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Abstract. Multiscale Problems are omnipresent in real world applications, and present a
challenge in terms of numerical approximations. Well-known examples include modeling of
plates and shells, composites, flow in porous media, among other examples.

The PDEs that model these problems are characterized by either the presence of a small
parameter in the equation (e.g., the viscosity of a turbulent flow), or in the domain itself
(as in shell problems). These PDEs are commonly denominated singular perturbed.

In this course, I plan to discuss the modeling of some singular perturbed PDEs. Mod-
eling here has two meanings. It can be in the sense of approximating the original PDE by
another PDE that’s easier to solve, as in plate and shell theory. It can also be in numerical
approximation point of view, where the final goal is to develop a numerical scheme that is
robust, i.e., that works well for a wide range of parameters.

The techniques involved will be introduced by means of examples. In all cases discussed,
we shall derive modeling error estimates by means of asymptotic analysis. The problems
I plan to describe are the Reaction–Diffusion Equation, Problem in domain with Rough
Boundaries (think of a golf ball), and Plate problems. If time permits, I’ll describe new
techniques just developed to deal with PDEs with oscillating coefficients.

Duration: 12 hours.
References: There’s no single book I’ll follow. Some modern papers dealing with the

topic will be refereed to whenever necessary.
Pre-requisites: I’ll assume basic knowledge of analysis and Finite Element Methods.

The main tools will be developed as the course goes.
Web Site: http://math.cudenver.edu/∼alm/courses/asymp.html
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CHAPTER 1

One dimensional Singular Perturbed Problem

In this chapter, we introduce a singular perturbed problem and a numerical difficulty
associate with its discretization.

1.1. Advection–Diffusion with constant coefficients

1.1.1. Problem description and a finite element discretization. Consider the
following boundary value problem:

(1.1.1)
−εd

2uε

dx2
+
duε

dx
= 0,

uε(0) = 1, uε(1) = 0,

where ε is a positive real number. It is convenient to assume that ε ≤ 1. The exact solution
is simply

uε(x) = 1− ex/ε − 1

e1/ε − 1
.

The function plots for ε = 1, ε = 0.1, and ε = 0.01 follow in figures 1, 2, and 3. It is clear
that when ε approaches zero, there is the onset of a boundary layer close to x = 1. This is
also highlighted by the following fact:

lim
ε→0

lim
x→1
x<1

uε(x) 6= lim
x→1
x<1

lim
ε→0

uε(x).
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Figure 1. Exact solution for ε = 1

1



2 1. ONE DIMENSIONAL SINGULAR PERTURBED PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

PSfrag replacements

u
ε

Figure 2. Exact solution for ε = 0.1
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Figure 3. Exact solution for ε = 0.01

Let’s proceed with a straightforward Galerkin discretization of (1.1.1) using finite element
method. We first rewrite (1.1.1) in a weak form, i.e, the exact solution

uε ∈ V =
{

v ∈ H1(0, 1) : v(0) = 1 and v(1) = 0
}

,

satisfies

(1.1.2) a(uε, v) := ε

∫ 1

0

duε

dx

dv

dx
dx+

∫ 1

0

duε

dx
v dx = 0 for all v ∈ H1

0 (0, 1).
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Figure 4. Typical piecewise linear function

Remark. For the domain (0, 1), the Sobolev space Hk(0, 1) ⊂ L2(0, 1) is the set of
functions with derivatives up to kth order in L2(0, 1). We endow this space with the semi-
norm and norm

|v|Hk(0,1) =

(∫ 1

0

(

∂kv

∂xk

)2

dx

)1/2

, ‖v‖Hk(0,1) =

( k
∑

i=0

|v|2Hi(0,1)

)1/2

.

We also need H1
0 (0, 1), the space of functions in H1(0, 1) vanishing at the boundary {0, 1}.

We introduce now a discretization of the domain (0, 1) into finite elements by defining
the nodal points 0 = x0 < x1 < · · · < xN+1 = 1, where xj = j/(N +1). The mesh parameter
h = 1/(N + 1). Next, we define the finite dimensional V h ⊂ V , where

V h =
{

vh ∈ V : vh is linear in (xj−1, xj) for j = 1, . . . , N + 1
}

.

We say that V h is a space of piecewise linear functions. A typical function of V h is depicted
in figure 4. We finally define

V h
0 =

{

vh ∈ H1
0 (0, 1) : vh is piecewise linear

}

.

