
THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATEAlexandre L. MadureiraLaborat�orio Naional de Computa�~ao Cient���a (LNCC)Abstrat. This note was the basis of a short ourse presented on June 23, 2000, atUniversity of Pavia, Italy. Here we de�ne and analyse dimension redution mod-els for the Poisson problem in a thin, three-dimensional plate. After introdu-ing the Poisson problem, and a variational approah for dimension redution, wepresent the asymptoti expansion for the exat and model solutions. Then we es-timate the modeling error. This work is based on the thesis [3℄, see the web sitehttp://www.math.psu.edu/dna/eduation.html#students1 { IntrodutionFor a positive number " < 1, de�ne the three-dimensional plate P " = 
� (�"; ")and its boundaries �P "L = �
� (�"; ") and �P "� = 
� f�"; "g.

 P " 2"� x" = (x�; x"3)

Assume that u" 2 H1(P ") satis�es (in the weak sense)(1) �u" = �f" in P ",�u"�n = 0 on �P "�,u" = 0 on �P "L,where f" : P " ! R. In general, the solution of (1) will depend on " in a nontrivialway. In fat the above problem is a singularly perturbed one, and as " goes to zeroit \loses" elliptiity. This auses the onset of boundary layers, as we make learbelow.It is possible to haraterize the solution of (1) in an alternative way, as theminimizer of the assoiate energy funtional, i.e.,u" = argminv2V (P ")J (v); where J (v) = 12 ZP " j r vj2 dx� ZP " f"v dx;This work has been partially supported by IAN-CNR, Italy Typeset by AMS-TEX1



2 ALEXANDRE L. MADUREIRAand V (P ") = �v 2 H1(P ") : v = 0 on �P "L	.Aiming to �nd a \good" approximation for u", we searh for(2) u"(p) = argminv2�H1(
;Pp(�";"))J (v);where the notation is as follows. For an integer p and a positive real numbera, we de�ne Pp(�a; a) as the spae of polynomials of degree p in (�a; a). So�H1(
;Pp(�a; a)) denotes the spae of polynomials of degree p with oeÆients in�H1(
). The spae �H1(
) is the set of funtions in the usual Sobolev spae H1(
)with zero trae on �
. It follows from its de�nition that u"(p) is the Ritz projetionof u" into �H1(
;Pp(�"; ")) and suh model is a minimum energy one. Observe thatthe use of higher polynomial degrees yield higher order models, atually leading toa hierarhy of models that furnish inreasingly better solutions.Rewriting (2) in weak form, it is not hard to hek that if u"(1)(x) = !0(x�) +!1(x�)x"3, then(3) �2D !0 = �12f0; 2"23 �2D !1 � 2!1 = �f1 in 
;!0 = !1 = 0 on �
;where �2D = �11 + �22, and(4) f0(x�") = 1" Z "�" f"(x�"; x"3) dx"3; f1(x�") = 1" Z "�" f"(x�"; x"3)x"3 dx"3:Note that the equations (3) are independent of eah other. We an express ina unique way any funtion de�ned on P " as a sum of its even and odd parts withrespet to x"3. The even part of f" appears only in the equation for !0, and theodd part of f" shows up in the equation for !1. Also, the equation determining !1is singularly perturbed, but this is not the ase for the equation determining !0.If higher order methods were used, we would have two singularly perturbed inde-pendent systems of equations, orresponding to the even and odd parts of u"(p).Similar splitting also ours in plate models for linearized elastiity, where, for anisotropi plate, the equations deouple into two independent problems orrespond-ing to bending and strething of a plate.The natural question of how lose u"(p) is to u" is not easy to answer due to theomplex inuene of " in both the original and model solutions. We resolve this,not by omparing the exat and model solutions diretly, but rather by �rst lookingat the di�erene between the solutions and their trunated asymptoti expansions,and then omparing both asymptoti expansions. This is possible beause thesame projetion used to de�ne eah model an be used to �nd the �rst terms ofthe asymptoti expansion of the model. This allows us to ompare orrespondingterms of the expansions. Shematially, this is how it works:u" AsymptotiExpansion of u"AsymptotiExpansion of u"(p)u"(p)



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 3Next we develop then the asymptoti expansion for the exat solution, and thendo the same for the model solution. Finally we ompare them both to �nd upperbounds for the modeling error.2 { The asymptoti expansion for the original 3D solutionOur �rst step to show the inuene of " expliitly is to rewrite (1) in the saleddomain P = 
 � (�1; 1). Let �PL = �
 � (�1; 1) and �P� = 
� f�1; 1g. Also,x = (x�; x3) is a typial point of P , with x� = x�" and x3 = "�1x"3.P " x3 = "�1x"3� x" = (x�; x"3) P 1
�1� x = (x�; x3)In this new domain we de�ne u(")(x) = u"(x"), and f(x) = f"(x"). We onludefrom (1) that(5) (�2D +"�2�33)u(") = �f in P ,�u(")�n = 0 on �P�,u(") = 0 on �PL.We assume that f is independent of ".Consider the asymptoti expansion(6) u(") � u0 + "2u2 + "4u4 + � � � :Formally substituting (6) in (5) and grouping together terms with same power in "we have "�2�33u0 + [�2D u0 + �33u2℄ + "2��2D u2 + �33u4�+ � � � = �f;�u0�n + "2 �u2�n + "4 �u4�n + � � � = 0 on �P�.It is then natural to require that �33u0 = 0;(7) �33u2 = �f ��2D u0;(8) �33u2k = ��2D u2k�2; for all k > 1,(9)along with the boundary onditions(10) �u2k�n = Æk1g on �P�; for all k 2 N.



4 ALEXANDRE L. MADUREIRAEquations (7){(10) de�ne a sequene of Neumann problems in the interval x3 2(�1; 1) parametrized by x� 2 
. If the data for these problems is ompatible thenthe solution an be written as(11) u2k(x) = Æu2k(x) + �2k(x�); for all k 2 N,where(12) Z 1�1 Æu2k(x�; x3) dx3 = 0;with Æu2k uniquely determined, but �2k an arbitrary funtion of x� only. From theDirihlet boundary ondition in (5), it would be natural to require that u2k = 0 on�PL. This is equivalent to imposing�2k = 0 on �
