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Abstract: The present work describes the introduction of a large-eddy approach (LES)
into an existing code developed for the simulation of aeroelastic problems. The code permits
the simulation of compressible �ows and employs unstructured grids for the treatment of
complex geometry, typical of industrial applications. A RANS approach with a k� � model
was previously used in the code for the simulation of turbulent �ows. The subgrid scale
model, proposed by Smagorinsky for the closure of the equations in the LES approach, is
presented here in the formulation for compressible �ows and for unstructured grids. The
main issue is to investigate the capabilities of LES combined with a di�usive numerical
upwind technology, and the use of a wall-law within this approach. The simulation of the
�ow around a square cylinder and the analysis of the result sensitivity to di�erent simulation
parameters have been used for a �rst evaluation of the LES model implemented in the code.
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Vers la simulation des grandes échelles d'écoulements

industriels complexes avec des maillages non structurés

Résumé : On décrit dans ce rapport l'introduction d'une approche de simulation des
grandes échelles (LES) dans un logiciel developpé pour la simulation de problèmes d'aèroe-
lasticitè. Ce logiciel permet la simulation d'écoulements compressibles; des maillages non
structurés sont employés pour le traitement des géométries complexes, typiques des applica-
tions industrielles. Une approche RANS (�Reynolds-averaged Navier Stokes�) et un modèle
de turbulence de type k�� étaient précédemment employés pour la simulation d'écoulements
turbulents. On présente ici la formulation pour écoulements compressibles et maillages non
structurés du modèle de sous-maille proposé par Smagorinsky pour la fermeture des équa-
tions dans l'approche LES. Le but principal de ce travail est l'étude du comportement de la
simulation des grandes échelles pour des schémas di�usifs de type décentré. On se propose
également d'évaluer la possibilité d'utiliser des lois de paroi dans une approche LES. La
simulation de l'écoulement autour d'un cylindre carré et l'analyse de la sensibilité des résul-
tats aux di�érents paramètres sont utilisées ici pour une première évaluation de l'approche
LES implémentée.

Mots-clés : modélisation de la turbulence - simulation des grandes échelles - modèle de
Smagorinsky - maillages non structurés - schémas décentrés - lois de paroi
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1 Introduction

The direct numerical simulation (DNS) of turbulent �ows at high Reynolds numbers, charac-
teristic of engineering applications, is impossible, due to the wide range, in space and time,
between the largest and the smallest scales typical of turbulent �uctuations. Moreover,
turbulent �ows are always three-dimensional and unsteady, and these aspects represent ad-
ditional problems in the numerical simulation. For this reason, DNS is used only in research
applications for the simulation of �ows at low Reynolds numbers (typically not higher than
103).

The RANS approach to turbulence (Reynolds Averaged Navier-Stokes Equations) is the
most widely used in engineering applications at the moment. It consists in �ltering the
Navier-Stokes equations in time in order to get rid of the high-frequency �uctuations of
the �ow. As a result, only the mean �ow is simulated. The e�ect of the �uctuations on
the time-averaged �eld is then introduced by modeling. With this approach, larger time
steps and coarser grids than in DNS can be used and, hence, the computational costs are
reduced. Moreover, the mean �ow can be steady and two-dimensional in many cases, and
this further reduces the complexity of the problem. However, in this way all information is
lost on the turbulent �uctuations, that are entirely given by the model. However, although
many closure methods have been proposed for RANS equations, none of them has a general
validity.

Another approach to turbulence consists in getting rid of the high-frequency compo-
nents of turbulence in space and this is the main idea of the large-eddy simulation (LES)
approach. Indeed, in LES the Navier-Stokes equations are �ltered in space and only the
scales larger than the �lter width are directly simulated. Thus, the large scales of motion,
that are the most interesting for engineering applications, since they are responsible of most
of momentum and energy transport, are directly resolved. On the other hand, the e�ect of
the eliminated small scales on the large ones has to be modeled. However, the smaller are
the scales of turbulence the more independent they are from the particular considered �ow.
Therefore, the formulation of closure models of general validity seems to be easier than in
RANS. Moreover, within the LES approach we are able to directly account for the three-
dimensional and unsteady behavior, typical of turbulence. This is an advantage, since we
have realistic simulations of turbulent �ows, but it leads to computationally more expensive
simulations.

The aim of this work is the choice and the implementation of an LES approach in an
existing code, designed for aeroelastic simulations of compressible complex �ows, which
previously employed a k � � closure model for a RANS treatment of turbulence. This code,
named �AERO�, is parallel, employs unstructured grids, implicit/explicit time advancing
and TVD schemes. Wall-laws are used for the near-wall treatment.

A critical point in LES is the modeling of the subgrid scales (SGS). Smagorinsky de-
veloped in 1963 (see Ref. [25]) the �rst LES closure method for incompressible �ows. This
model is used in a wide range of applications. Its simplicity allows it to be a good starting
point for the implementation of a new LES approach in an existing code. Moreover, since it
represents also the kernel of more recent LES models (i.e. the dynamic Smagorinsky model

INRIA
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developed in the 1991 by Germano [12]) a more complex LES approach could be easily im-
plemented in a second time. For these reasons, the SGS model implemented in the AERO
code is the simplest extension of Smagorinsky model to compressible �ows.

In spite of its positive features and of the promising results given for di�erent type of
�ows, LES has been rarely applied to the simulation of engineering �ows, characterized
hence by high Reynolds numbers and complex geometries. Thus, several speci�c problems
have still to be investigated. Some of them have been treated in the present work.

For instance, a space �lter is requested in the LES approach and it can be assumed that
the space discretization of the equations acts as a �lter on the solution. If unstructured grids
are employed in order to treat complex geometries, typical of engineering applications, the
de�nition of a characteristic width of the �lter as a function of the local size of the mesh is
di�cult, since the structure of the �lter function is unknown. This is not only an academic
problem, since the de�nition of the �lter width is necessary in many closure models. Also,
note that very few examples of LES on unstructured grids are available in the literature
(Refs. [14, 15, 22] for example).

As said previously, most of the engineering problems are characterized by high Reynolds
numbers. With high Reynolds numbers we have problems for the near wall treatment,
which can easily become computationally too expansive for industrial applications. Thus,
an approximate treatment is necessary. In AERO, the Reichardt wall-law [13] is employed
in order to overcome this problem. One issue of the present work is to investigate if such a
law is still suitable in LES.

Moreover, robust schemes are needed in order to avoid stability problems in the case of
high Reynolds numbers. This is generally obtained by the use of dissipative schemes. On
the other hand, the numerical viscosity interferes with the SGS viscosity in a complex way
and it can have a strong in�uence on the solutions. In Ref. [11] it has been shown that TVD
schemes are not compatible with LES due to this interaction, that needs to be investigated
in order to obtain reliable results from the simulations. In the present study, a sensitivity
analysis is carried out by varying some parameters which control the numerical dissipation.

Finally, in engineering applications e�cient schemes are needed and implicit time ad-
vancing is commonly used, as in the AERO code. However, in the classical LES approach
no �lter is applied in time. If large time steps are used, as those reachable with implicit
schemes, this could act as an additional �lter in time. Thus, the following question arises:
which is the maximum time step allowable to obtain reliable results without providing a
closure model also for time �uctuations? This point is investigated here by carrying out a
sensitivity analysis to the maximum CFL number used in the simulation.

The �ow around a square cylinder at a Reynolds number of 22000 has been simulated for
this �rst set of tests. This �ow has been investigated experimentally by Lyn and Rodi [20, 21],
and experimental data are available for the time-averaged as well as for the phase-averaged
�ow. Also experimental results at di�erent Reynolds numbers are available [1, 6, 16]. Many
numerical results are also available in the literature, both from LES [23] and RANS [10, 2]
simulations. Thus, this test case is particularly well suited for a �rst evaluation of the
implemented LES approach and for the investigation of the aforementioned aspects.

