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ABSTRACT. This note was the basis of a short course presented on June 23, 2000, at
University of Pavia, Italy. Here we define and analyse dimension reduction mod-
els for the Poisson problem in a thin, three-dimensional plate. After introduc-
ing the Poisson problem, and a variational approach for dimension reduction, we
present the asymptotic expansion for the exact and model solutions. Then we es-
timate the modeling error. This work is based on the thesis [3], see the web site
http://www.math.psu.edu/dna/education.html#students

1 — INTRODUCTION

For a positive number ¢ < 1, define the three-dimensional plate P¢ = Q x (—¢,¢)
and its boundaries OP; = 0Q X (—¢,¢) and OP] = Q x {—¢,¢e}.

Assume that u® € H!(P°) satisfies (in the weak sense)

Au® =—f° in P*,

(1) 9O _ 0 ondPE
on ’

u® =0 on 0P;,

where f€: P° — R. In general, the solution of (1) will depend on € in a nontrivial
way. In fact the above problem is a singularly perturbed one, and as & goes to zero
it “loses” ellipticity. This causes the onset of boundary layers, as we make clear
below.

It is possible to characterize the solution of (1) in an alternative way, as the
minimizer of the associate energy functional, i.e.,

u® = argmin J(v), where J(v) = %/ | Vol do —/ ffude,
Ps Pe
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and V(P*) = {v € H*(P*) : v=0o0n 0P} }.
Aiming to find a “good” approximation for u®, we search for

(2) u®(p) = arg min J (v),
veH! (2;Pp(—¢,e))

where the notation is as follows. For an integer p and a positive real number
a, we define P,(—a,a) as the space of polynomials of degree p in (—a,a). So
ﬁIl(Q; P,(—a,a)) denotes the space of polynomials of degree p with coefficients in
H' (). The space H() is the set of functions in the usual Sobolev space H'(€2)
with zero trace on 9. It follows from its definition that u®(p) is the Ritz projection
of uf into H*(€; P,(—¢,¢€)) and such model is a minimum energy one. Observe that
the use of higher polynomial degrees yield higher order models, actually leading to
a hierarchy of models that furnish increasingly better solutions.

Rewriting (2) in weak form, it is not hard to check that if u*(1)(z) = wo(z) +
wy(z)x5, then

1,, 2 | .
3) Aspwy = _if S Aopwi — 2wy = —f in Q,
wp=w1 =0 on 012,
where Asp = 011 + 822, and
1 [° 1 [¢
(4) o)== f(z%,25)das, f'(z°)==[ f°(z°,25)a5das.

~ eJ_. eJ_.

Note that the equations (3) are independent of each other. We can express in
a unique way any function defined on P® as a sum of its even and odd parts with
respect to z5. The even part of f° appears only in the equation for wy, and the
odd part of f° shows up in the equation for wy. Also, the equation determining w;
is singularly perturbed, but this is not the case for the equation determining wy.
If higher order methods were used, we would have two singularly perturbed inde-
pendent systems of equations, corresponding to the even and odd parts of u®(p).
Similar splitting also occurs in plate models for linearized elasticity, where, for an
isotropic plate, the equations decouple into two independent problems correspond-
ing to bending and stretching of a plate.

The natural question of how close u®(p) is to u® is not easy to answer due to the
complex influence of ¢ in both the original and model solutions. We resolve this,
not by comparing the exact and model solutions directly, but rather by first looking
at the difference between the solutions and their truncated asymptotic expansions,
and then comparing both asymptotic expansions. This is possible because the
same projection used to define each model can be used to find the first terms of
the asymptotic expansion of the model. This allows us to compare corresponding
terms of the expansions. Schematically, this is how it works:

Asymptotic
ur <> .
Expansion of u®
Asymptotic
uf(p) €<——>

Expansion of u®(p)
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Next we develop then the asymptotic expansion for the exact solution, and then
do the same for the model solution. Finally we compare them both to find upper
bounds for the modeling error.

