
THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATEAlexandre L. MadureiraLaborat�orio Na
ional de Computa�
~ao Cient���
a (LNCC)Abstra
t. This note was the basis of a short 
ourse presented on June 23, 2000, atUniversity of Pavia, Italy. Here we de�ne and analyse dimension redu
tion mod-els for the Poisson problem in a thin, three-dimensional plate. After introdu
-ing the Poisson problem, and a variational approa
h for dimension redu
tion, wepresent the asymptoti
 expansion for the exa
t and model solutions. Then we es-timate the modeling error. This work is based on the thesis [3℄, see the web sitehttp://www.math.psu.edu/dna/edu
ation.html#students1 { Introdu
tionFor a positive number " < 1, de�ne the three-dimensional plate P " = 
� (�"; ")and its boundaries �P "L = �
� (�"; ") and �P "� = 
� f�"; "g.

 P " 2"� x" = (x�; x"3)

Assume that u" 2 H1(P ") satis�es (in the weak sense)(1) �u" = �f" in P ",�u"�n = 0 on �P "�,u" = 0 on �P "L,where f" : P " ! R. In general, the solution of (1) will depend on " in a nontrivialway. In fa
t the above problem is a singularly perturbed one, and as " goes to zeroit \loses" ellipti
ity. This 
auses the onset of boundary layers, as we make 
learbelow.It is possible to 
hara
terize the solution of (1) in an alternative way, as theminimizer of the asso
iate energy fun
tional, i.e.,u" = argminv2V (P ")J (v); where J (v) = 12 ZP " j r vj2 dx� ZP " f"v dx;This work has been partially supported by IAN-CNR, Italy Typeset by AMS-TEX1



2 ALEXANDRE L. MADUREIRAand V (P ") = �v 2 H1(P ") : v = 0 on �P "L	.Aiming to �nd a \good" approximation for u", we sear
h for(2) u"(p) = argminv2�H1(
;Pp(�";"))J (v);where the notation is as follows. For an integer p and a positive real numbera, we de�ne Pp(�a; a) as the spa
e of polynomials of degree p in (�a; a). So�H1(
;Pp(�a; a)) denotes the spa
e of polynomials of degree p with 
oeÆ
ients in�H1(
). The spa
e �H1(
) is the set of fun
tions in the usual Sobolev spa
e H1(
)with zero tra
e on �
. It follows from its de�nition that u"(p) is the Ritz proje
tionof u" into �H1(
;Pp(�"; ")) and su
h model is a minimum energy one. Observe thatthe use of higher polynomial degrees yield higher order models, a
tually leading toa hierar
hy of models that furnish in
reasingly better solutions.Rewriting (2) in weak form, it is not hard to 
he
k that if u"(1)(x) = !0(x�) +!1(x�)x"3, then(3) �2D !0 = �12f0; 2"23 �2D !1 � 2!1 = �f1 in 
;!0 = !1 = 0 on �
;where �2D = �11 + �22, and(4) f0(x�") = 1" Z "�" f"(x�"; x"3) dx"3; f1(x�") = 1" Z "�" f"(x�"; x"3)x"3 dx"3:Note that the equations (3) are independent of ea
h other. We 
an express ina unique way any fun
tion de�ned on P " as a sum of its even and odd parts withrespe
t to x"3. The even part of f" appears only in the equation for !0, and theodd part of f" shows up in the equation for !1. Also, the equation determining !1is singularly perturbed, but this is not the 
ase for the equation determining !0.If higher order methods were used, we would have two singularly perturbed inde-pendent systems of equations, 
orresponding to the even and odd parts of u"(p).Similar splitting also o

urs in plate models for linearized elasti
ity, where, for anisotropi
 plate, the equations de
ouple into two independent problems 
orrespond-ing to bending and stret
hing of a plate.The natural question of how 
lose u"(p) is to u" is not easy to answer due to the
omplex in
uen
e of " in both the original and model solutions. We resolve this,not by 
omparing the exa
t and model solutions dire
tly, but rather by �rst lookingat the di�eren
e between the solutions and their trun
ated asymptoti
 expansions,and then 
omparing both asymptoti
 expansions. This is possible be
ause thesame proje
tion used to de�ne ea
h model 
an be used to �nd the �rst terms ofthe asymptoti
 expansion of the model. This allows us to 
ompare 
orrespondingterms of the expansions. S
hemati
ally, this is how it works:u" Asymptoti
Expansion of u"Asymptoti
Expansion of u"(p)u"(p)