RR n° 3844



6 Simone CAMARRI,

2 Smagorinky's model for compressible turbulent �ows

In the LES approach, the Navier-Stokes equations are �ltered in space and the subsequent
subgrid scale (SGS) terms need to be modeled in order to directly solve only the �ow scales
that are larger than the �lter width. The problem of SGS modelling can be seen as a passage
from �micro� to �macro�, in which the object of interest is represented by the laws governing
the phenomenon at a macroscopic level. The Navier-Stokes equations are already the result
of such a passage: the micro corresponds to the molecular motion and the macro to the
�uid particle motion. The constitutive equations represent this passage. The fundamental
di�erence between the two cases consists in the separation between the micro and the macro
scales; in the continuous model there is a clear separation between both scales; in the SGS
modelling, this separation is somewhat arbitrary. Anyway this similitude is very useful to
understand the physical meaning of some of the SGS terms. Indeed, each convective SGS
term in the �ltered equations has an equivalent viscous term in the un-�ltered Navier-Stokes
equations. The former ones are the result of the SGS �uctuations, and the latter are the
result of the �uctuations at molecular scales. The qualitative e�ects can be assumed to be
the same; they are obviously di�erent from a quantitative point of view.

In the present section, a possible extension of the Smagorinsky model (Ref. [25]) for the
LES of a compressible �ow is described; the model has been proposed by Lesieur and Comte
in Ref. [17].

The great limit of this model consists in the de�nition of two arbitrary constants: Cs,
Prt. Those constants will be dependent on the kind of problem to be studied. Besides, a
general limit of LES approach lies in the fact that the separation between the small and the
large scales of turbulence is somewhat arbitrary. Then the method performance will depend
on the characteristic dimension � of the �lter applied to Navier-Stokes equations.

Furthermore, Smagorinsky's model leads to the de�nition of an eddy viscosity which is
always positive. This means that energy backscatter will not be simulated by this model.
As a consequence, this model will be too dissipative and this will stabilize the �ow. For
this reason, there could be some problems in the prediction of the transition point between
laminar and turbulent �ow within a boundary layer. Besides, the eddy viscosity will not
vanish in a completely laminar �ow and near a wall. In order to solve the latter problem, a
proper wall-law should be employed.

INRIA
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2.1 Navier-Stokes equations

The Navier-Stokes equations are written here for a compressible �uid. The Einstein index
repetition rule is used.

@�

@t
+
@(�ui)

@xi
= 0 ; (1)

@(�ui)

@t
+
@(�uiuj)

@xj
= � @p

@xi
+
@�ij
@xj

; (2)

@(�e)

@t
+
@(�euj)

@xj
= �@(puj)

@xj
+
@(uj�ij)

@xi
� @qj
@xj

: (3)

Gravity forces on the �uid have been neglected.
Under the assumption of a perfect, Newtonian gas, the constitutive equations of the �uid

are:

p = �RT ; (4)

e = CvT +
1

2
�uiui ; (5)

~q = �K~rT ; (6)

�ij = �

�
@uk
@xk

�ij

�
+ �

�
@ui
@xj

+
@uj
@xi

�
: (7)

Under the Stokes hypothesis, we can assume:

� = �2

3
� : (8)

This assumption is equivalent to the neglection of the in�uence of the isotropic part of the
symmetric portion of the tensor ~r � ~v on the viscous stresses. This is a good approximation
to study problems in which the point of interest consists in the analysis of the pressure forces
exerted by the �ow on a body. It leads to signi�cant errors if employed to study certain
kind of problems, for example, an acoustic isotropic wave propagation at high frequency.

2.2 Filtering functions

A space �ltered �eld can be associated to any �eld de�ned in a given space domain D; this
can be obtained through the convolution with a �lter function G� (~x), where � is the �lter
width. In this way the �uctuations in the motion of wavelength smaller than � will be
eliminated.
Thus, the �ltered �eld is de�ned, for any quantity f (scalar of vectorial), as

f (~x; t) =

Z
D

f (~y; t)G� (~x� ~y) d~y : (9)
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In general the �eld f can be written as

f = f + f 0 ; (10)

where the term f 0 represents the �uctuations at scales smaller than the �lter width.
It is possible to prove that the �ltering process described in (9) is a linear operator; moreover
it commutes with temporal and spatial derivatives:

@f

@t
=

@f

@t
; (11)

@f

@xi
=

@f

@xi
: (12)

When �ltering the Navier-Stokes equations for a compressible �ow, it is useful to intro-
duce the density-weighted �lter (or Favre �lter [9]). This is de�ned as

~f =
�f

�
; (13)

where � is a general weighting function; in the case of Navier-Stokes equations it is chosen
as the density of the gas.

It is generally assumed that the space discretization of the �ow domain, carried out
in order to numerically solve the Navier-Stokes equations, acts as a �lter on the variables
of the �ow. Indeed, the numerical solution well represents only the variations of the �ow
variables with characteristic space length larger than a given value, which is a function of
the dimension of the grid and of the particular numerical method employed. For anisotropic
unstructured grids, this characteristic length varies in the domain. In the LES approach
to turbulence, it is supposed that the �lter represented by the space discretization of the
domain, which is unknown, can be expressed as in Eq. (9). This assumption is somewhat
arbitrary, but it is necessary in order to give an algebraic expression to the SGS terms. It
is thus important to analyze the main properties of the real �lter. The property (11) is still
satis�ed. For non-homogeneous grids, property (12) is valid within a certain error, that can
be estimated as a a function of the local size of the grid; this point has been analyzed by
Vasilyev and Lund in Ref. [28].

2.3 Filtering the Navier-Stokes equations

In this section the Navier-Stokes equations and the constitutive equations, already intro-
duced in Sec. 2.1, are �ltered in the physical space using a generic �ltering function with
the properties described in Sec. 2.2.

INRIA
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Continuity equation Thanks to the adoption of the Favre �lter, there are no SGS terms
to be modeled in the continuity equation. From the analysis of every single term, we have:

@�

@t
=

@�

@t
;

@�uj
@xj

=
@� ~uj
@xj

:

Thus, the �ltered continuity equation can be written as

@�

@t
+
@� ~uj
@xj

= 0 : (14)

Momentum equation By �ltering the time derivative we obtain

@ (�ui)

@t
=

@ (� ~ui)

@t
:

By �ltering the convective part of the momentum transport we obtain:

@ (�uiuj)

@xj
=

@ (�~ui~uj)

@xj
� @M

(1)
ij

@xj
;

in which M
(1)
ij is the �rst SGS term encountered. It takes into account the momentum

transport of the SGS scales and it can be expressed as

M
(1)
ij = � ~ui ~uj � �uiuj : (15)

In order to model M
(1)
ij , it is convenient to split it into its isotropic and its deviatoric part:

M
(1)
ij =M

(1)
ij � 1

3
M

(1)
kk �ij| {z }

Tij

+
1

3
M

(1)
kk �ij| {z }
Dij

:

The deviatoric part is

Tij =M
(1)
ij � 1

3
M

(1)
kk �ij ; (16)

and the isotropic part is

Dij =
1

3
M

(1)
kk �ij : (17)

The �ltering of the pressure gradient term does not produce any new SGS term and it can
be written as

@p

@xi
=

@p

@xi
:
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The last term to be �ltered is the viscous term. For sake of simplicity, a new tensor Pij will
be introduced:

Pij = �2

3
Skk�ij + 2Sij ; (18)

in which Sij is the strain rate tensor de�ned as:

Sij =
1

2

�
@ui
@xj

+
@uj
@xi

�
: (19)

The constitutive equation for the viscous term can be expressed as

�ij = �Pij :

The �ltering of the viscous term in the momentum equation leads to the following result:

�ij = �Pij = �fPij +M
(2)
ij :

The tensor M
(2)
ij is another SGS term, and it represents the transport of viscosity due to

the SGS scales �uctuation. It can be expressed as

M
(2)
ij = �Pij � �fPij : (20)

This term could be further developed in more SGS terms. This will not be done here because,

as it will be shown in the next sections, this term is negligible if compared to M
(1)
ij .

To sum up, by �ltering the momentum equation, we have obtained the following result:

@ (� ~ui)

@t
+
@ (� ~ui ~uj)

@xj
= � @p

@xi
+

@

@xj

�
�fPij�+ @M

(1)
ij

@xj
+
@M

(2)
ij

@xj
: (21)

Energy equation By �ltering the time derivative term we obtain

@�e

@t
=

@�~e

@t
:

With the introduction of the thermodynamic state equation for a perfect gas, it is possible
to write:

�~e = �Cv
~T +

1

2
�

3X
j=1

g�u2j� : (22)

The �ltered square of a velocity component can also be written as1

�g(u2i ) = �guiui = �~u2i �
�
�~u2i � �guiui� : (23)

1In this formula index repetition rule does not apply.