2 — THE ASYMPTOTIC EXPANSION FOR THE ORIGINAL 3D SOLUTION

Our first step to show the influence of € explicitly is to rewrite (1) in the scaled
domain P = Q x (—1,1). Let 9P, = 0Q x (—1,1) and 9Py = Q x {—1,1}. Also,

r = (z,23) is a typical point of P, with x = z2° and z3 = e~ las.
<
P
>
T3 = 'z} .
T = (g,l‘3)

~

In this new domain we define u(e)(z) = u®(2%), and f(z) = f*(z*). We conclude
from (1) that

(Aop +e7?g3)u(e) = —f  in P,

(5) du(e) =0 on OP.,
on

u(e) =0 on OPy,.

We assume that f is independent of €.
Consider the asymptotic expansion

(6) u(e) ~ul 4+ %u? +etut +--- .

Formally substituting (6) in (5) and grouping together terms with same power in &
we have

8_2833U0 + [AQD ’U,O + 833U2] + 82 [AQD u2 + 83311,4] +r= —f,
ou’  ,ou®  ,out
4. = P
3 +56n+58 + 0 on OP%

It is then natural to require that

(7) 833U0 = 0,
(8) Bszu” = —f — Aypu’,
(9) Oszut = — Aop u?*2, for all & > 1,

along with the boundary conditions

Ou?k

(10) on

= 019 on 0P, for all £ € N.
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Equations (7)-(10) define a sequence of Neumann problems in the interval z3z €
(=1,1) parametrized by = € . If the data for these problems is compatible then
the solution can be written as

(11) u?*(z) = 132’“(@) + (2’“(%), for all k € N,
where
1 o
(12) / u2k(£,x3) drsz =0,
-1

with 2% uniquely determined, but ¢2* an arbitrary function of z only. From the

Dirichlet boundary condition in (5), it would be natural to require that u** = 0 on
OPy,. This is equivalent to imposing

(13) ¢** =0 on 99,
(14) u?* =0 on AP

However, in general, only (13) can be imposed and (14) will not hold. We shall
correct this discrepancy latter. Now we show that the functions (¥, w2k (and so

u?*) are uniquely determined from (7)-(13). In fact, (7) and (10) yields u® = 0.
From the compatibility of (8) and (10) we see that

1
(15) Bap *(z) = =5 [ Flza)doa,
~1

which together with (13), determines ¢° and then, from (11), u®. In view of the
compatibility condition (15), 42 is fully determined by (8) and (10). Next, the
Neumann problem (9), (10) admits a solution for & > 1 if and only if ;1 ¢(?*~2 = 0.
But in view of (13), this means (2¥=2 = 0, for k > 1, and then u2* is uniquely
determined from (9), (10). Note that u0 = ¢° and u?* = u?* for k > 1.

Observe that u” satisfies all the boundary conditions imposed since u° = 0 and
so (14) holds for k = 0. In general this is not the case for u?, u*, etc, as they do
not vanish on the lateral boundary of the domain (although their vertical integrals
do). We introduce then, formally, the boundary corrector

(16) U~eU?+3U% + Ut + -+
to correct the values of u?, u*, etc. on Pr. We expect also that

(AQD +€_2833)U=0 in P,
(17) oU
— =0 on 8Pj:.
on
We hope to pose a boundary corrector problem that is independent of . In a
two-dimensional beam, it is enough to define a stretched coordinate in the horizontal
direction and pose the corrector problem in the semi-infinite strip ¥ = R* x (-1, 1).
We proceed here analogously, using a new system of (boundary-fitted) horizontal
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coordinates. In this new system, a point close to the boundary 0 has as coordi-
nates its distance to 02 and the arclength along the boundary. We are able then
to define a horizontal stretched coordinate, in the normal direction, and pose, after
some work, a sequence of problems in, once more, ¥. The geometry of Q2 plays an
important role, as we see below.