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 3Next we develop then the asymptoti
 expansion for the exa
t solution, and thendo the same for the model solution. Finally we 
ompare them both to �nd upperbounds for the modeling error.2 { The asymptoti
 expansion for the original 3D solutionOur �rst step to show the in
uen
e of " expli
itly is to rewrite (1) in the s
aleddomain P = 
 � (�1; 1). Let �PL = �
 � (�1; 1) and �P� = 
� f�1; 1g. Also,x = (x�; x3) is a typi
al point of P , with x� = x�" and x3 = "�1x"3.P " x3 = "�1x"3� x" = (x�; x"3) P 1
�1� x = (x�; x3)In this new domain we de�ne u(")(x) = u"(x"), and f(x) = f"(x"). We 
on
ludefrom (1) that(5) (�2D +"�2�33)u(") = �f in P ,�u(")�n = 0 on �P�,u(") = 0 on �PL.We assume that f is independent of ".Consider the asymptoti
 expansion(6) u(") � u0 + "2u2 + "4u4 + � � � :Formally substituting (6) in (5) and grouping together terms with same power in "we have "�2�33u0 + [�2D u0 + �33u2℄ + "2��2D u2 + �33u4�+ � � � = �f;�u0�n + "2 �u2�n + "4 �u4�n + � � � = 0 on �P�.It is then natural to require that �33u0 = 0;(7) �33u2 = �f ��2D u0;(8) �33u2k = ��2D u2k�2; for all k > 1,(9)along with the boundary 
onditions(10) �u2k�n = Æk1g on �P�; for all k 2 N.



4 ALEXANDRE L. MADUREIRAEquations (7){(10) de�ne a sequen
e of Neumann problems in the interval x3 2(�1; 1) parametrized by x� 2 
. If the data for these problems is 
ompatible thenthe solution 
an be written as(11) u2k(x) = Æu2k(x) + �2k(x�); for all k 2 N,where(12) Z 1�1 Æu2k(x�; x3) dx3 = 0;with Æu2k uniquely determined, but �2k an arbitrary fun
tion of x� only. From theDiri
hlet boundary 
ondition in (5), it would be natural to require that u2k = 0 on�PL. This is equivalent to imposing�2k = 0 on �
,(13) Æu2k = 0 on �PL.(14)However, in general, only (13) 
an be imposed and (14) will not hold. We shall
orre
t this dis
repan
y latter. Now we show that the fun
tions �2k, Æu2k (and sou2k) are uniquely determined from (7){(13). In fa
t, (7) and (10) yields Æu0 = 0.From the 
ompatibility of (8) and (10) we see that(15) �2D �0(x�) = �12 Z 1�1 f(x�; x3) dx3;whi
h together with (13), determines �0 and then, from (11), u0. In view of the
ompatibility 
ondition (15), Æu2 is fully determined by (8) and (10). Next, theNeumann problem (9), (10) admits a solution for k > 1 if and only if �11�2k�2 = 0.But in view of (13), this means �2k�2 = 0, for k > 1, and then Æu2k is uniquelydetermined from (9), (10). Note that u0 = �0 and u2k = Æu2k for k � 1.Observe that u0 satis�es all the boundary 
onditions imposed sin
e Æu0 = 0 andso (14) holds for k = 0. In general this is not the 
ase for u2, u4, et
, as they donot vanish on the lateral boundary of the domain (although their verti
al integralsdo). We introdu
e then, formally, the boundary 
orre
tor(16) U � "2U2 + "3U3 + "4U4 + � � � ;to 
orre
t the values of u2, u4, et
. on �PL. We expe
t also that(17) (�2D +"�2�33)U = 0 in P ,�U�n = 0 on �P�.We hope to pose a boundary 
orre
tor problem that is independent of ". In atwo-dimensional beam, it is enough to de�ne a stret
hed 
oordinate in the horizontaldire
tion and pose the 
orre
tor problem in the semi-in�nite strip � = R+�(�1; 1).We pro
eed here analogously, using a new system of (boundary-�tted) horizontal