The finite element approximation to uε is uh ∈ V h such that

(1.1.3) a(uh, v) = 0 for all v ∈ V h
0 .

Remark. Note that uh depends on ε, although this is not explicitly indicated in the
notation

For a uniform mesh, as described above, with h = 1/16 the numerical solution for ε = 1
is as in figure 5. On the other hand, with the same mesh, the numerical solution for ε = 0.01
is as in figure 6. For a more refined mesh, h = 1/32, the numerical solution is less oscillatory,
but still unsatisfactory, as in figure 7. Eventually, reducing even further the mesh size, the
Galerkin approximation will look fine in the “picture norm.”
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Figure 5. Galerkin approximation for ε = 1 and h = 1/16
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Figure 6. Galerkin approximation for ε = 0.01 and h = 1/16

1.1.2. So, what goes wrong? To better understand, or, at least, have a feeling of what
goes wrong, we develop an error analysis for this problem. We use the convenient convention
that the constants that appear in our estimates are independent of the parameters ε and h,
unless explicitly indicated. These constants are generally denoted by C.

We first investigate the “continuity” of the bilinear form a(·, ·). In fact, it follows from
its definition that

(1.1.4) a(u, v) ≤ C‖u‖H1(0,1)‖v‖H1(0,1) for all u, v ∈ H1
0 (0, 1).
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Figure 7. Galerkin approximation for ε = 0.01 and h = 1/32

The problem starts when we try to derive the coercivity estimate:

(1.1.5) a(v, v) = ε

∫ 1

0

(

dv

dx

)2

dx+

∫ 1

0

dv

dx
v dx = ε

∫ 1

0

(

dv

dx

)2

dx ≥ Cε‖v‖2
H1(0,1)

for all v ∈ H1
0 (0, 1),

since integration by parts yields
∫ 1

0
(dv/dx)v dx = 0, for v ∈ H1

0 (0, 1). We also used Poincaré’s
inequality at the last step.

We are ready to derive error estimates. Using (1.1.5), and then (1.1.4), we gather that:

(1.1.6) ‖uε − uh‖2
H1(0,1) ≤ Cε−1a(uε − uh, uε − uh) = Cε−1a(uε − uh, uε − vh)

≤ Cε−1‖uε − uh‖H1(0,1)‖uε − vh‖H1(0,1) for all vh ∈ V h.

Using standard interpolation estimates, we have that Ihuε, the interpolator of uε, satisfies

‖uε − Ihuε‖H1(0,1) ≤ h|uε|H2(0,1).

Making vh = Ihuε in (1.1.6), we conclude that

(1.1.7) ‖uε − uh‖H1(0,1) ≤ Cε−1h|uε|H2(0,1).

We stop now to try interpret the error estimate we just obtained. First of all, there is
convergence in h. Indeed, for a fixed ε, the error goes to zero as the mesh size goes to zero.

The problem is that the convergence in h is not uniform in ε. Hence, for ε small, unless
the mesh size is very small, the H1 norm error estimate becomes large. The estimate is even
worse than one can think at first glance, since |uε|H2(0,1) = O(ε−3/2). This makes (1.1.7) and
the traditional Galerkin method almost useless.

Another way to look at this problem is by first noticing that we would like to have

lim
ε→0

uh = lim
ε→0

uε = 1.
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Figure 8. Numerical and exact solutions for ε = 10−5 and N = 16

After all, it would be just perfect to have a method that converges (with ε) to the correct
solution for a fixed mesh. This is not happening. Indeed, looking at the matricial problem
coming from (1.1.3), it is matter of computation to show that [26]

(1.1.8) − ε

h2
(uj+1 − 2uj + uj−1) +

1

2h
(uj+1 − uj−1) = 0, u0 = 1, uN+1 = 0,

where uj = uh(xj). Assume N even. As ε goes to zero, it “follows that uj+1 = uj−1.” This,
and the boundary conditions originate the oscillatory behavior of the approximate solution.
See figure 8.

Remark. Note that although we used a finite element scheme to derive (1.1.8), this
scheme is also a finite difference scheme which uses a central difference approximation for
the convective term du/dx. The more naive finite difference approximation

− ε

h2
(uj+1 − 2uj + uj−1) +

1

h
(uj − uj−1) = 0, u0 = 1, uN+1 = 0,

yields in fact a better result. See figure (9). In fact, for this scheme, uj = uj−1, as ε goes to
zero. Since u0 = 1, it holds that uj = 1 in the ε→ 0 limit:

lim
ε→0

uh(xj) = lim
ε→0

uε(xj) = 1, for j = 1, . . . , N.