Following the notation of Chen [2], suppose that 912 is arclength parametrized
by z(0) = (X(0),Y(#)). Let s = (X',Y"), n = (Y, —X") denote the tangent and
the outward normal of 992, and define

Q={z—pn:2€000<p<po},

where pg is a positive number smaller than the minimum radius of curvature of 0f2.
With L denoting the arclength of 0f), then

z(p,0) = z(0) — pn(0).

is a diffeomorphism between (0, po) x R/L and Q. Extending n and s to ; by

(18) n(p,0) =n(0),  s(p,0) = s(8),
then, for a =1, 2:
Sa _
8a0 - m: aozp = —Nq,

where J(p,0) = 1 — pr(f), and k is the curvature of 9. Finally, the change of
coordinates yields

Oaf = 00 f0a8 + 0, fOup, fora=1, 2.
The expression for the Laplacian in these new coordinates follows:

K

AQDUZappU— J

1 pK'
apU + ﬁaggU + ?80[]
(19) o . .
= 0,0U + 3 7 (al0,U + af0soU + a0V )
=0

where we formally replace each coefficient with its respective Taylor expansion,
see [1], and
. ) , ) ) . i(G+1 .
of =[OV, o= G OROF, o = Do),

Defining the new variable p = e !p and using the same name for functions different
only up to this change of coordinates, we have from (19) that

(20) NopU = 20550 + Y (ep) (a{sflaﬁU + aldpU + agagU) :

=0
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Aiming to solve (17), we formally use (16) and (20), collect together terms with
same order of ¢ and for k£ > 2, pose the following sequence of problems parametrized
by 6:

(6@p+a33)Uk :Fk in E,

k
(21) U _0  onows,
on

U*(0,6,23) = u*(0,6, 23) for z3 € (—1,1),
where

k—2
F, = Zﬁj (a{aﬁkajfl + a%aoonij72 + a%aon7j72) ,

J=0
The next lemma shows that U* decays to zero exponentially. See [3] for a proof.

Lemma 1. Let U* be defined by (21) for any positive positive k. Then

00 1
/ / (U2 + (0,U*)? + (9pU*)? ds dp < ep(f)e .
t -1

Combining (6) and the boundary layer expansion we write
(o)
(22) W +Zﬁ% f )~ x() Y UM 0 0,67 a5),
=2

where x(p) is a smooth cutoff function identically one if 0 < p < po/3 and identically
zero if p > 2po/3.

We omit many of the details in the results below. Using the convenient hypoth-
esis that f is “smooth”, we will bound their (arbitrarily high) Sobolev norms by a
general constant C(f). This allows a simplification of the estimates and no major
loss of information occurs. We present the convergence estimates of the truncated
asymptotic expansion in the H'(P?) norm without a proof. Let

en = u° —252’“ (= e ag) + x(p Zs Ur(e tp,0,e125)

Then we have the result below.

Theorem 2. For any nonnegative integer N, there exists a constant C'(f) such that
the difference between the truncated asymptotic expansion and the original solution
measured in the original domain is bounded as follows:

leollzre pey < CH, llewllggpey < CHEENT

Remark. If f_ll f(z,23) dxs Z 0, then

1w (pey > C(f)e"?,



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 7

and then
||60||H1(P5) _ ) ||6N||H1(P5) = O(2N+1/2),
lu |l (pe) C el e
We compile in the table below the estimates for the error between the original
solution and the truncated asymptotic expansion, for N > 1.

TABLE 1. Convergence rates of the truncated asymptotic expansion

u” BL en(N >1) Relative Error

I llz2cpey gl/? g3 | e2NH2(2N+5/2) | (2N +3/2(2N+2)

10, - l2(pey | €'/2 | &2 | e2NHL(2N+5/2) | G2N+1/2(g2N+2)

109 - llz2(pe) | €'/2 | €8 | NT2(2NH5/2) | 2N43/2(2N+2)
102 - llz2(pe) | €2 2 | 2NHL(2N+3/2) | 2N-1/2( 2N

| e pey gl/? g2 g2N+1(2N+3/2) | (2N+1/2(2N+1)