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 5
oordinates. In this new system, a point 
lose to the boundary �
 has as 
oordi-nates its distan
e to �
 and the ar
length along the boundary. We are able thento de�ne a horizontal stret
hed 
oordinate, in the normal dire
tion, and pose, aftersome work, a sequen
e of problems in, on
e more, �. The geometry of 
 plays animportant role, as we see below.Following the notation of Chen [2℄, suppose that �
 is ar
length parametrizedby z�(�) = (X(�); Y (�)). Let s� = (X 0; Y 0), n� = (Y 0;�X 0) denote the tangent andthe outward normal of �
, and de�ne
b = �z�� �n� : z� 2 �
; 0 < � < �0	;where �0 is a positive number smaller than the minimum radius of 
urvature of �
.With L denoting the ar
length of �
, thenx�(�; �) = z�(�)� �n�(�):is a di�eomorphism between (0; �0)� R=L and 
b. Extending n� and s� to 
b by(18) n�(�; �) = n�(�); s�(�; �) = s�(�);then, for � = 1, 2: ��� = s�J(�) ; ��� = �n�;where J(�; �) = 1 � ��(�), and � is the 
urvature of �
. Finally, the 
hange of
oordinates yields ��f = ��f��� + ��f���; for � = 1, 2.The expression for the Lapla
ian in these new 
oordinates follows:(19) �2D U = ���U � �J ��U + 1J2 ���U + ��0J3 ��U= ���U + 1Xj=0 �j �aj1��U + aj2���U + aj3��U� ;where we formally repla
e ea
h 
oeÆ
ient with its respe
tive Taylor expansion,see [1℄, andaj1 = �[�(�)℄j+1; aj2 = (j + 1)[�(�)℄j ; aj3 = j(j + 1)2 [�(�)℄j�1�0(�):De�ning the new variable �̂ = "�1� and using the same name for fun
tions di�erentonly up to this 
hange of 
oordinates, we have from (19) that(20) �2D U = "�2��̂�̂U + 1Xj=0("�̂)j �aj1"�1��̂U + aj2���U + aj3��U� ;



6 ALEXANDRE L. MADUREIRAAiming to solve (17), we formally use (16) and (20), 
olle
t together terms withsame order of " and for k � 2, pose the following sequen
e of problems parametrizedby �:(21) (��̂�̂ + �33)Uk = Fk in �,�Uk�n = 0 on ���,Uk(0; �; x3) = uk(0; �; x3) for x3 2 (�1; 1);where Fk = k�2Xj=0 �̂j �aj1��̂Uk�j�1 + aj2���Uk�j�2 + aj3��Uk�j�2� ;The next lemma shows that Uk de
ays to zero exponentially. See [3℄ for a proof.Lemma 1. Let Uk be de�ned by (21) for any positive positive k. ThenZ 1t Z 1�1(Uk)2 + (��̂Uk)2 + (��Uk)2 dx3 d�̂ � 
k(f)e��kt:Combining (6) and the boundary layer expansion we write(22) u"(x") � �0(x�") + 1Xk=1 "2ku2k(x�"; "�1x"3)� �(�) 1Xk=2 "kUk("�1�; �; "�1x"3);where �(�) is a smooth 
uto� fun
tion identi
ally one if 0 � � � �0=3 and identi
allyzero if � � 2�0=3.We omit many of the details in the results below. Using the 
onvenient hypoth-esis that f is \smooth", we will bound their (arbitrarily high) Sobolev norms by ageneral 
onstant C(f). This allows a simpli�
ation of the estimates and no majorloss of information o