INRIA



LES of complex �ows 11

Substituting Eq. (23) in Eq. (22) we obtain

�~e = Cv� eT +
1

2
�

3X
j=1

(~uj)
2 � 1

2
Dii ; (24)

in which Dij is the isotropic part of M
(1)
ij as de�ned in Eq. (17), and it needs to be modeled.

The �ltering of the convective term in the energy equation leads to

ui (�e+ p) = ~ui (�~e+ p)�E
(1)
i ; (25)

in which the SGS term E
(1)
i can be expressed as

E
(1)
i =

h
~ui (�~e+ p)� ui (�e+ p)

i
: (26)

This term could be split at least in two parts, but it is left in this form that is more suitable
for further modelling. It represents three distinct physical e�ects:

1. the transport of energy e due to small scales motions;

2. the change of the internal energy due to the SGS compressibility (p~r~v));
3. the dissipation of energy due to SGS motions in the pressure �eld (~v � ~rp).
The �ltering of the viscous dissipative terms leads to:

@�ijuj
@xi

=
@(�Pijuj)

@xi
=

@
�
�fPij euj�
@xi

+
@E

(2)
i

@xi
; (27)

in which the SGS term E(2) can be expressed as

E(2) = (�Pijuj)�
�
�fPij euj� : (28)

This term takes into account the dissipative e�ect due to the SGS scale transport of viscosity.
It can be split at least in three parts having di�erent physical meaning. Indeed, working on
Eq. (28), we obtain:

E
(2)
i =

�
M

(2)
ij

� euj| {z }
(a)

+(�ijuj � �ijuj)| {z }
(b)

+�ij (uj � euj)| {z }
(c)

: (29)

Terms (a) and (b) represent the dissipation due to viscous e�ects in SGS �uctuations. Term
(c) represents the dissipation due to viscous and compressibility e�ects coupled together.
The last term to be �ltered is the heat di�usion. This leads to

@

@xj

�
K

@T

@xj

�
=

@

@xj

 
K

@ eT
@xj

!
+
@E

(3)
j

@xj
: (30)
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The SGS term E(3) can then be expressed as

E(3) =

�
K

@T

@xj

�
�
 
K

@ eT
@xj

!
: (31)

This term takes into account the heat transfer caused by the motion of the neglected SGS
scales.

To sum up, the �ltered energy equation can be written as follows:

@(�ee)
@t

+
@[(�ee+ p)euj ]

@xj
=

@(euje�ij)
@xi

� @eqj
@xj

+

+
@

@xj

�
E
(1)
j +E

(2)
j +E

(3)
j

�
; (32)

in which the SGS terms E(i) are de�ned in Eq. (26), (28), (31).

2.4 Modelling the SGS terms

The SGS model that is developed in the following section is intended to be used to study �ows
at high Reynolds numbers (of the order of the problems in engineering applications), at such
Mach numbers that low compressibility e�ects are present in the SGS �uctuations. Besides,
this model is not suitable to study �ows with high heat transfer and high temperature
gradients.

Modelling the SGS terms in the momentum equation The �ltering of the mo-
mentum equation, already described in Sec. 2.3, led to the de�nition of three SGS terms:

Tij ; Dij ; M
(2)
ij . Those terms need to be modeled, in order to close the �ltered Navier-Stokes

equations. The term Tij represents the deviatoric part of the momentum transport tensor

M
(1)
ij , de�ned in Eq. (15). Its analog term, in the un-�ltered Navier-Stokes equations, is

represented by the tensor �ij , obtained under the Stokes hypothesis. Since the trace of the
tensor Tij is zero (the same is valid for the tensor �ij), it represents a term that can be
added to the viscous terms �ij . This means that it could be modeled by the de�nition of
an eddy viscosity �t, in accordance to Smagorinsky's model extended to compressible �ows.
As suggested by Lesieur and Comte in Ref. [17], it is possible to write:

Tij = �tfPij ; (33)

in which the eddy viscosity �t can be de�ned in accordance to the Smagorinsky model [25]:

�t = � (Cs�)
2
���eS��� ; (34)��� eS��� =q2fSijfSij : (35)
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The termM
(2)
ij takes into account the transport of the viscous terms due to small scales �uc-

tuations. However, since the Reynolds numbers are high, this term is negligible if compared
to the transport of momentum. Thus it will be neglected.

The last term to be modeled is Dij ; it represents the isotropic part of the momentum

transport tensor M
(1)
ij ; it can be directly added to the thermodynamic pressure. The analo-

gous term in the un-�ltered Navier-Stokes equations, due to molecular �uctuation, has been
neglected with the assumption (8):

� = �2

3
� :

Indeed, due to this assumption, the in�uence of the isotropic part of the symmetric portion
of the tensor ~r~v has been neglected in the constitutive equations. Thus:

tr(�) = 0 :

This means that the in�uence of the momentum transport of molecules, moving in the same
direction of a velocity gradient, is negligible if compared to the thermodynamic pressure. In
the case of SGS modelling, this e�ect is not always negligible. It depends on the velocity of
the SGS �uctuations. According to Erlebacher et al. [7], the term Dii could also be written
as

Dii = Msgsp ; (36)

in which Msgs is the SGS Mach number and  is the speci�p heat ratio of the gas. Since the
problem class to be studied shows only light compressibility e�ects, this term is reasonably
negligible. Anyway, there are two options for the treatment of this term:

1. to simply neglect it under the following assumption:

Msgs � 1 : (37)

It is reasonable to assume that Msgs is low when M1 is not high, as in the case of the
problem class at issue;

2. to model it, as proposed by Yoshizawa [30], in a way which is consistent with the model
employed for Tij .

In this section, the �rst option will be chosen, relaxing the required assumption on M1,
as suggested by Lesieur and Comte in Ref. [17]. Indeed, the e�ects of the SGS term Dij can
be added to the thermodynamic pressure, leading thus to the de�nition of a �macro-pressure�
�:

� = p� 1

3
Dii : (38)
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From the analysis of the Eq. (22), it is possible to de�ne a �macro-temperature�, using again
the term Dij :

�~e = �Cv

�eT � 1

2Cv�
Dii

�
+

1

2
�
�
~u1
2 + ~u2

2 + ~u3
2
�

: (39)

Thus, a �macro-temperature� � will be introduced

� = eT � 1

2Cv�
Dii : (40)

The �ltered equation of state is:

p = �R eT : (41)

By substituting Eq. (38) and Eq. (40) in Eq. (41) we obtain:

� = �R�+

�
R

2Cv

� 1

3

�
Dii = �R�+

�
3 � 5

6
Dii

�
: (42)

Thus, for mono-atomic gases (for which  � 5
3 ), the contribution of Dii to Eq. (42) is

negligible, independently of the Mach number. In general cases, it is possible to neglect the
term Dii under the assumption that the following condition is veri�ed everywhere in the
�ow �eld: �

(3 � 5)

6

�
M2

sgs � 1 : (43)

This leads to an equation of state for the variables � and � which has the same form of
Eq. (41):

� = �R� : (44)

The condition (43) is less restrictive than (37) and it leads anyway to the neglection of the
term Dii.

Modelling the SGS terms in the energy equation The convective term in the energy
equation has been written in the following form:

@ (�~e+ p) ~ui
@xi

:

Introducing the �macro-pressure� � de�ned in Eq. (38), we have:

@ (�~e+�) ~ui
@xi

: (45)
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This leads to a slightly di�erent SGS term from E(1), de�ned in Eq. (26). This term can be
written as

F
(1)
i = ~ui (�~e+�)� ui (�e+ p) : (46)

Its physical meaning is explained in more detail in Sec. 2.3. This term can be modeled as
suggested in Ref. [17]. Here, the term F (1) is modeled in analogy with Smagorinsky model

applied for the SGS term T
(1)
ij in Eq. (33). F (1) is supposed to be proportional to ~r�:

F
(1)
i = Cp

�t
Prt

@�

@xi
; (47)

in which �t is the SGS viscosity de�ned in Eq. (34), in accordance to the Smagorinsky model,
and Prt is the SGS Prandtl number.
The SGS Prandtl number can be de�ned in analogy with the Prandtl number for gases:

Prt =
�t
Kt

Cp ; (48)

in which Kt is the SGS conductivity coe�cient. To go further in this analogy Prt is assumed
to be constant.