3 — ASYMPTOTIC EXPANSION FOR uf(p)

To develop an asymptotic expansion for the solution of the hierarchical models,
we reason as before, but use weak equations instead of their strong form. We start
by posing a problem for the solution of the minimum energy model in the scaled
domain P. If we define u(p)(z) = u®(p)(z®), then
(23)

/ Vu(p) Vo + e 203u(p)dsv dx = / fvdz for all v € f[l(Q;]P’p(—l, 1)).
P P

Considering the asymptotic expansion

(24) u®(p) + e?u?(p) + e'u'(p) + -+,

and formally substituting it for u(p) in (23), we can easily conclude that for all
v e (@ Fy(—1,1)),

/ D5u® (p)Dsv dz =0,
P
(25) / Dsu? (p)dsv dz = / (f + Aop u’(p))v dz,
P P
/ dsu** (p)dsv dz = / Asp u* 2 (p)v dz, for k > 1.
P P

Let ]f”p(—l, 1) be the space of polynomials of degree p in (—1,1) with zero average.
Repeating the arguments of the expansion for the exact solution, we set u®(p)(z) =
¢°(x) and u?(p)(z, -) as the Galerkin projection of u?(z, ) into P,(—1,1) for almost
eve;y T € Q, i.e.,N N

(26)

| )@t des = [ 1£(z20) + anC@lolas) das

for all v € P,(—1,1).
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For any integer k > 2, we define u?*(p)(z,-) € P,(—1,1) by

(27) [1 83u2k(p)(£,:63)6311($3)d$3 = /71 Asp U2k72(p)(g,x3)v(:v3)d:v3,

for all v € ]13"1,(—17 1), and for almost every = € ().

The ansatz (24) does not satisfy the Dirichlet boundary conditions at 0Py, and
we use then boundary correctors U*(p). These functions are polynomial in the
transverse direction, and are defined in the semi-infinite strip 3. We need to define
the spaces

V(E,p) = {v € D'(R";Py(=1,1)) : | Vollrzm) + [[0(0,)llz2(-1,1) < 00},
Vo(Z,p) = {v eV(E,p) : v(0,) = 0}.

For any positive integer k, let U*(p) € V(3,p) be the solutions of

/YUk(p)-Yvdﬁd:vgz/Fk(p)vdﬁdxg for all v € V4(2, p),
b b

Uk (p)(0,6,23) = uF(p)(0,0,23)  for all z3 € (—1,1),

=3 7 (00" () + a0nU* I () + ad DU T 2(0)

j=0

where u¥ = 0 for k odd and U°(p) = U'(p) =0

A result guaranteeing existence, uniqueness and exponential decay holds for
U*(p).
We have finally that

’U,E( )( +252k 2k s e 1 5 _ Za Uk E 1p,95 1$§)

where (° solves (15).

We present next an estimate, in the H'(P?) norm, of u®(p) minus its truncated
asymptotic expansion. We would like to remark that this result gives a bound that
is uniform in p.

Theorem 3. For any positive integer N, let

2N
ean(p Z e u (p) + x(p) Y _ " U*(p)
k=2

Then, there exists a constant C(f) such that ||ean ()| (pey < C(f)e*N T, for all
peN
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4 — ESTIMATING THE ERROR

We start by comparing some terms of the asymptotic expansion of both u® and
us(p).
The first three estimates in the lemma below hold since u?(p)(z, -) is the Galerkin

projection of u? (z,-) into ]f”p(—l, 1) for z € Q. The convergence of the boundary

correctors is more involved. It follows from the definition of U? and U?(p). The
slow rate of convergence follows from the the singular behaviour of U? close to the
corners of the plate (it has a singularity of the type 77 logr, for a certain power 7
and where r indicates the distance to the corners).