urs. We present the 
onvergen
e estimates of the trun
atedasymptoti
 expansion in the H1(P ") norm without a proof. LeteN = u" � NXk=0 "2ku2k(x�"; "�1x"3) + �(�) 2NXk=2 "kUk("�1�; �; "�1x"3)Then we have the result below.Theorem 2. For any nonnegative integer N , there exists a 
onstant C(f) su
h thatthe di�eren
e between the trun
ated asymptoti
 expansion and the original solutionmeasured in the original domain is bounded as follows:ke0kH1(P ") � C(f)"3=2; keNkH1(P ") � C(f)"2N+1:Remark. If R 1�1 f(x�; x3) dx3 6� 0, thenku"kH1(P ") � C(f)"1=2;



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 7and then ke0kH1(P ")ku"kH1(P ") = O("); keNkH1(P ")ku"kH1(P ") = O("2N+1=2):We 
ompile in the table below the estimates for the error between the originalsolution and the trun
ated asymptoti
 expansion, for N � 1.Table 1. Convergen
e rates of the trun
ated asymptoti
 expansionu" BL eN (N � 1) Relative Errork � kL2(P ") "1=2 "3 "2N+2("2N+5=2) "2N+3=2("2N+2)k�� � kL2(P ") "1=2 "2 "2N+1("2N+5=2) "2N+1=2("2N+2)k�� � kL2(P ") "1=2 "3 "2N+2("2N+5=2) "2N+3=2("2N+2)k�x"3 � kL2(P ") "3=2 "2 "2N+1("2N+3=2) "2N�1=2("2N )k � kH1(P ") "1=2 "2 "2N+1("2N+3=2) "2N+1=2("2N+1)3 { Asymptoti
 expansion for u"(p)To develop an asymptoti
 expansion for the solution of the hierar
hi
al models,we reason as before, but use weak equations instead of their strong form. We startby posing a problem for the solution of the minimum energy model in the s
aleddomain P . If we de�ne u(p)(x) = u"(p)(x"), then(23)ZP r� u(p)r� v + "�2�3u(p)�3v dx = ZP fv dx for all v 2 �H1(
;Pp(�1; 1)):Considering the asymptoti
 expansion(24) u0(p) + "2u2(p) + "4u4(p) + � � � ;and formally substituting it for u(p) in (23), we 
an easily 
on
lude that for allv 2 �H1(
;Pp(�1; 1)),(25) ZP �3u0(p)�3v dx� = 0;ZP �3u2(p)�3v dx� = ZP �f +�2D u0(p)�v dx�;ZP �3u2k(p)�3v dx� = ZP �2D u2k�2(p)v dx�; for k > 1:Let P̂p(�1; 1) be the spa
e of polynomials of degree p in (�1; 1) with zero average.Repeating the arguments of the expansion for the exa
t solution, we set u0(p)(x) =�0(x�) and u2(p)(x�; �) as the Galerkin proje
tion of u2(x�; �) into P̂p(�1; 1) for almostevery x� 2 
, i.e.,(26)Z 1�1 �3u2(p)(x�; x3)�3v(x3) dx3 = Z 1�1[f(x�; x3) + �2D�0(x�)℄v(x3) dx3;for all v 2 P̂p(�1; 1):