,(13) Æu2k = 0 on �PL.(14)However, in general, only (13) an be imposed and (14) will not hold. We shallorret this disrepany latter. Now we show that the funtions �2k, Æu2k (and sou2k) are uniquely determined from (7){(13). In fat, (7) and (10) yields Æu0 = 0.From the ompatibility of (8) and (10) we see that(15) �2D �0(x�) = �12 Z 1�1 f(x�; x3) dx3;whih together with (13), determines �0 and then, from (11), u0. In view of theompatibility ondition (15), Æu2 is fully determined by (8) and (10). Next, theNeumann problem (9), (10) admits a solution for k > 1 if and only if �11�2k�2 = 0.But in view of (13), this means �2k�2 = 0, for k > 1, and then Æu2k is uniquelydetermined from (9), (10). Note that u0 = �0 and u2k = Æu2k for k � 1.Observe that u0 satis�es all the boundary onditions imposed sine Æu0 = 0 andso (14) holds for k = 0. In general this is not the ase for u2, u4, et, as they donot vanish on the lateral boundary of the domain (although their vertial integralsdo). We introdue then, formally, the boundary orretor(16) U � "2U2 + "3U3 + "4U4 + � � � ;to orret the values of u2, u4, et. on �PL. We expet also that(17) (�2D +"�2�33)U = 0 in P ,�U�n = 0 on �P�.We hope to pose a boundary orretor problem that is independent of ". In atwo-dimensional beam, it is enough to de�ne a strethed oordinate in the horizontaldiretion and pose the orretor problem in the semi-in�nite strip � = R+�(�1; 1).We proeed here analogously, using a new system of (boundary-�tted) horizontal



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 5oordinates. In this new system, a point lose to the boundary �
 has as oordi-nates its distane to �
 and the arlength along the boundary. We are able thento de�ne a horizontal strethed oordinate, in the normal diretion, and pose, aftersome work, a sequene of problems in, one more, �. The geometry of 
 plays animportant role, as we see below.Following the notation of Chen [2℄, suppose that �
 is arlength parametrizedby z�(�) = (X(�); Y (�)). Let s� = (X 0; Y 0), n� = (Y 0;�X 0) denote the tangent andthe outward normal of �
, and de�ne
b = �z�� �n� : z� 2 �
; 0 < � < �0	;where �0 is a positive number smaller than the minimum radius of urvature of �
.With L denoting the arlength of �
, thenx�(�; �) = z�(�)� �n�(�):is a di�eomorphism between (0; �0)� R=L and 
b. Extending n� and s� to 
b by(18) n�(�; �) = n�(�); s�(�; �) = s�(�);then, for � = 1, 2: ��� = s�J(�) ; ��� = �n�;where J(�; �) = 1 � ��(�), and � is the urvature of �
. Finally, the hange ofoordinates yields ��f = ��f��� + ��f���; for � = 1, 2.The expression for the Laplaian in these new oordinates follows:(19) �2D U = ���U � �J ��U + 1J2 ���U + ��0J3 ��U= ���U + 1Xj=0 �j �aj1��U + aj2���U + aj3��U� ;where we formally replae eah oeÆient with its respetive Taylor expansion,see [1℄, andaj1 = �[�(�)℄j+1; aj2 = (j + 1)[�(�)℄j ; aj3 = j(j + 1)2 [�(�)℄j�1�0(�):De�ning the new variable �̂ = "�1� and using the same name for funtions di�erentonly up to this hange of oordinates, we have from (19) that(20) �2D U = "�2��̂�̂U + 1Xj=0("�̂)j �aj1"�1��̂U + aj2���U + aj3��U� ;