The SGS term E(2) de�ned in Eq. (28), which takes into account the dissipative e�ects
due to the SGS transport, is negligible if compared to the SGS convective term F (1). In
particular, the contribution (b) in Eq. (29) can be neglected for high Reynolds numbers and
low Mach numbers; the same can be said for (c), in which viscous and compressibility e�ects
are coupled, and they both are small in the problem class at issue. The term (a) can also
be neglected under the same assumptions. However, the neglection of this contribution is a

stronger assumption than the neglection of M
(2)
ij , already done in the modelling of the SGS

terms of the momentum equation.
The last SGS term to be modeled in the �ltered energy equation is E(3), de�ned in

Eq. (31). It should be slightly modi�ed to introduce the �macro-temperature�; anyway, this
term is negligible under the assumption that temperature gradients are weak in the �ow, as
suggested in Ref. [29] and Ref. [17]. Indeed, this term represents the heat transfer caused
by SGS scale �uctuations.
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2.5 Resulting LES model for compressible turbulence

The �ltered and modeled Navier-Stokes equations are �nally the following:

@�

@t
+
@� ~uj
@xj

= 0 ; (49)

@ (� ~ui)

@t
+
@ (� ~ui ~uj)

@xj
= � @�

@xi
+
@
h
(�+ �t)

�
2fSij � 2

3
fSii�ij�i

@xj
; (50)

@(�~e)

@t
+
@[(�~e+�)~uj ]

@xj
=

@
h
~uj�

�
2fSij � 2

3
fSii�ij�i

@xi
+

+
@

@xj

��
Cp�t
Prt

+K

�
@�

@xj

�
: (51)

The constitutive equations write:

� = �R� ; (52)

~e = Cv�+
1

2

�eu21 + eu22 + eu23� ; (53)8>><>>:
�t = � (Cs�)

2
��� eS��� ;

���eS��� =q2eSij eSij :

(54)

The model described in this section is the simplest extension of Smagorinsky's model to
a compressible case. Indeed, Smagorinsky's model is applied for the momentum equations
and there is only one SGS term in the energy equations; its structure is very simple, since
it derives from the assumption of a constant turbulent Prandtl number for the �ow.

The assumptions made on the �ow, in order to model the SGS terms of the �ltered
Navier-Stokes equations, are:

1. high Reynolds numbers, of the order of those typical of engineering applications;

2. low SGS Mach number, so that compressibility e�ects in the SGS �uctuation are weak;

3. no heat sources or sinks in the �ow, which could generate high temperature gradients.

In order to solve the set of equations by a numerical method three aspects need to be treated:

1. the choice of an appropriate value for the two constants Cs and Prt; in general they
depend on the kind of �ow to be simulated. There are many suggestions in literature;

2. the de�nition, for each discretization element, of the value � as a function of its
dimensions;

3. a proper understanding of the kind of �ltering function represented by the numerical
method employed for the solution of the equations.
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2.6 Smagorinsky constant for di�erent classes of �ows

Many cases of LES simulations of �ows by means of the Smagorinsky model are described
in literature. The same values for the Smagorinsky constant are usually employed for the
same kind of �ows. In this section, we will report a brief list of the values usually adopted
for Cs and described in Ref. [18].

Lilly [19], working on grids made of cubic elements of side length h and treating the case
of incompressible �ows, has derived the following result:

�eq = h (55)

Cs =
1

�

�
3

2
Ck

�� 3
4

; (56)

where �eq is the equivalent �lter width and Ck is the Kolmogorov constant. Setting the Kol-
mogorov constant equal to 1.4, value obtained by measurements in the atmosphere (Cham-
pagne et al. [3]), Eq. (56) leads to the following result:

Cs ' 0:18 : (57)

The main assumptions in order to derive this result are the following:

1. the ensemble-averaged subgrid kinetic-energy dissipation is identical to the dissipation
rate � in the Kolmogorov formula:

E(k) = Ck�
2
3 k�

5
3 ; (58)

2. �lter function represented by the grid is assumed to be a sharp cut-o� �lter in Fourier
space;

Friedrich and coworkers used a value Cs = 0:1 to simulate a back-step �ow (Arnal &
Friedrich, 1992) and for turbulent pipe �ow (Unger & Friedrich, 1994). In the latter case, it
is adopted a method suggested by Nikuradse (1933) to simulate the �ow near the wall:

Cs�x = min (lm; Cs�x) ;

in which lm is the mixing length at the wall. However, the authors were not able to correctly
simulate the energy transfer mechanism at the wall. Cs = 0:1 represents a reduction of the
turbulent stresses more than 300% if compared with the value found by Lilly by the method
described above.

The value Cs = 0:2 has been successfully employed by Deardor� (1971) to simulate
isotropic turbulence.

The value Cs = 0:18 leads to good results in the simulation of free-shear �ows and
channel �ows; in the latter case, a wall-law is necessary to take into account the boundary
layer e�ect.
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2.7 Reichardt wall-law and LES

The Reichardt wall-law is used in AERO in order to avoid the solution of the boundary
layer, which represents a problem for high Reynolds �ows. Moreover, it guarantees a correct
asymptotic behavior at the wall, that represents a problem for the Smagorinsky model.

Indeed, approximate boundary conditions are assigned near the solid boundaries. In
particular, a slip condition is imposed on the velocity. The wall-law is used in order to
derive the shear stresses caused by the presence of the wall. It can be assumed that the
�ow is well represented by the numerical solution up to a given distance � from the wall,
depending on the local mesh re�nement and on the Reynolds number. This value needs to
be assigned as a parameter of the simulation. The Reichardt wall-law can be written as
follows (see Ref. [13]):

�
~v � ~t� = U�

�
2:5 ln

�
1 + k�+

�
+ 7:8

�
1� e�

�+

11 � �+

11
e�0:33�

+

��
; (59)

where ~t is the normalized vector tangent to the wall boundary at a given point, �+ =
�U�

�
�

is the non-dimensional value of � and k is the Von Karman's constant. Once the value of �
is assigned, the non-linear equation (59) can be solved for U� . The shear stress at the wall
can be derived as follows:

�p = �U2
� (60)

The coupling of LES with the Reichardt wall-law is not straightforward. Indeed, this
wall-law gives an approximate description of the near-wall velocity �eld that is averaged in
time in an interval which is much longer than the turbulent �uctuation characteristic time.
Thus, it can be applied together with the RANS approach, which is based on the same
assumption. On the contrary, the velocity �eld of an LES simulation is an instantaneous
�eld, and it describes all the turbulent �uctuations with a spatial characteristic length larger
than the width of the space �lter. Thus, it is conceptually not clear whether the LES can be
coupled directly with the Reichardt wall-law. For the moment this has been done in AERO
and the behavior of the wall-law in this case need to be investigated. At the same time we
are developing other approaches for the use of this wall-law within the LES.
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3 Development of an LES approach to turbulence in the

"AERO" code

3.1 AERO code

The AERO code is a Navier-Stokes equations solver for the case of viscous, newtonian,
compressible and three-dimensional �ows. It is a parallel code and it has been designed for
aeroelastic simulations. It employs unstructured grids for description of complex geometries.
A mixed �nite-volume/�nite-element method is used for the space discretization. The �nite-
volume formulation is used for the convective term and the �nite-element one for the di�usive
terms of the equations. A �� scheme is used for the convective �uxes [4]. The Roe scheme
represents the basic upwind component, and two extra parameters are added:

1. �; it is the upwinding parameter of the MUSCL reconstruction technique; it directly
controls the precision (which is of order 3 for � = 1

3 ) and it has an in�uence on the
dispersion of the scheme;

2. scheme; it is the upwinding parameter of the scheme and it directly controls the
di�usion of the scheme, which is proportional to the product (�scheme).

The amount of numerical viscosity introduced by this scheme plays a crucial role for the
success of an LES simulation. For a better understanding of this important point, we will
brie�y the treatment of the convective �uxes in AERO.

The convective �uxes term can be split into internal �uxes, between a cell and its neigh-
boring ones, and in external �uxes, between the cell and the boundaries of the computational
domain: Z

@Ci

F (W;~n) d� =
X

j=K(i)

Z
@Cij

F (W;~n) d� +

Z
@Ci\�h

F (W;~n) d� ;

in which K(i) is the set of indices of the nodes adjacent to ai, and @Cij (Fig. 1) is de�ned
as:

@Cij = Ci \ Cj = [G1;ij ; Iij ] [ [Iij ; G2;ij ] :

In this section, we will consider only the internal �uxes. They are approximated as
follows: Z

@Cij

F (W;~n) d� ' �R (Wi; Wj ; ~�ij) ; (61)

in which

~�ij =

Z
@Cij

~nd� : (62)
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G
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1,ij

n 2

n
1

Iij
a

i
a j

Figure 1: Boundary between two neighboring cells.