8 ALEXANDRE L. MADUREIRAFor any integer k � 2, we de�ne u2k(p)(x�; �) 2 P̂p(�1; 1) by(27) Z 1�1 �3u2k(p)(x�; x3)�3v(x3) dx3 = Z 1�1�2D u2k�2(p)(x�; x3)v(x3) dx3;for all v 2 P̂p(�1; 1), and for almost every x� 2 
.The ansatz (24) does not satisfy the Diri
hlet boundary 
onditions at �PL andwe use then boundary 
orre
tors Uk(p). These fun
tions are polynomial in thetransverse dire
tion, and are de�ned in the semi-in�nite strip �. We need to de�nethe spa
esV (�; p) = �v 2 D0(R+ ;Pp(�1; 1)) : kr� vkL2(�) + kv(0; �)kL2(�1;1) <1	;V0(�; p) = �v 2 V (�; p) : v(0; �) = 0	:For any positive integer k, let Uk(p) 2 V (�; p) be the solutions of(28) Z�r� Uk(p) � r� v d�̂ dx3 = Z� Fk(p)v d�̂ dx3 for all v 2 V0(�; p);Uk(p)(0; �; x3) = uk(p)(0; �; x3) for all x3 2 (�1; 1);Fk(p) = k�1Xj=0 �̂j �aj1��̂Uk�j�1(p) + aj2���Uk�j�2(p) + aj3��Uk�j�2(p)� ;where uk = 0 for k odd and U0(p) = U1(p) = 0.A result guaranteeing existen
e, uniqueness and exponential de
ay holds forUk(p).We have �nally thatu"(p)(x") � �0(x�") + 1Xk=1 "2ku2k(p)(x�"; "�1x"3)� �(�) 1Xk=2 "kUk(p)("�1�; �; "�1x"3);where �0 solves (15).We present next an estimate, in the H1(P ") norm, of u"(p) minus its trun
atedasymptoti
 expansion. We would like to remark that this result gives a bound thatis uniform in p.Theorem 3. For any positive integer N , lete2N (p) = u"(p)� NXk=0 "2ku2k(p) + �(�) 2NXk=2 "kUk(p):Then there exists a 
onstant C(f) su
h that ke2N(p)kH1(P ") � C(f)"2N+1, for allp 2 N.



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 94 { Estimating the errorWe start by 
omparing some terms of the asymptoti
 expansion of both u" andu"(p).The �rst three estimates in the lemma below hold sin
e u2(p)(x�; �) is the Galerkinproje
tion of u2(x�; �) into P̂p(�1; 1) for x� 2 
. The 
onvergen
e of the boundary
orre
tors is more involved. It follows from the de�nition of U2 and U2(p). Theslow rate of 
onvergen
e follows from the the singular behaviour of U2 
lose to the
orners of the plate (it has a singularity of the type r
 log r, for a 
ertain power 
and where r indi
ates the distan
e to the 
orners).Lemma 4. For any nonnegative real number s, and for any arbitrarily small Æ > 0,there exists a 
onstant C su
h thatku2 � u2(p)kL2(P ") � C"1=2p�2�skfkL2(
;Hs(�1;1));kr� u2 �r� u2(p)kL2(P ") � C"1=2p�2�skfkH1(
;Hs(�1;1));k�x"3u2 � �x"3u2(p)kL2(P ") � C"�1=2p�1�skfkL2(
;Hs(�1;1)):Also, for the �rst boundary 
orre
tor,k�x"3f�[U2 � U2(p)℄gkL2(P ") + k��f�[U2 � U2(p)℄gkL2(P ")� CÆp�6+ÆkfkL2(�
;H5(�1;1)):Finally, we present the 
onvergen
e results for the model de�ned by (2). LetP "0 = 
0 � (�"; "), where 
0 is an open domain su
h that �
0 � 
.Theorem 5. For any nonnegative real number s, and for any arbitrarily smallÆ > 0, there exist 
onstants C and C(f) su
h that the error between u" and theapproximation u"(p) given by the SP(p) model is bounded asku" � u"(p)kL2(P ") � C"5=2p�2�skfkL2(
;Hs(�1;1)) + C(f)"3;k��[u" � u"(p)℄kL2(P ") � CÆ"2p�6+ÆkfkL2(�
;H5(�1;1)) + C(f)"5=2;k��[u" � u"(p)℄kL2(P ") � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"3;kr� u" �r� u"(p)kL2(P "0 ) � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"9=2;k�x"3u" � �x"3u"(p)kL2(P ") � C"3=2p�1�skfkL2(
;Hs(�1;1)) + C(f)"2;ku" � u"(p)kH1(P ") � C"3=2p�1�skfkL2(
;Hs(�1;1)) + C(f)"2:Proof. We prove the �fth estimate. Using the triangle inequality, the followingholds:(29) k�x"3u" � �x"3u"(p)kL2(P ") � ku" � �0 � "2u2 + "2�U2kH1(P ")+ "2�k�x"3u2 � �x"3u2(p)kL2(P ") + j�[U2 � U2(p)℄jH1(P ")�+ ku"(p)� �0 � "2u2(p) + "2�U2(p)kH1(P "):From Theorems 2 and 3, we have thatku" � �0 � "2u2 + "2�U2kH1(P ")+ ku"(p)� �0 � "2u2(p) + "2�U2(p)kH1(P ") � C(f)"3;