6 ALEXANDRE L. MADUREIRAAiming to solve (17), we formally use (16) and (20), ollet together terms withsame order of " and for k � 2, pose the following sequene of problems parametrizedby �:(21) (��̂�̂ + �33)Uk = Fk in �,�Uk�n = 0 on ���,Uk(0; �; x3) = uk(0; �; x3) for x3 2 (�1; 1);where Fk = k�2Xj=0 �̂j �aj1��̂Uk�j�1 + aj2���Uk�j�2 + aj3��Uk�j�2� ;The next lemma shows that Uk deays to zero exponentially. See [3℄ for a proof.Lemma 1. Let Uk be de�ned by (21) for any positive positive k. ThenZ 1t Z 1�1(Uk)2 + (��̂Uk)2 + (��Uk)2 dx3 d�̂ � k(f)e��kt:Combining (6) and the boundary layer expansion we write(22) u"(x") � �0(x�") + 1Xk=1 "2ku2k(x�"; "�1x"3)� �(�) 1Xk=2 "kUk("�1�; �; "�1x"3);where �(�) is a smooth uto� funtion identially one if 0 � � � �0=3 and identiallyzero if � � 2�0=3.We omit many of the details in the results below. Using the onvenient hypoth-esis that f is \smooth", we will bound their (arbitrarily high) Sobolev norms by ageneral onstant C(f). This allows a simpli�ation of the estimates and no majorloss of information ours. We present the onvergene estimates of the trunatedasymptoti expansion in the H1(P ") norm without a proof. LeteN = u" � NXk=0 "2ku2k(x�"; "�1x"3) + �(�) 2NXk=2 "kUk("�1�; �; "�1x"3)Then we have the result below.Theorem 2. For any nonnegative integer N , there exists a onstant C(f) suh thatthe di�erene between the trunated asymptoti expansion and the original solutionmeasured in the original domain is bounded as follows:ke0kH1(P ") � C(f)"3=2; keNkH1(P ") � C(f)"2N+1:Remark. If R 1�1 f(x�; x3) dx3 6� 0, thenku"kH1(P ") � C(f)"1=2;



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 7and then ke0kH1(P ")ku"kH1(P ") = O("); keNkH1(P ")ku"kH1(P ") = O("2N+1=2):We ompile in the table below the estimates for the error between the originalsolution and the trunated asymptoti expansion, for N � 1.Table 1. Convergene rates of the trunated asymptoti expansionu" BL eN (N � 1) Relative Errork � kL2(P ") "1=2 "3 "2N+2("2N+5=2) "2N+3=2("2N+2)k�� � kL2(P ") "1=2 "2 "2N+1("2N+5=2) "2N+1=2("2N+2)k�� � kL2(P ") "1=2 "3 "2N+2("2N+5=2) "2N+3=2("2N+2)k�x"3 � kL2(P ") "3=2 "2 "2N+1("2N+3=2) "2N�1=2("2N )k � kH1(P ") "1=2 "2 "2N+1("2N+3=2) "2N+1=2("2N+1)3 { Asymptoti expansion for u"(p)To develop an asymptoti expansion for the solution of the hierarhial models,we reason as before, but use weak equations instead of their strong form. We startby posing a problem for the solution of the minimum energy model in the saleddomain P . If we de�ne u(p)(x) = u"(p)(x"), then(23)ZP r� u(p)r� v + "�2�3u(p)�3v dx = ZP fv dx for all v 2 �H1(
;Pp(�1; 1)):Considering the asymptoti expansion(24) u0(p) + "2u2(p) + "4u4(p) + � � � ;and formally substituting it for u(p) in (23), we an easily onlude that for allv 2 �H1(