�R is an approximated Riemann solver based on the ROE �ux function [24]; it is composed
by a centered �ux term and by an upwind term, proportional to scheme, which introduces
numerical di�usion and stabilizes the evaluation of the convective �uxes.

�R (U; V; ~n) =
F (U; ~n) +F (V; ~n)

2
� schemed

R (U; V; ~n) ; (63)

dR (U; V; ~n) = jR (U; V; ~n) j V � U

2
: (64)

The Roe matrix R (U; V; ~n) is the Jacobian matrix of F calculated in an average point
between U and V :

A (W; ~n) =
@F
@W

(W; ~n) ; (65)

R (Wi; Wj ; ~n) = A
�cW; ~n

�
: (66)
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The average point cW between Wi and Wj used by Roe is de�ned as follows [24]:

cW = (�̂; �̂û; �̂v̂; �̂ŵ; ê)
T

;

�̂ =
p
�i�j

û =

p
�iui +

p
�jujp

�i +
p
�j

;

v̂ =

p
�ivi +

p
�jvjp

�i +
p
�j

;

ŵ =

p
�iwi +

p
�jwjp

�i +
p
�j

;

ê =

p
�iHi +

p
�jHjp

�i +
p
�j

;

in which H is the total enthalpy per unit volume:

H =
p

( � 1) �
+
u2 + v2 + w2

2
:

The Jacobian matrix A (W; ~n), de�ned in Eq. (65), can be diagonalised and it has real
eigenvalues. Thus, it is possible to split the matrix A in two parts, one with positive and
one with negative eigenvalues:

A = A+ +A� : (67)

The spatial approximation of the convective �uxes, obtained by the Roe function, is
�rst order accurate. MUSCL linear reconstruction method (�Monotone Upwind Schemes
for Conservation Laws�), introduced by Van Leer [27], is employed to raise the order of
precision of the Roe scheme. The basic idea consists in using reconstructed value of W at
the boundary between the two cells as the argument of the Roe function:Z

@Cij

F (W;~n) d� = �R (Wij ; Wji; ~�ij) ; (68)

in which Wij = [W ]
�

Iij
and Wji = [W ]

+
Iij

are values of W at the left and at the right hand

side of the point Iij (Fig. 2); they are extrapolated from the values ofW in the nodes ai; aj .
This extrapolation is performed by a class of numerical methods known as �-schemes:8>>>><>>>>:

Wij =Wi +
1
2

�
(1� 2�)

�
~rW

�C
+ 2�

�
~rW

�D
i

�
~aiaj ;

Wji =Wj � 1
2

�
(1� 2�)

�
~rW

�C
+ 2�

�
~rW

�D
j

�
~aiaj :

(69)
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Figure 2: Position of W�

ij and W+
ji .

The term
�
~rW

�C
in Eq. (69) is the approximation of the gradient of W , evaluated by a

centered numerical scheme in the interval [ai; aj ]. The term
�
~rW

�D
i

is a totally upwind

gradient of the vector W , evaluated on the node ai as follows:

�
~rW

�D
i
=

X
k=N(i)

Z
Tk

~rW
X

k=N(i)

V (Tk)
; (70)

in which N(i) are the indices of the elements having ai as a node and V (Tk) is the measure

of the k-th element of the mesh. The same can be told for the other term
�
~rW

�D
j
. For an

analysis of the precision of the scheme, we consider a bidimensional advection equation:8><>:
@U

@t
+ ~V � ~rU = 0 (x; y; t) 2 R2 � [0; 1[ ;

U(x; y; 0) = U0(x; y) (x; y) 2 R2 ;

(71)

~V = (a; b)T : (72)

If the  � � scheme is employed for the spatial discretization of this problem on a regular
grid of the Friedrichs-Keller type, under the assumption that the nodes are equispaced in
both directions (�x = �y = h), the equivalent problem associated to this scheme is the
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following one:

(�aUx � bUy)approx =(�aUx � bUy) +
h
a

6
(3� � 1)h2

i
Uxxx +�

(3� � 1)

6
(a+ b)h2

�
(Uxxy + Uxyy) +

�
b

6
(3� � 1)h2

�
Uyyy +

�

�
scheme

�
�

12

�
j (a+ b)hj+ j (2a� b)hj

��
h
2

�
Uxxxx +

�

�
scheme

�
�

3

�
j (a+ b)hj

���
(Uxxxy + Uxyyy) +

�

�
scheme

�
�

2
(j (a+ b)hj)

�
h
2

�
Uxxyy +

�

�
scheme

�
�

12
(j (a+ b)hj+ j (2b� a)hj)

�
h
2

�
Uyyyy +O(h4)

The approximated solution that we obtain by the  � � scheme for the problem (71) is
the exact solution of the equivalent di�erential equation written above. It is possible to note
that, for � = 1

3 the scheme is of order 3 and that, as already told, � in�uences the di�usion
of the scheme and the dissipation is controlled by the product (�scheme)

An implicit second order accurate scheme is used for the time advancing. Explicit time
advancing is also possible with AERO. A RANS approach for turbulence, with a k�� closure
model, is implemented in the code. Reichardt wall-law is used for the approximate near-wall
treatment. For a more detailed description of the AERO code, we refer to Ref. [8].

3.2 De�nition of the equivalent �lter width

Generally, in the cases of LES with Smagorinsky model on unstructured grids an extrapo-
lation of the de�nitions given for �eq in structured grids is employed. In the AERO code,
the following de�nition has been employed for the Smagorinsky model:

�(j)
eq = maxi=1;::;6

�
�
(j)
i

�
; (73)

in which �
(j)
i is the length of the i-th side of the j�th element. This de�nition has been

chosen because we think it is representative of the actual spatial resolution of the numerical
solutions. At the same time, tests have been made on another de�nition of �eq , already
employed in LES with unstructured grids by Marquez [22]:

�(j)
eq = 3

q
V ol (Tj) ; (74)

in which V ol (Tj) is the volume of the j�th tetrahedron of the mesh. This is the extrapo-
lation of de�nition derived by Deardor� [5] to the case of unstructured grids.

The two di�erent de�nitions described above have been tested with a-priori tests and
the results are described in Sec. 4.4.
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New de�nitions for the equivalent �lter width need to be developed for very heterogeneous
meshes, which can be easily encountered in engineering applications. A typical example is a
�ow with singularities, as it is the case of shock waves. Indeed, the mesh will be much more
re�ned in localized areas near the singularities, but, at the same time, we are not interested
in solving all the turbulence scales in those regions. On the other hand, the real resolution
at the interface between a re�ned and a coarser mesh is something in between what we have
in the two cases separately. Thus, a realistic de�nition of the equivalent �lter width should
take into account not only the single discretization element, but also the shape of the other
neighboring elements, especially for heterogeneous meshes.

The testing of new equivalent �lter width for unstructured heterogeneous grids is one of
the future developments of the present work.
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4 Results

4.1 Test case

In this section we report the results obtained in the LES simulation of the �ow around
a square cylinder at a Reynolds number of 22000. Experimental results for this �ow are
given by Lyn and Rodi [20, 21] in the incompressible case. The simulations presented here
have been performed with a Mach number M = 0:1. Numerical results are also available in
the literature and, in particular, those obtained by the contributors to a recent workshop,
devoted to the large-eddy simulation of the same test case, are documented in Ref. [23].

In this �ow, the separation points are �xed by the geometry of the body. The �ow
separates when it is still laminar, it generates a shear �ow just behind the upwind face
and, afterward, it becomes unstable and turbulent. On the upper and lower walls there
are recirculation regions and there is no a re-attachment of the �ow. As a consequence,
this test case is particularly useful to check the behavior of the model in the treatment of
completely separated and turbulent wakes. Since the transition does not occur near the wall
and there are no re-attachment points, this test is not suitable to evaluate the e�ciency of
the wall-law in describing those phenomena. Moreover, since the Mach number is low, the
energy equation plays a secondary role in the solutions and the SGS term in this equation
is not completely validated by the present test-case. The turbulent Prandtl number (see
Eq. 48) has been assumed equal to Prt = 0:9 in all the simulations described.