10 ALEXANDRE L. MADUREIRAand from the exponential de
ay of the boudary 
orre
tors,j�[U2 � U2(p)℄jH1(P ") � C(f):Finally we apply Lemma 4 to bound k�x"3u2� �x"3u2(p)kL2(P "), and substituting in(29) we have the result. The other estimates follow from similar arguments. �We summarize the 
onvergen
e results in the table below. We present only theleading terms of the errors and in parenthesis we show interior estimates if thoseare better than the global ones.We need the following notation. For a nonnegative real number s, letas = kfkL2(
;Hs(�1;1)); a1s = kfkH1(
;Hs(�1;1)); ab = kfkL2(�
;H5(�1;1));Table 2. Convergen
e estimates for the SP(p) modelsu" � u"(p) Relative Errork � kL2(P ") "5=2p�2�sas "2p�2�sask�� � kL2(P ") "2p�6+Æab ("5=2p�2�sa1s) "3=2p�6+Æab ("2p�2�sa1s)k�� � kL2(P ") "5=2p�2�sa1s "2p�2�sa1sk�x"3 � kL2(P ") "3=2p�1�sas p�1�sask � kH1(P ") "3=2p�1�sas "p�1�sasSe
tion 5 { An alternative variational approa
hWe now present the SP0(p) models for (1) and the results related to it. LetV 0(P ") = L2(P ") and S00(P ") = �� 2 H(div; P ") : � � n = 0 on �P "�	. Then wehave the following prin
iple.SP0: (u"; �") is the unique 
riti
al point ofL0(v; � ) = 12 ZP " j� j2 dx" + ZP " f"v dx" + ZP " div �v dx"in V 0(P ") � S00(P "). Looking for 
riti
al points in the spa
es V 0(P "; p) = �v 2V 0(P ") : deg3 v � p	 and S00(P "; p) = �� 2 S00(P ") : deg3 �� � p; deg3 �3 �p � 1	 we derive the SP01(p) models. Another option is to 
hoose S00(P "; p) =�� 2 S00(P ") : deg3 �� � p; deg3 �3 � p + 1	 instead, yielding the SP02(p) models.For both SP01(p) and SP02(p) models, divS00(P "; p) = V (P "; p) and �"(p) is theminimizer of the 
omplementary energyJ
(� ) = 12 ZP " j� j2 dx�over all � 2 S00(P "; p) su
h that div � = ��V 0f", where �V 0f" is the orthogonal L2proje
tion on f" into V 0(P "; p).We present next some results regarding the SP02(p) models, omiting the motiva-tions and the proofs.