Lemma 4. For any nonnegative real number s, and for any arbitrarily small § > 0,
there exists a constant C' such that
| = > ()| z2(pe) < C"2p 70| Fll 2@ (~1,1)
IV u? =Vl ®)llrzpe) < Ce 2>\ fllm ume (—1,1))
1005 u® — Bz u®(P) || 2(pey < Ce™2p™ =% fllp2(umrs (~1,1))-

Also, for the first boundary corrector,

1025 {X[U* = U (D)1} £2(pey + 10,{xX[U* = U*()]}|12(Pe)
< Csp™ "\ fllz2 (o0 mrs (—1.1))-

Finally, we present the convergence results for the model defined by (2). Let
P = Qg x (—e,¢), where  is an open domain such that y C Q.

Theorem 5. For any nonnegative real number s, and for any arbitrarily small
d > 0, there exist constants C and C(f) such that the error between u® and the
approzimation uf(p) given by the SP(p) model is bounded as

lu® = u* (p)l|z2(pey < C°p™ || Fll o (—1.1)) + C(£)E°,
18,[u* = w* (D)l p2(pey < Cse”p™ 0| fll L2005 (—1.1)) + C(f)e*/?,
181" = u (D)l 22(pe) < C™2p™>*|| fllmn@ume(<1,1)) + C(f),
IV =V (p)llz2(pe) < C™2p 27| fller (e (<1,1)) + C ()2,
1025 u = Basu® (D)l 12(pe) < C**p™" * || fllr2(se (-1,1)) + C(f)E7,
llu® = u ()| (pey < C°p " * || flln2(@ubre (=1,1)) + C(f)e.
Proof. We prove the fifth estimate. Using the triangle inequality, the following
holds:
1025 u” — Dzt (P)|L2(pe) < |lu” = ¢° = eu® + XU || 1 (pe)
(29) + &% (10a5u” = Bozw” (D) L2(pey + [X[U? = U (D)]|11 (pe))
+ [Ju(p) — ¢° = 2® (p) + XU (D)l ;12 ().
From Theorems 2 and 3, we have that
[ = ¢° = £2u? + e2XU?| g1 (pey

+[|u(p) — ¢ — e*u?(p) + XU )|l 1 (pey < C(f)e?,
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and from the exponential decay of the boudary correctors,
IX[U? = U2 (D))l (pe) < C(f)

Finally we apply Lemma 4 to bound ||0,su® — 9,su(p)||£2(p<), and substituting in
(29) we have the result. The other estimates follow from similar arguments. O

We summarize the convergence results in the table below. We present only the
leading terms of the errors and in parenthesis we show interior estimates if those
are better than the global ones.

We need the following notation. For a nonnegative real number s, let

as = | fllzz@me(—1,1)) @b = Ifllen e (—1,1)), @ = fllz2(a0:m5(-1,1))

TABLE 2. Convergence estimates for the SP(p) models

u® — u®(p) Relative Error
1 e re /2 2—sg, 2p2va,
10, - lz2(pey | €2p~%F0ab (5/2p27%al) | &3/2p=0+9ab (e2p~2~2al)
196 - llz2(P) e*2p~2"%al o
10z - [|L2(pe) e3/2p~1=3q, p 1 %a,
I - e Py e3/2p=1=3q ep~

SECTION 5 — AN ALTERNATIVE VARIATIONAL APPROACH

We now present the SP’'(p) models for (1) and the results related to it. Let
V!(P?) = L*(P?) and S{(P°) = {0 € H(div,P®) : 0-n = 0on dP;}. Then we
have the following principle.

SP’: (u®,0°%) is the unique critical point of

L'(v,7) = 1/ |7|? da® + ffvdz® +/ div rv dz®
A Y
in V'(P) x S{(P?). Looking for critical points in the spaces V'(P?,p) = {v €
V/(P?) : degzv < p} and S5(P7,p) = {7 € S{(P?) : degyT < p,degzms <
p — 1} we derive the SP{(p) models. Another option is to choose Sj(P¢,p) =
{r € SH(P°) : degyT < p, degy 73 < p+ 1} instead, yielding the SP)(p) models.
For both SP}(p) and SPj(p) models, div Sy(P°,p) = V (P, p) and o°(p) is the
minimizer of the complementary energy

1
L) =5 [ Pz

over all 7 € S{(P?,p) such that divrT = —my f¢, where 7y f* is the orthogonal L?
projection on f€ into V'(P¢,p).