;Pp(�1; 1)),(25) ZP �3u0(p)�3v dx� = 0;ZP �3u2(p)�3v dx� = ZP �f +�2D u0(p)�v dx�;ZP �3u2k(p)�3v dx� = ZP �2D u2k�2(p)v dx�; for k > 1:Let P̂p(�1; 1) be the spae of polynomials of degree p in (�1; 1) with zero average.Repeating the arguments of the expansion for the exat solution, we set u0(p)(x) =�0(x�) and u2(p)(x�; �) as the Galerkin projetion of u2(x�; �) into P̂p(�1; 1) for almostevery x� 2 
, i.e.,(26)Z 1�1 �3u2(p)(x�; x3)�3v(x3) dx3 = Z 1�1[f(x�; x3) + �2D�0(x�)℄v(x3) dx3;for all v 2 P̂p(�1; 1):



8 ALEXANDRE L. MADUREIRAFor any integer k � 2, we de�ne u2k(p)(x�; �) 2 P̂p(�1; 1) by(27) Z 1�1 �3u2k(p)(x�; x3)�3v(x3) dx3 = Z 1�1�2D u2k�2(p)(x�; x3)v(x3) dx3;for all v 2 P̂p(�1; 1), and for almost every x� 2 
.The ansatz (24) does not satisfy the Dirihlet boundary onditions at �PL andwe use then boundary orretors Uk(p). These funtions are polynomial in thetransverse diretion, and are de�ned in the semi-in�nite strip �. We need to de�nethe spaesV (�; p) = �v 2 D0(R+ ;Pp(�1; 1)) : kr� vkL2(�) + kv(0; �)kL2(�1;1) <1	;V0(�; p) = �v 2 V (�; p) : v(0; �) = 0	:For any positive integer k, let Uk(p) 2 V (�; p) be the solutions of(28) Z�r� Uk(p) � r� v d�̂ dx3 = Z� Fk(p)v d�̂ dx3 for all v 2 V0(�; p);Uk(p)(0; �; x3) = uk(p)(0; �; x3) for all x3 2 (�1; 1);Fk(p) = k�1Xj=0 �̂j �aj1��̂Uk�j�1(p) + aj2���Uk�j�2(p) + aj3��Uk�j�2(p)� ;where uk = 0 for k odd and U0(p) = U1(p) = 0.A result guaranteeing existene, uniqueness and exponential deay holds forUk(p).We have �nally thatu"(p)(x") � �0(x�") + 1Xk=1 "2ku2k(p)(x�"; "�1x"3)� �(�) 1Xk=2 "kUk(p)("�1�; �; "�1x"3);where �0 solves (15).We present next an estimate, in the H1(P ") norm, of u"(p) minus its trunatedasymptoti expansion. We would like to remark that this result gives a bound thatis uniform in p.Theorem 3. For any positive integer N , lete2N (p) = u"(p)� NXk=0 "2ku2k(p) + �(�) 2NXk=2 "kUk(p):Then there exists a onstant C(f) suh that ke2N(p)kH1(P ") � C(f)"2N+1, for allp 2 N.



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 94 { Estimating the errorWe start by omparing some terms of the asymptoti expansion of both u" andu"(p).The �rst three estimates in the lemma below hold sine u2(p)(x�; �) is the Galerkinprojetion of u2(x�; �) into P̂p(�1; 1) for x� 2 
. The onvergene of the boundaryorretors is more involved. It follows from the de�nition of U2 and U2(p). Theslow rate of onvergene follows from the the singular behaviour of U2 lose to theorners of the plate (it has a singularity of the type r log r, for a ertain power and where r indiates the distane to the orners).Lemma 4. For any nonnegative real number s, and for any arbitrarily small Æ > 0,there exists a onstant C suh thatku2 � u2(p)kL2(P ") � C"1=2p�2�skfkL2(
;Hs(�1;1));kr� u2 �r� u2(p)kL2(P ") � C"1=2p�2�skfkH1(
;Hs(�1;1));k�x"3u2 � �x"3u2(p)kL2(P ") � C"�1=2p�1�skfkL2(
;Hs(�1;1)):Also, for the �rst boundary orretor,k�x"3f�[U2 � U2(p)℄gkL2(P ") + k��f�[U2 � U2(p)℄gkL2(P ")� CÆp�6+ÆkfkL2(�
;H5(�1;1)):Finally, we present the onvergene results for the model de�ned by (2). LetP "0 = 
0 � (�"; "), where 