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 11For the SP02(p) methods, the asymptoti
 expansions for u"(p) and ��"(p) areu"(p)(x") � �0(x�") + 1Xk=1 "2ku2k(p)(x�"; "�1x"3) + boundary 
orre
tors,�(p)(x") � �r� �00 � (x�") + 1Xk=1 "2k � ��2k(p)"�1�2k3 (p)� (x�"; "�1x"3)+ boundary 
orre
tors.Equations (13), (15) de�ne �0. The other terms are determined as below. Withx� 2 
 as a parameter, u2(p)(x) 2 P̂p(�1; 1) and �23(p)(x�; �) 2 �Pp+1(�1; 1), where�Pp(�1; 1) are the polynomials of degree p that vanish on f�1; 1g. ThenZ 1�1 �23(p)(x�; x3)�3(x3) dx3 + Z 1�1 u2(p)(x�; x3)�3�3(x3) dx3 = 0for all �3 2�Pp+1(�1; 1);Z 1�1 �3�23(p)(x�; x3)v(x3) dx3 = � Z 1�1[f(x�; x3) + �2D�0(x�)℄v(x3) dx3for all v 2 P̂p(�1; 1):Note that u2(p), �23(p) are mixed method approximations of u2, �3u2 (with x� 2 
as a parameter).For all integers k � 2, let �2k3 (p)(x�; �) 2�Pp+1(�1; 1) and u2k(p)(x�; �) 2 P̂p(�1; 1)be su
h thatZ 1�1 �2k3 (p)(x�; x3)�3(x3) dx3 + Z 1�1 u2k(p)(x�; x3)�3�3(x3) dx3 = 0for all �3 2�Pp+1(�1; 1),Z 1�1 �3�2k3 (p)(x�; x3)v(x3) dx3 = � Z 1�1�2D u2k�2(p)(x�; x3)v(x3) dx3for all v 2 P̂p+1(�1; 1):Also, ��2k = r� u2k(p). We present some details regarding the boundary 
orre
torproblem. We expe
t a pair of 
orre
tors U(p), �(p) with tra
e U0(p) on �P "L tosatisfy(30)ZP " �(p) � � + U(p) div � dx = Z�P "L U0(p)� � ndx� dx3 for all � 2 S00(P "; p),ZP " div �(p)v dx = 0 for all v 2 V 0(P "; p).We use (18) to de�ne�n(p)(x") = ��(p)(x") � n�(x�"); �s(p)(x") = ��(p)(x") � s�(x�");�n(p)(x") = ��(p)(x") � n�(x�"); �s(p)(x") = ��(p)(x") � s�(x�");
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b. Then, a long but straightforward 
omputation shows thatdiv ��(p) = ���n(p) + 1J ���s(p)� �J �n(p):Hoping that the 
orre
tors will de
ay very qui
kly, we, in a �rst step, pose (30) in 
busing the boundary �tted 
oordinates (�; �; x"3). Next, we use the \stret
hed" (in thenormal and verti
al dire
tions) variables (�̂; �; x3) in order to pose a "-independentsequen
e of 
orre
tor problems, and de�ne�̂n(p)(�̂; �; x3) = "�n(p)(�; �; x"3); �̂s(p)(�̂; �; x3) = �s(p)(�; �; x"3);�̂3(p)(�̂; �; x3) = "�3(p)(�; �; x"3):Similar de�nitions hold for �̂n(p), �̂s(p) and �̂3(p). The motivation for multiplying�n(p) and �3(p) by " is that we expe
t them to \behave" as "�1, after all theyapproximate ��U and �3U in P ". All the above des
ribed transformations lead toZQ̂�"�2�̂n(p)�̂n + �̂s(p)�̂s + "�2�̂3(p)�̂3 + U(p)�"�2��̂�̂n + 1J �� �̂s + "�2�3�̂3��J� "�1�U(p)�̂n dQ̂ = Z 2�0 Z 1�1 U0(p)(0; �; x3)�̂n(0; �; x3) dx3 d�;ZQ̂�"�2��̂�̂n(p) + 1J ���̂s + "�2�3�̂3 � "�1 �J �̂n(p)�vJ dQ̂ = 0;where Q̂ = R+ � (0; 2�) � (�1; 1) is a semi-in�nite quadrilateral domain with theunion of its top and bottom boundaries given by �Q̂� = R+ � (0; 2�) � f�1; 1g,and � 2 �� 2 H(div; Q̂) : �3 = 0 on �Q̂�; deg3 �� � p; deg3 �3 � p+ 1	;v 2 �v 2 L2(Q̂) : deg3 v � p	:Repla
ing �̂n by �̂n=J , �̂3 by �̂3=J , and v by v=J , formally substituting the Taylorseries of the 
oeÆ
ients andU(p)(x) � "2U2(p)(x) + "3U3(p)(x) + "4U4(p)(x) + : : : ;�̂(p)(x) � "2�̂2(p)(x) + "3�̂3(p)(x) + "4�̂4(p)(x) + : : :U0(p) � "2u2(p) + "3u3(p) + "4u4(p) + : : : ;where uk(p) = 0 for k odd, we arrive at the following sequen
e of problems,parametrized by � 2 R=L and de�ned in the semi-in�nite strip �:Z� �̂kn(p)�̂n + �̂k3(p)�̂3 + Uk(p) (��̂�̂n + �3�̂3) d�̂ dx3= � Z 1�1 uk(p)(0; �; x3)�̂n(0; x3) dx3 for all �� 2 S�00(�; p);Z����̂�̂kn(p) + �3�̂k3(p)�v d�̂ dx3 = Z�Gk(p)v d�̂ dx3 for all v 2 V 0(�; p);�̂ks (p) = �̂�(�)�̂k�1s (p) + ��Uk(p);Gk(p) = k�2Xj=0 �̂j �aj1�̂k�j�1n (p) + aj2���Uk�j�2(p) + aj3��Uk�j�2(p)� :