Two di�erent computational domains have been used for the simulations; their dimen-
sions are reported in Tab. 1, with reference to the Fig. 3. The domain (a) was originally
built for the k � � model, that is not able to simulate the three dimensional e�ects of tur-
bulence. In the large eddy simulations, this domain has been found to be too short to allow
a proper description of the characteristic modes of the �ow in the direction of the cylinder
axis. However, it has been used in order to test the sensitivity of the results to some of
the simulation parameters. Indeed, although for this reason a quantitative agreement with
the experimental results can not be expected, indications can be obtained on the qualitative
e�ect of the di�erent parameters. For a more detailed comparison with the experiments, the
domain (b) has been used, whose dimensions have been chosen in accord to the suggestions
given for the LES workshop described in Ref. [23]. The only di�erence is in the distance of
the out�ow surface from the cylinder, which is smaller in our case.

At the in�ow, the �ow is supposed to be undisturbed. At the out�ow, Steger-Warming [26]
conditions are used. Those boundary conditions are well suited for �ows in which the con-
vective terms are dominant on the di�usive terms, as in the case at issue, since the Reynolds
number is high. In the y and z directions, slip boundary conditions are imposed. In the sim-
ulations in Ref. [23] periodic boundary conditions were used in the z direction to reproduce
the �ow around an in�nite cylinder. The e�ects of no slip boundary conditions imposed in
our LES are discussed in Sec. 4.6. A uniform �ow has been assumed as initial condition
for the simulations. On the body, the Reichardt wall-law has been used for an approximate
near-wall treatment. Almost all of the simulations described in Ref. [23] have also been
performed with wall-laws.
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Figure 3: Computational domain.

li=D lo=D h=D w=D N. nodes N. elements
domain (a) 1.5 7 6 0.36 43154 224657
domain (b) 4.5 9.5 14 4 102134 588056

Table 1: Dimensions of the computational domain (see �g. 3).

The Strouhal number and (time averaged) drag coe�cient are the global parameters of
particular interest for the present �ow; they are de�ned as follows:

St =
fD

U1
; (75)

Cd =
2Dr

�1U1Dhz
(76)

in which f is the vortex shedding frequency, D and hz are respectively the side length and
the height of the cylinder (see Fig. 3) and Dr is the drag. The vortex shedding frequency
has been estimated from the peak in the lift spectrum.
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Figure 4: E�ect of the upwinding parameter � on the mean drag coe�cient.

4.2 Sensitivity to the numerical viscosity

The upwinding parameter �, introduced in Sec. 3.1, controls the degree of upwinding in the
evaluation of the gradients for the MUSCL reconstruction method. When we have � ' 0:33,
the scheme for the convective �uxes evaluation is third-order accurate for linear systems (i.e.
advection equations), as shown in Sec. 3.1; the main part of error is a numerical di�usion
term, and it can interfere with the SGS viscosity of the Smagorinsky model. The numerical
di�usion term does not produce the same e�ects on the solution as the SGS viscosity one,
since it is proportional to the fourth spatial derivatives of the velocities while the SGS
viscosity term is proportional to the second spatial derivatives of the velocities.

In order to test the e�ect of � on the solution, �ve simulations have been carried out on
the domain (a), with � = 0:03; 0:06; 0:12; 0:2; 0:3. The other scheme parameter, which
directly controls the amount of numerical viscosity, is set to scheme = 1:0 in this �rst set of
simulations. The values of the mean drag coe�cient and of the Strouhal number obtained
in the simulations have been plotted as functions of � in Fig. 4 and in Fig. 5 respectively.
The dotted line represents the scatter in the experimental data. As already told, the goal
of these tests is not a quantitative comparison with the experimental data but only the
qualitative study of the e�ects of the simulation parameters on the solutions.

While it seems there is not a precise e�ect on the Strouhal number, the drag coe�cient
systematically increases when � is increased and the solution tends to be more di�erent
from the experimental one. This experience suggests the choice of a low �; on the other
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Figure 5: E�ect of the upwinding parameter � on the Strouhal number.

hand, this parameter can not be decreased too much, otherwise we risk to have numerical
instability in the simulation.

The same behavior of the mean drag coe�cient and of the Strouhal number has been
observed by varying the parameter scheme and keeping � = 1=3. This is represented in
Fig. 6. It is interesting to note that for low values of scheme the value of Cd tends to
stabilize; this con�rms that the amount of numerical viscosity should be maintained as low
as possible to reduce spurious e�ects on the solution.

In the literature there is a general agreement on the fact that the numerical viscosity
interferes with the SGS viscosity and that LES simulations should be performed with central
schemes or with low upwinding. In particular, in Ref. [11] the compatibility between the
shock capturing schemes and the LES is analysed and it is shown that those schemes are
not compatible with a SGS model. This is in accord to the results presented here. As a
consequence, in order to perform LES simulations with AERO, the shock capturing feature
of the TVD scheme employed will not be used. Indeed, the scheme will be altered by tuning
the degree of upwinding in order to reach a minimum level of stability for the simulations
and, at the same time, to keep the numerical viscosity as low as possible. This is possible for
the test-case at issue since we do not have shock-waves in the �ow simulated. In the cases
where discontinuities are present in the �ow, there are two possible alternatives in order to
guarantee the stability of the simulation:

1. to use a shock-detecting method and to use the full upwinding of the schemes in
localised areas around the discontinuities, as suggested in Ref. [11];
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Figure 6: E�ect of parameter scheme on the mean drag coe�cient (� = 0:33).

2. to re�ne the mesh where we expect disconinuities for the �ow.

The second solution is easier to be applied in cases where at least the tipology of the �ow can
be guessed and for stationary problems. In the case of instactionary and transonic problems,
where the shock-waves moves in time, the solution (2) can be used only moving the mesh in
order to follow the shock wave, and this can be very complex.

Some additional simulations have been performed without any SGS viscosity in order
to check the in�uence of the SGS model on the solutions. As expected, the simulations
with scheme = 1 converged only for � � 0:12. This is a proof that the SGS viscosity
acts as a stabilizing term in the equations, as accepted in literature. At the same time,
the results obtained without SGS model were physically not consistent: for instance a well
de�ned vortex shedding frequency was not found. This proved that, at least for this test-
case, the numerical viscosity can not replace the SGS viscosity and a turbulence model is
thus necessary. This conclusion has been also drawn for di�erent types of �ows in previous
studies in the literature.

Furthermore, it has been recently shown in the literature [11] that for TVD schemes the
numerical error committed in the discretization of the equations could be of the same order
of magnitude of the SGS viscosity. In this case, the ratio between the SGS viscosity and
the numerical error for the discretization has not been estimated and this point needs to
be investigated. Nevertheless, the sensitivity analysis that we carried out indicates that, if
the parameters scheme and/or � are maintained low enough, the numerical viscosity has
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Cs Cd St
0.1 2.23 0.131
0.17 2.5 0.117

Table 2: Behavior of the mean drag coe�cient and of the Strouhal number with variations
of the Smagorinsky constant.

plausibly a negligible e�ect on the solution. We should remark however that in that case
the capability of capturing shocks is lost.

4.3 Sensitivity to the Smagorinsky parameter

The Smagorinsky constant is dependent on the kind of �ow considered. From an analysis
of di�erent LES simulations described in the literature (see for example Ref. [29]), it seems
that Cs = 0:1 could be an acceptable value for the Smagorinsky constant in the �ow at issue.
However, the Smagorinsky constant has been varied within the range Cs 2 [0:1; 0:17] to test
the e�ect of the SGS viscosity on the solution. It has been observed that, by increasing Cs

(thus increasing the SGS viscosity), the mean drag coe�cient increases while the Strouhal
number decreases. However, the sensitivity of those global variables to a remarkable variation
of Cs is rather low. This is probably due to the particular test case at issue. Indeed, as
already told, the separation points are �xed by the geometry of the body and the transition
phenomena do not change the typology of the �ow. As an example, in Table 2 we compare
the results of two simulations performed with Cs = 0:1 and Cs = 0:17 respectively, in terms
of the mean drag coe�cient and of the Strouhal number. The other input parameters have
been set to the following values: scheme = 1:0; � = 0:03, �eq given by Eq. (73). Since the
SGS viscosity is proportional to the square value of Cs, assuming Cs = 0:1 or Cs = 0:17
leads to a di�erence of a factor 2:89 in the SGS viscosity. The variations of the Strouhal
number and of the mean drag coe�cient are approximately of 11%.