0 is an open domain suh that �
0 � 
.Theorem 5. For any nonnegative real number s, and for any arbitrarily smallÆ > 0, there exist onstants C and C(f) suh that the error between u" and theapproximation u"(p) given by the SP(p) model is bounded asku" � u"(p)kL2(P ") � C"5=2p�2�skfkL2(
;Hs(�1;1)) + C(f)"3;k��[u" � u"(p)℄kL2(P ") � CÆ"2p�6+ÆkfkL2(�
;H5(�1;1)) + C(f)"5=2;k��[u" � u"(p)℄kL2(P ") � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"3;kr� u" �r� u"(p)kL2(P "0 ) � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"9=2;k�x"3u" � �x"3u"(p)kL2(P ") � C"3=2p�1�skfkL2(
;Hs(�1;1)) + C(f)"2;ku" � u"(p)kH1(P ") � C"3=2p�1�skfkL2(
;Hs(�1;1)) + C(f)"2:Proof. We prove the �fth estimate. Using the triangle inequality, the followingholds:(29) k�x"3u" � �x"3u"(p)kL2(P ") � ku" � �0 � "2u2 + "2�U2kH1(P ")+ "2�k�x"3u2 � �x"3u2(p)kL2(P ") + j�[U2 � U2(p)℄jH1(P ")�+ ku"(p)� �0 � "2u2(p) + "2�U2(p)kH1(P "):From Theorems 2 and 3, we have thatku" � �0 � "2u2 + "2�U2kH1(P ")+ ku"(p)� �0 � "2u2(p) + "2�U2(p)kH1(P ") � C(f)"3;



10 ALEXANDRE L. MADUREIRAand from the exponential deay of the boudary orretors,j�[U2 � U2(p)℄jH1(P ") � C(f):Finally we apply Lemma 4 to bound k�x"3u2� �x"3u2(p)kL2(P "), and substituting in(29) we have the result. The other estimates follow from similar arguments. �We summarize the onvergene results in the table below. We present only theleading terms of the errors and in parenthesis we show interior estimates if thoseare better than the global ones.We need the following notation. For a nonnegative real number s, letas = kfkL2(
;Hs(�1;1)); a1s = kfkH1(
;Hs(�1;1)); ab = kfkL2(�
;H5(�1;1));Table 2. Convergene estimates for the SP(p) modelsu" � u"(p) Relative Errork � kL2(P ") "5=2p�2�sas "2p�2�sask�� � kL2(P ") "2p�6+Æab ("5=2p�2�sa1s) "3=2p�6+Æab ("2p�2�sa1s)k�� � kL2(P ") "5=2p�2�sa1s "2p�2�sa1sk�x"3 � kL2(P ") "3=2p�1�sas p�1�sask � kH1(P ") "3=2p�1�sas "p�1�sasSetion 5 { An alternative variational approahWe now present the SP0(p) models for (1) and the results related to it. LetV 0(P ") = L2(P ") and S00(P ") = �� 2 H(div; P ") : � � n = 0 on �P "�	. Then wehave the following priniple.SP0: (u"; �") is the unique ritial point ofL0(v; � ) = 12 ZP " j� j2 dx" + ZP " f"v dx" + ZP " div �v dx"in V 0(P ") � S00(P "). Looking for ritial points in the spaes V 0(P "; p) = �v 2V 0(P ") : deg3 v � p	 and S00(P "; p) = �� 2 S00(P ") : deg3 �� � p; deg3 �3 �p � 1	 we derive the SP01(p) models. Another option is to hoose S00(P "; p) =�� 2 S00(P ") : deg3 �� � p; deg3 �3 � p + 1	 instead, yielding the SP02(p) models.For both SP01(p) and SP02(p) models, divS00(P "; p) = V (P "; p) and �"(p) is theminimizer of the omplementary energyJ(� ) = 12 ZP " j� j2 dx�over all � 2 S00(P "; p) suh that div � = ��V 0f", where �V 0f" is the orthogonal L2projetion on f" into V 0(P "; p).We present next some results regarding the SP02(p) models, omiting the motiva-tions and the proofs.