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 13Finally,u"(p)(x") � �0(x�") +Xk�1 "2ku2k(p)(x�"; "�1x"3)� �(�)Xk�2 "kUk(p)("�1�; �; "�1x"3);�"(p)(x") � �r� �00 � (x�") +Xk�1 "2k � ��2k(p)"�1�2k3 (p)� (x�"; "�1x"3)� �(�)Xk�2 "k � "�1�̂kn(p)n�+ �̂ks (p)s�"�1�̂k3(p) � ("�1�; �; "�1x"3):We present next the various error estimates.Theorem 6. For any nonnegative integer N , there exists a 
onstant C(f) su
hthat



u"(p)� �0 � NXk=1 "2ku2k(p) + �(�) 2NXk=2 "kUk(p)



L2(P ")+ 



�"(p)��r� �00 �� NXk=1 "2k � ��2k(p)"�1�2k3 (p)�+ �(�) 2NXk=2 "k � "�1�̂kn(p)n�+ �̂ks (p)s�"�1�̂k3(p) �



L2(P ") � C(f)"2N+1The next two lemmas estimate the di�eren
e between the �rst terms of theasymptoti
 expansion of u" and u"(p).Lemma 7. For any nonnegative real number s, and for any arbitrarily small Æ > 0,there exists a 
onstant C su
h thatku2 � u2(p)kL2(P ") � C"1=2p�2�skfkL2(
;Hs(�1;1));kr� u2 �r� u2(p)kL2(P ") � C"1=2p�2�skfkH1(
;Hs(�1;1));k�23 � �23(p)kL2(P ") � C"1=2p�1�skfkL2(
;Hs(�1;1));k�x"3�23 � �x"3�23(p)kL2(P ") � C"�1=2p�skfkL2(
;Hs(�1;1));j�[�̂2n � �̂2n(p)℄jL2(P ") + j�[�̂23 � �̂23(p)℄jL2(P ") � CÆ"p�5+ÆkfkL2(�
;H4(�1;1));where �23(x) = �x3u2(x), �̂23(x) = �x3U2(x).We end this note by presenting the 
onvergen
e results for the SP0(p) model.Theorem 8. For any nonnegative real number s, and for any arbitrarily smallÆ > 0, there exist 
onstants C and C(f) su
h that the following bounds hold:ku" � u"(p)kL2(P ") � C"5=2p�2�skfkL2(
;Hs(�1;1)) + C(f)"3;k��" � n�� ��"(p) � n�kL2(P ") � CÆ"2p�5+Æ�kfkL2(�
;H4(�1;1)) + C(f)"5=2;k��" � s�� ��"(p) � s�kL2(P ") � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"3;k��" � ��"(p)kL2(P "0 ) � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"9=2;k�"3 � �"3(p)kL2(P ") � C"3=2p�1�skfkL2(
;Hs(�1;1)) + C(f)"2;where �"(x") = ru"(x").
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