We present next some results regarding the SP)(p) models, omiting the motiva-
tions and the proofs.
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For the SP5(p) methods, the asymptotic expansions for u®(p) and o°(p) are

u®(p) () ~ ¢°(z7) + Zs%u%(p)(gs, e '2%) + boundary correctors,

. Vv (0 . e G'Qk(p) ..
e~ (5 )@+ (50 )@
+ boundary correctors.

Equations (13), (15) define (°. The other terms are determined as below. With
z € Q as a parameter, u*(p)(z) € P,(—1,1) and 03(p)(z,-) € Ppi1(—1,1), where

P,(—1,1) are the polynomials of degree p that vanish on {—1,1}. Then

1

1
/ o3 (p)(z, 23)73(23) ds +/ u?(p)(x,23)0573(23) dg = 0
-1 -1
for all 75 € I:[’DPH(—I, 1),
1

| 2w aades = = [ 1#z0) + AapC(@lotas) da

—1

for all v € P,(—1,1).

Note that u*(p), o3 (p) are mixed method approximations of u?, dzu” (with z € Q
as a parameter).

For all integers k > 2, let 03%(p)(z,-) € ]f"p+1(—1, 1) and u?*(p)(z,-) € Py(~1,1)
be such that

/ ng(I’)(ﬁyﬂ@s)Ta'(fs)dfs +/ U%(P)({afs)aﬂs(fs)dfs =0

—1 —1

for all 3 € ]fnp+1(—1, 1),
1 1
/ 9303" (p)(z, m3)v(3) dmg = —/ Aop v 2 (p)(z, m3)v(w3) das
-1 -1

for all v € Ppyi(—1,1).

Also, g% = Yu%(p). We present some details regarding the boundary corrector
problem. We expect a pair of correctors U(p), E(p) with trace Up(p) on OPj to
satisfy

(30)

I [1]

(p) - T+ U(p)divrde = Uo(p)T-ndxdrs  for all T € So(P°,p),

Ppe apPE

/ divE(p)vdr =0 for all v € V'(P?, p).

We use (18) to define

En(p)(z7) =Z(p)(z7) -n(z"),  Es(p)(x°) = E(p)(z°) - 5(z°),
Ta(p)(z7) = 7(p)(z7) - n(z®),  Ts(p)(z7) = T(p)(27) - 5(z7),
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in . Then, a long but straightforward computation shows that
- - 1, _ -
divE(p) = 9p=n(p) + 595Zs5(p) = 5Zn(P)-

Hoping that the correctors will decay very quickly, we, in a first step, pose (30) in €,
using the boundary fitted coordinates (p, 8, 25). Next, we use the “stretched” (in the
normal and vertical directions) variables (p, 8, x3) in order to pose a e-independent
sequence of corrector problems, and define

n(0)(p,0,23) = €2, (p) (p,0,25),  Es(p)(p,0,23) = Z5(p)(p, 0, 25),
é3(p)(pA797m3) = 553(p)(p707w§)'

Similar definitions hold for 7,,(p), 7s(p) and 73(p). The motivation for multiplying
Zn(p) and Z3(p) by ¢ is that we expect them to “behave” as e~!, after all they
approximate 0,U and 93U in P¢. All the above described transformations lead to