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 11For the SP02(p) methods, the asymptoti expansions for u"(p) and ��"(p) areu"(p)(x") � �0(x�") + 1Xk=1 "2ku2k(p)(x�"; "�1x"3) + boundary orretors,�(p)(x") � �r� �00 � (x�") + 1Xk=1 "2k � ��2k(p)"�1�2k3 (p)� (x�"; "�1x"3)+ boundary orretors.Equations (13), (15) de�ne �0. The other terms are determined as below. Withx� 2 
 as a parameter, u2(p)(x) 2 P̂p(�1; 1) and �23(p)(x�; �) 2 �Pp+1(�1; 1), where�Pp(�1; 1) are the polynomials of degree p that vanish on f�1; 1g. ThenZ 1�1 �23(p)(x�; x3)�3(x3) dx3 + Z 1�1 u2(p)(x�; x3)�3�3(x3) dx3 = 0for all �3 2�Pp+1(�1; 1);Z 1�1 �3�23(p)(x�; x3)v(x3) dx3 = � Z 1�1[f(x�; x3) + �2D�0(x�)℄v(x3) dx3for all v 2 P̂p(�1; 1):Note that u2(p), �23(p) are mixed method approximations of u2, �3u2 (with x� 2 
as a parameter).For all integers k � 2, let �2k3 (p)(x�; �) 2�Pp+1(�1; 1) and u2k(p)(x�; �) 2 P̂p(�1; 1)be suh thatZ 1�1 �2k3 (p)(x�; x3)�3(x3) dx3 + Z 1�1 u2k(p)(x�; x3)�3�3(x3) dx3 = 0for all �3 2�Pp+1(�1; 1),Z 1�1 �3�2k3 (p)(x�; x3)v(x3) dx3 = � Z 1�1�2D u2k�2(p)(x�; x3)v(x3) dx3for all v 2 P̂p+1(�1; 1):Also, ��2k = r� u2k(p). We present some details regarding the boundary orretorproblem. We expet a pair of orretors U(p), �(p) with trae U0(p) on �P "L tosatisfy(30)ZP " �(p) � � + U(p) div � dx = Z�P "L U0(p)� � ndx� dx3 for all � 2 S00(P "; p),ZP " div �(p)v dx = 0 for all v 2 V 0(P "; p).We use (18) to de�ne�n(p)(x") = ��(p)(x") � n�(x�"); �s(p)(x") = ��(p)(x") � s�(x�");�n(p)(x") = ��(p)(x") � n�(x�"); �s(p)(x") = ��(p)(x") � s�(x�");
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b. Then, a long but straightforward omputation shows thatdiv ��(p) = ���n(p) + 1J ���s(p)� �J �n(p):Hoping that the orretors will deay very quikly, we, in a �rst step, pose (30) in 
busing the boundary �tted oordinates (�; �; x"3). Next, we use the \strethed" (in thenormal and vertial diretions) variables (�̂; �; x3) in order to pose a "-independentsequene of orretor problems, and de�ne�̂n(p)(�̂; �; x3) = "�n(p)(�; �; x"3); �̂s(p)(�̂; �; x3) = �s(p)(�; �; x"3);�̂3(p)(�̂; �; x3) = "�3(p)(�; �; x"3):Similar de�nitions hold for �̂n(p), �̂s(p) and �̂3(p). The motivation for multiplying�n(p) and �3(p) by " is that we expet them to \behave" as "�1, after all theyapproximate ��U and �3U in P ". All the above desribed transformations lead toZQ̂�"�2�̂n(p)�̂n + �̂s(p)�̂s + "�2�̂3(p)�̂3 + U(p)�"�2��̂�̂n + 1J �� �̂s + "�2�3�̂3��J� "�1�U(p)�̂n dQ̂ = Z 2�0 Z 1�1 U0(p)(0; �; x3)�̂n(0; �; x3) dx3 d�;ZQ̂�"�2��̂�̂n(p) + 1J ���̂s + "�2�3�̂3 � "�1 �J �̂n(p)�vJ dQ̂ = 0;where Q̂ = R+ � (0; 2�) � (�1; 1) is a semi-in�nite quadrilateral domain with theunion of its top and bottom