4.4 Equivalent �lter width

In order to understand the di�erences between the two de�nitions of the equivalent �lter
width given in Sec. 3.2, a-priori tests have been performed. An instantaneous velocity �eld,
obtained in a LES simulation, with Cs = 0:1, scheme = 1:0; � = 0:03 and �eq given by
Eq. 73, has been considered; the ratios between the SGS viscosity (�t) and the molecular
viscosity (�) have been evaluated by the two di�erent de�nitions using the given velocity
�eld. In Fig. 7 we have plotted the ratio �t

�
for the de�nition (73) of the �lter width.

By overlapping the mesh to the isovalues (Fig. 8), it is possible to note that peaks
are concentrated in a few nodes located on the biggest elements far from the body. This is
interesting since it gives an idea of the sensitivity of the Smagorinsky model to the mesh size.
Indeed, turbulent viscosity is a function of the local size of the mesh due to the de�nition
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Figure 7: Ratio between the SGS viscosity and the gas viscosity; Cs = 0:1, �eq de�ned in
Eq. (73).
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Figure 9: Ratio between the SGS viscosity and the molecular viscosity; Cs = 0:1, �eq

de�ned in Eq. (74).

of the equivalent �lter width. Thus, on bigger elements, even if the velocity gradients are
lower, we have however a remarkably large turbulent viscosity. This indicates that abrupt
changes in the element size should be avoided and the grid re�nements should be as regular
as possible with this SGS model. In the wake, where the mesh is re�ned enough, there are
peak values of around 38, as reported in Table 3.

The ratio between the SGS and the molecular viscosity for the de�nition (74) of �eq

has been plotted for the same velocity �eld in Fig. 9. The Smagorinsky constant is still
Cs = 0:1. As it is possible to see from those �gures, the qualitative behavior is the same,
but the SGS viscosity obtained with this latter de�nition is approximately 10 times lower
than that obtained with Eq. (73) (see Tab. 3). This di�erence is much more contained for
structured grids with usual aspect ratios for the elements.

In the LES simulations on unstructured grids described in the literature, this second
de�nition of �eq is used with a Smagorinsky constant of Cs = 0:18 (see Ref. [22]). In this
case, the values of the ratio between the SGS and the gas viscosity have again the same
qualitative behavior as in Fig. 9, but the values need to be multiplied by a scaling factor of
3:24.

As a conclusion, the two di�erent de�nitions of the �lter width that have been tested
here di�er only from a quantitative point of view while the distribution of �t=� in the �ow
�eld is very similar. As a consequence, they should be equivalent with a proper choice of the
Smagorinsky constant. At the same time, it has been shown in Sec. 4.4 that the solutions
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Min. Mean Max. Max. (wake)

�
(1)
eq ; Cs = 0:1 0.2 5.7 85 37

�
(2)
eq ; Cs = 0:1 0.0 0.7 8.5 5.3

�
(2)
eq ; Cs = 0:18 0.11 2.4 27.5 17.2

Table 3: Values of the ratio between SGS and gas viscosity; �(1) and �(2) correspond to
the de�nitions (73) and (74) respectively.

are not sensitive to a remarkable variation of the Smagorinsky constant. Thus, we expect
that the two di�erent �lters proposed here are almost equivalent at least for this particular
�ow and, thus, we did not repeat the simulation with the de�nition (74).

4.5 Time advancing

In the classical LES approach, only a �lter in space is applied to the equations, while all
the turbulence �uctuations in time are assumed to be resolved. However, industrial codes
usually use implicit schemes in order to increase the allowed time-step size and, thus, the
speed of the simulations. This is particularly interesting when complex geometries lead to
very heterogeneous meshes. It is then probably wrong that the smallest cell size should
govern the length of the time step. If the time step used in the simulation is too large, the
time discretization could be seen as a �lter on the solution and this should be taken into
account by an additional closure model. Thus the following question arises: which is the
maximum time step allowable without providing any closure model in time?

The minimum �lter width �min we have in all the grid is representative of the minimum
turbulence spatial scale we can resolve in the �ow. If we have a reference velocity U1, as it
is the case of the test case at issue, we can associate a characteristic time � to this length
in the following way:

� =
�min

U1
:

The time scale � gives an order of magnitude of the time step we can use in the simulation
without the risk of loosing information in time. For the particular test case at issue, this
rule of thumb gave positive results. Indeed, the time interval estimated by this procedure
corresponds to a CFL number of about 10. We performed several simulations changing, at
each time, only the maximum CFL number and using an implicit scheme. The corresponding
lift curves are plotted in Fig. 10. The di�erences between the curves obtained with CFL =
100 and CFL = 50 are relevant. This means that, with the �rst value of CFL, we loose
important information on the turbulent �uctuation. The same behavior is observed until a
CFL = 10 is reached. Indeed, the di�erences between the curves obtained with CFL = 10
and CFL = 5 are almost coincident.
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Figure 10: Lift curves obtained with di�erent CFL numbers.
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Cl Cl;rms Cd Cd;rms St lr

Simulation 0.0061 0.3920 1.90 0.058 0.138 1.58

LES
results [23] [�0:3; 0:03] [0:38; 1:79] [1:66; 2:77] [0:10; 0:27] [0:066; 0:15] [0:89; 2:96]

RANS
results [2] - - [1.637,2.004] - [0:134; 0:143] [1:25; 2:84]

Lyn et al. - - 2.1 - 0.132�0.004 1.4

Table 4: Bulk coe�cients; comparison with experimental data and with other simulations
described in the literature.

4.6 Comparison with the experiments

The simulation that will be described here has been obtained on the computational domain
(b). The parameters used for this simulation are the following:

scheme � CFL max Cs �eq

0.2 1/3 10 0.1 Def. (73)

The CFL = 10 for this grid corresponds to a non-dimensional time (dt� = dtU1=D) dt� =
0:008. For each shedding cycle about 1000 time steps are employed.

The predicted bulk coe�cients are reported in Tab. 4 together with the experimental
data. In Refs. [2, 23] the results from several large-eddy and RANS simulations for this
particular test-case are reported and compared. Thus, one could say that the solutions given
in Refs. [2, 23] represents the state of the art of numerical simulation for the considered �ow.
In Tab. 4 we have reported the range of the bulk coe�cients obtained in these simulations
in order to give an idea of how our results compare with those in Refs. [2, 23]. Note that
an unstructured grid has been employed here, while all the simulations in Refs. [2, 23] were
performed on structured grids. This has allowed us to obtained a satisfactory re�nement of
the grid near the body with a low global number of nodes. In the simulations described in
Ref [23], the number of nodes employed varies in the range [80000; 3800000], but a number
of nodes lower than 110000 was used only in two simulations over 16.

The Strouhal number has been quite well predicted in our simulations, almost within
experimental accuracy. The drag coe�cient is underestimated if compared to the experi-
mental one. The error committed is around 10%. The main causes for this error seem to be
the following:

1. the insu�cient distance between the in�ow surface and the cylinder; indeed, from an
analysis of the time-averaged pressure �eld we have seen that the in�uence of the
cylinder propagates until the in�ow boundary, and here it is still relevant;

2. the insu�cient width of the computational domain. The slip conditions imposed on the
side surface generates a situation of con�ned �ow. This is put in evidence in Fig. 11,
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where the time averaged velocity �eld in the rear area of the cylinder are plotted.
It is possible to see that, due to the side surfaces, two counter rotating vortices are
generated in the �ow. This non physical three dimensional e�ects could explain the
under estimation of the time-averaged drag coe�cient with respect to the experiments.
In order to try to check the qualitative e�ect of the side surfaces on the forces exerted
on the body, we have estimated lift and drag curves using all the body nodes in one
case and just the nodes located in the center of the cylinder (on a strip large 2D)
in the second case. We observed that, while the lift curves in the two di�erent cases
are almost identical, the drag curves are very di�erent. Thus it seems that the side
surfaces have strong in�uence on the drag.