[1]>

R . N 1
/ [e7°Z,(p) 0 + Es(p)Fs +2Z3(P) 73 + U(p) (672057 + jaﬁs +e720575)] T
Q

27 1
e KU (p) dO = / / Uo(p) (0,0, 37 (0,0, 5) dz ),
0 —1

~ 1 ~ ~ ~ ~
/Q[E28ﬁ5n(p) + jagas +e7%0385 —e ' =E,(p)]v] dQ = 0,

J

where Q = RT x (0,27) x (—1,1) is a semi-infinite quadrilateral domain with the
union of its top and bottom boundaries given by 0Q+ = R* x (0,27) x {—1,1},
and
re{reH(div,Q) : 5 =00ndQx, degy T < p, degy 3 < p+1},
ve{ve L2(Q) : deggv < p}.
Replacing 7, by 7,/J, 73 by 73/J, and v by v/.J, formally substituting the Taylor

series of the coefficients and

Up)(z) ~ U (p)(z) + U (p)(z) + ' U (p) (2) + . . .,

Ep)(@) ~ 2 (D) (@) + 2 P (@) + 'S (D) (@) + ...

Uo(p) ~ €*u?(p) +*u’(p) +*u'(p) + ...,
where u*(p) = 0 for k odd, we arrive at the following sequence of problems,

parametrized by 6 € R/L and defined in the semi-infinite strip X:

/ Sk (p)in + 25 (0)7s + UM () (B + Buty) dp s
>

1
_ _/ W (p)(0,0,73) 7 (0,73) dzs  for all 7 € SH(S, ),

—1
/ [[‘)ﬁéﬁ(p) + 83é'§(p)]vdﬁ dzrs = / Gr(p)vdpdrs for all v € V'(Z, p),
) )

E5(p) = pr(0)ZE" (p) + 04 U* (p),
k—2

Gr(p) = > 7 (al 27771 (p) + ad0p U T 2(p) + aOyU* 7 2(p))
7j=0
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Finally,
u’ (p)(z° ) + Y et (p)(zf, e a5) — x(p) > FUR(p) (e p, 0,6 a5),
E>1 E>2

v ¢° 2k a**(p) —1
o* ()(z°) ~ (~ JESED SEA (a5, 1a5)
A Z ok ) T

E_léﬁ(p n+ é’;(p)s B .
_X(p)zak ( ,121‘, N) (E 1:07078 11’3)
k>2 € :‘3(p)

We present next the various error estimates.

Theorem 6. For any nonnegative integer N, there exists a constant C(f) such
that

2N
Zs% %) + x(p) 3 4T (p)
k=2

L2(Pe)
A v (0 N R o2k
- <~é )2 @—wéﬁ?m)
2N —1%k
k(€ ( )n—l— ( )N IN+1
+X(p);€ ( 571:]33(17) > L2(P?) <O

The next two lemmas estimate the difference between the first terms of the
asymptotic expansion of u® and u®(p).

Lemma 7. For any nonnegative real number s, and for any arbitrarily small § > 0,
there exists a constant C' such that

lu? = ()| z2(pey < C" 2P| fllr2(0s = (<1,1)
IV u? = V> p)llrzpey < CY2p > | fllma ey me (=1,1))
o3 — a3 )l r2(pey < C'*p™ 2| fll 2@ me (—1,1))
102503 — Baz o3 D)l L2(pey < Ce 2D || fllz2(irre (<1,1))
IXIEY = Z2 D)2 pe) + IXIES — E30)]IL2(pe) < Coep™ NI fllz2o0imr (—1.1))»
where 03 () = Oy (z), Z3(x) = 04y U(a).
We end this note by presenting the convergence results for the SP’(p) model.

Theorem 8. For any nonnegative real number s, and for any arbitrarily small
0 > 0, there exist constants C' and C(f) such that the following bounds hold:

lu® = u* (D) l|z2(pey < C°p > * (| fll Lo (e (—1,1)) + C ()
o -1 — 0% (p) - nllr2(pe) < Csep™ )| fll2(aems(—1,1)) + C(f)e™?,
o+ s —a°(p) - slle2(pe) < C°p > Il fll i umrs (—1.1)) + C(f)E?
10" = o (P)lz2(pe) < C2p % *|| fllm (s (=1.0)) + C(F)e”?,
o5 — o5 )l r2(pey < C¥ 2 * || fll 2@ (<1.,1)) + C(f)e?
where 0°(2°) = Vu®(z°).
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