boundaries given by �Q̂� = R+ � (0; 2�) � f�1; 1g,and � 2 �� 2 H(div; Q̂) : �3 = 0 on �Q̂�; deg3 �� � p; deg3 �3 � p+ 1	;v 2 �v 2 L2(Q̂) : deg3 v � p	:Replaing �̂n by �̂n=J , �̂3 by �̂3=J , and v by v=J , formally substituting the Taylorseries of the oeÆients andU(p)(x) � "2U2(p)(x) + "3U3(p)(x) + "4U4(p)(x) + : : : ;�̂(p)(x) � "2�̂2(p)(x) + "3�̂3(p)(x) + "4�̂4(p)(x) + : : :U0(p) � "2u2(p) + "3u3(p) + "4u4(p) + : : : ;where uk(p) = 0 for k odd, we arrive at the following sequene of problems,parametrized by � 2 R=L and de�ned in the semi-in�nite strip �:Z� �̂kn(p)�̂n + �̂k3(p)�̂3 + Uk(p) (��̂�̂n + �3�̂3) d�̂ dx3= � Z 1�1 uk(p)(0; �; x3)�̂n(0; x3) dx3 for all �� 2 S�00(�; p);Z����̂�̂kn(p) + �3�̂k3(p)�v d�̂ dx3 = Z�Gk(p)v d�̂ dx3 for all v 2 V 0(�; p);�̂ks (p) = �̂�(�)�̂k�1s (p) + ��Uk(p);Gk(p) = k�2Xj=0 �̂j �aj1�̂k�j�1n (p) + aj2���Uk�j�2(p) + aj3��Uk�j�2(p)� :



THE POISSON PROBLEM IN A THREE-DIMENSIONAL PLATE 13Finally,u"(p)(x") � �0(x�") +Xk�1 "2ku2k(p)(x�"; "�1x"3)� �(�)Xk�2 "kUk(p)("�1�; �; "�1x"3);�"(p)(x") � �r� �00 � (x�") +Xk�1 "2k � ��2k(p)"�1�2k3 (p)� (x�"; "�1x"3)� �(�)Xk�2 "k � "�1�̂kn(p)n�+ �̂ks (p)s�"�1�̂k3(p) � ("�1�; �; "�1x"3):We present next the various error estimates.Theorem 6. For any nonnegative integer N , there exists a onstant C(f) suhthatu"(p)� �0 � NXk=1 "2ku2k(p) + �(�) 2NXk=2 "kUk(p)L2(P ")+ �"(p)��r� �00 �� NXk=1 "2k � ��2k(p)"�1�2k3 (p)�+ �(�) 2NXk=2 "k � "�1�̂kn(p)n�+ �̂ks (p)s�"�1�̂k3(p) �L2(P ") � C(f)"2N+1The next two lemmas estimate the di�erene between the �rst terms of theasymptoti expansion of u" and u"(p).Lemma 7. For any nonnegative real number s, and for any arbitrarily small Æ > 0,there exists a onstant C suh thatku2 � u2(p)kL2(P ") � C"1=2p�2�skfkL2(
;Hs(�1;1));kr� u2 �r� u2(p)kL2(P ") � C"1=2p�2�skfkH1(
;Hs(�1;1));k�23 � �23(p)kL2(P ") � C"1=2p�1�skfkL2(
;Hs(�1;1));k�x"3�23 � �x"3�23(p)kL2(P ") � C"�1=2p�skfkL2(
;Hs(�1;1));j�[�̂2n � �̂2n(p)℄jL2(P ") + j�[�̂23 � �̂23(p)℄jL2(P ") � CÆ"p�5+ÆkfkL2(�
;H4(�1;1));where �23(x) = �x3u2(x), �̂23(x) = �x3U2(x).We end this note by presenting the onvergene results for the SP0(p) model.Theorem 8. For any nonnegative real number s, and for any arbitrarily smallÆ > 0, there exist onstants C and C(f) suh that the following bounds hold:ku" � u"(p)kL2(P ") � C"5=2p�2�skfkL2(
;Hs(�1;1)) + C(f)"3;k��" � n�� ��"(p) � n�kL2(P ") � CÆ"2p�5+Æ�kfkL2(�
;H4(�1;1)) + C(f)"5=2;k��" � s�� ��"(p) � s�kL2(P ") � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"3;k��" � ��"(p)kL2(P "0 ) � C"5=2p�2�skfkH1(
;Hs(�1;1)) + C(f)"9=2;k�"3 � �"3(p)kL2(P ") � C"3=2p�1�skfkL2(
;Hs(�1;1)) + C(f)"2;where �"(x") = ru"(x").
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