Although the classical £—¢ model and wall-laws are expected not to give satisfactory
results for unsteady turbulent flows simulations, very good results are obtained with
the standard k — ¢ model coupled with global wall-laws for two vortex shedding flow
problems. The results presented in this paper are in the same quality range than the
ones obtained by RSE and LES computations as far as the mean flow remains 2D.
Indeed, for the Lyn’s test case the agreement is very good as well as for the circular
cylinder for Reynolds numbers in the sub-critical range. Failing in the prediction
of three dimensional effects in the flow seems therefore to be the major weakness of
the model.

In all case we showed that good numerics and adequate numerical dissipation
lead to a big improvement of the results obtained with the classical & — & model. It
is therefore natural to ask the same question for models (like RSE) with much more
nonlinearity than & — ¢.
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