In Fig. 12, 13, 14 the time averaged horizontal velocity �eld, plotted with a solid line,
is compared with experiments [21]. As a general trend, the comparison with experiments
is not satisfactory approaching to the body. A possible explanation could be the lack of
resolution in those areas. This was also a general problem observed in the LES simulations
presented in Ref. [23]. This problem could also be caused by the fact that we impose that the
instantaneous velocity follows the Reichardt wall-law at the body. While this assumption
seems to be plausible for time averaged velocities and has been found to give good results
in RANS simulation, also in presence of separated regions, it is not clear if it is still valid
in LES in which instantaneous velocities are computed at each time step. In Fig. 12 it is
possible to note that the negative peak of velocity in the recirculation bubble behind the
cylinder is overestimated by approximately a factor 2. The error in the prediction of the
recirculating length is around 12%. It has been shown in [23] that this is a di�cult quantity
to be estimated from a simulation. Indeed, there are large di�erences among the di�erent
simulations and a very few of them gave a prediction of this length within an error of 5%.
After the recirculation area, the simulation �ts better with the experimental data until
X=D ' 4. After this distance the results start to be in�uenced by the boundary conditions
at the out�ow, and this could explain the increasing di�erence from the experimental values
we can observe for x=D > 4. This is also a common behavior of the LES simulations reported
in Ref. [23]. The velocity u �ts better with the experimental data in other areas out of the
wake, as it is shown in Fig 13, 14.

In Fig. 15 we present the time averaged pressure coe�cient obtained on the cylinder
surface. The pressure coe�cient is de�ned as follows:

Cp =
2 (p� p1)

�1U2
1

where p1; rho1; U2
1

are respectively the pressure, the density and the velocity of the
undisturbed �ow, and p is the local pressure.

Experimental data for this parameter exist and they are reported in Ref. [1] for a
Reynolds number of 50000. The pressure �eld on the front face of the cylinder is also
well predicted. The shape of the pressure distribution on the rear face is well predicted,
but the error on the numerical value of Cp with respect to the experimental data is about
7%. This explains the error committed in the prediction of the drag coe�cient. There are
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Figure 11: Time averaged velocity �eld in the wake.
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some problems in the prediction of the pressure coe�cient on the upper and lower sides;
since the �ow is averaged in time, the two distribution are identical and this proofs that the
averaging period employed was su�ciently long. The problems are connected to the front
corners of the cylinder. Indeed, in this area we can observe an oscillatory behavior of the
time averaged pressure. This problem could be related with a lack of resolution near the
corner, that is a singular point for the �ow. This could also be a consequence of the low
values of numerical viscosity used for the simulation. Indeed, while the SGS viscosity acts
as a stabilizing term for the velocities, there is no stabilization term for the pressure.

As a conclusion, the results obtained for this test case are not completely satisfactory.
Anyway, they are acceptable under the light of the present state of art for LES on blu�
bodies.
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5 Conclusions

A large-eddy simulation approach has been implemented in an existing CFD code designed
for industrial applications. The formulation for compressible �ows of the Smagorinsky model
[17], has been used for the closure of the equations. This represents the starting point towards
the application of the large-eddy approach to the simulation of complex engineering �ows.
The �ow around a square cylinder at a Reynolds number of 22000 has been chosen for a �rst
validation of the present method. Although this �ow does not contain all the complexity
of the typical engineering problems, it is well suited for validation since both experimental
data [20, 21] and numerical results from several RANS [2] and LES simulations [23] are
available.

Since few applications of LES to real engineering �ows can be found in the literature,
many problems related to the use of LES within industrial codes still need to be investigated.
In particular, the interaction between the numerical viscosity introduced by TVD schemes
and the SGS viscosity has been investigated here. It has been shown that the numerical
viscosity heavily interacts with the SGS model and it should be reduced as much as possible
in order to obtain reliable results. However, a minimum amount of upwinding is necessary
for the stabilization of the simulation. On the other hand, it has been shown that the
SGS viscosity acts as a stabilizing term for the velocities and signi�cantly less upwinding
than without SGS models is necessary. In some numerical methods for the incompressible
case, as it is the case of the MAC approximation or the Taylor-Hood mixed �nite element
method, the pressure is stabilized by the use of staggered grids. In the TVD schemes, the
pressure, as well as the other �ow parameters, is stabilized by the upwinding of the scheme.
Since there are not SGS terms for the stabilization of the pressure, we risk to obtain an
non-physical oscillatory behavior of the pressure �eld when the numerical viscosity is very
low, as in the present simulations. This is in particular a problem for singularities, as, for
instance, the cylinder corners in the considered test-case. At the same time, if a transonic
or supersonic �ow is simulated, the upwinding is necessary to stabilize the simulation near
the shock waves. In this case, we should employ a shock detecting method in order to use
the full upwinding only in localized areas around the �ow singularities. Some simulations
have been performed without any SGS viscosity; the results obtained were physically not
consistent, and this proves that, at least for this test-case, the numerical viscosity cannot
replace the SGS viscosity and that a SGS model is thus necessary. The ratio between the
global approximation error, due to for the discretization of the equations, and the SGS
viscosity e�ect has not been estimated here. This point needs to be investigated.

In industrial codes an implicit scheme for the time advancing is usually employed to
increase the allowable time-step size. On the other hand, if the time step is too large, some
signi�cant time �uctuations of the resolved scale could be �ltered out. If no additional
modeling for time �uctuations is provided, this problem should be avoided by properly
limiting the time step. The size of the maximum time step allowable is dependent on the
coarseness of the mesh and on the kind of �ow at issue. For the square cylinder test-case, a
rule of thumb was used for the evaluation of the proper time advancing, and a CFL = 10
has been shown to be proper for the LES simulation. Thus, it has been shown here that the
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use of an implicit scheme is still interesting for an LES approach, since the time step for the
simulation can be considerably bigger that the maximum one we could use with an explicit
scheme.

The implicit �lter corresponding to the numerical scheme employed on unstructured
grids is unknown a priori and very complex to determine. However, we need to de�ne the
equivalent �lter width to obtain the SGS viscosity by the Smagorinsky model and this would
require the knowledge of the applied �lter. In this work we have studied in a-priori tests
the behavior of two di�erent de�nitions of the �lter width as a function of the local shape
of the grid. One of those de�nitions was already used in LES simulations on unstructured
grids by Marquez [22]. It has been shown that their qualitative behavior is very similar
and that they di�er only quantitatively. Thus, with a proper choice of the Smagorinsky
constant we should obtain the same results with the two di�erent de�nitions. On the other
hand, it has been shown that, for this particular test case, the sensitivity of the solutions to
variations in the Smagorinsky constant are low. As a consequence, the two de�nitions of the
�lter width are somewhat equivalent. However, the correspondence between the numerical
discretization on unstructured grids and the �lter applied to the equations, is certainly a
point worthwhile to be investigated in the future to obtain more reliable de�nitions of the
�lter width.

The results obtained in a simulation, in which the di�erent input parameters were set
on the basis of the sensitivity analysis previously described, have been compared in details
with the experimental data and other numerical results. The agreement with experiments
is not completely satisfactory, but our results are competitive with those obtained in the
LES simulations reported in Ref. [23], in particular considering the fact that our grid is
noticeably coarser.

Some discrepancies are observed in particular near the wake near the body. Note however
that that is common to almost all the simulations in Ref. [23]. In our case this behavior
could be explained by the lack of resolution in this region or by the use of a wall law.
Indeed, in order to avoid the solution of the �ow near the wall, which is computationally too
expansive for engineering purposes, the Reichardt wall law has been employed. As stated
in Sec. 2.7, this wall law gives an approximate description of the time-averaged near-wall
velocity �eld. As a consequence, it is not clear whether LES can be coupled directly with
the Reichardt wall-law, since the instantaneous velocity �eld is computed at each time-step,
while, as said previously, a time-averaged tangential velocity is needed as an input for the
wall law. The fact that the global results obtained in the simulation are not so far from the
experimental one is an indirect proof that this coupling, also if conceptually not right, does
not give completely wrong predictions. However, this point needs to be further investigated.
At the same time, new approaches for the use of this wall-law for LES need to be proposed
and validated.

Summarizing, the originality of this work is the combination of upwind stabilization,
unstructured grid, implicit time advancing and the Reichardt wall law with the LES of com-
pressible turbulence. All those elements are features dedicated to industrial abilities of the
method. Numerical results are competitive for the considered test case with incompressibe
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�ow solvers that do not involve most of the above features. The use of very heterogeneous
meshes and implicit time stepping is illustrated and it validates our proposition for a�ordable
industrial LES.
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