The behavior we described above is typical in singular perturbed PDEs, where the onset
of boundary layers is a common phenomenon. But this is not all that can happen. For
instance, in plate models, in particular for the Reissner–Mindlin equation, as the plate
thickness goes to zero (that is the small parameter in this case), numerical “locking” occurs,
i.e., if a careless method is used, the computed solution goes to zero (a wrong limit). In due
time we shall explain why this happens. . . .

Several numerical methods try to somehow overcome these and other difficulties related to
asymptotic limits. Some methods perform well for a certain asymptotic range, for instance
by assuming ε << 1. Some other methods try to be performing for a broader range of
parameters. See for instance [11], [21], [24], [36].



1.2. A SINGULAR PERTURBED GENERAL SECOND ORDER ODE 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

z

Figure 9. Finite difference approximation for ε = 0.0001 and h = 1/15

Looking at these difficulties (and their corresponding solutions!) it becomes more clear
that it is important to have a full understanding of the solution’s behavior. This is useful not
only to help designing new numerical methods, but also to Analise and estimate old ones. A
valuable analysis tool is the method of matching asymptotics, where the exact solution for a
given singular perturbed PDE is expressed in terms of a (formal) power series with respect
to a small parameter.

In the example we are considering in this section, the asymptotic expansion is trivial.
Indeed the exact solution

uε(x) = 1− ex/ε − 1

e1/ε − 1

is the sum of a “regular function” (the unit function in this case), plus a “boundary layer”
term. The regular part is independent of ε, and the boundary layer term, also called “bound-
ary corrector”, becomes exponentially small in the interior of the domain. This is a typical
behavior of singular perturbed problems.

We shall explain how an asymtotic expansion can be developed by looking at a simple,
still one-dimensional, example.

1.2. A singular perturbed general second order ODE

Consider the differential operator

Lε uε = −εd
2uε

dx2
+ b(x)

duε

dx
+ c(x)uε,

and the problem

Lε uε = f in (0, 1),(1.2.1)

uε(0) = uε(1) = 0.(1.2.2)

We assume that b, c, and f are smooth and that b is always positive.
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In 1.2.1 we shall develop asymptotic expansion for uε, and in 1.2.2 we show error esti-
mates. Then, in 1.2.3, we shall make some comments about what can happen if b vanishes
at a particular point. This is the “turning point problem.”

1.2.1. Formal development of the asymptotic expansion. In this subsection, we
follow the outline of [36].

Consider the series
u0 + εu1 + ε2u2 + . . .

and formally substitute it in (1.2.1). Then

b(x)
du0

dx
+ c(x)u0 + ε

(

−d
2u0

dx2
+ b(x)

du1

dx
+ c(x)u1

)

+ . . .

+ εi
(

−d
2ui−1

dx2
+ b(x)

dui

dx
+ c(x)ui

)

+ · · · = f.

By comparing the different powers of ε, it is natural to require that

(1.2.3) L0 u0 = f, L0 u1 =
d2u0

dx2
, . . . , L0 ui =

d2ui−1

dx2
, . . . ,

where L0 v = b(x)dv/dx+ c(x)v.
From (1.2.2), it would be natural to impose ui(0) = ui(1) = 0. However, the equations

in (1.2.3) are of first order, and only one boundary condition is to be imposed. We set then

ui(0) = 0.

We correct this discrepancy by introducing the boundary corrector U . We would like to have

Lε U = 0, U(0) = 0, U(1) = u0(1) + εu1(1) + ε2u2(1) + . . .

Note that if we make the change of coordinates ρ̂ = ε−1(1 − x), and set Û(ρ̂) = U(1 − ερ̂),
then

−d
2Û

dρ̂2
(ρ̂)− b(1− ερ̂)

dÛ

dρ̂
(ρ̂) + εc(1− ερ̂)Û(ρ̂) = 0,

Û(0) = u0(1) + εu1(1) + ε2u2(1) + . . .

Going one step further, we develop the Taylor expansions

b(1− ερ̂) = b(1)− ερ̂ db
dx

(1) +
ε2ρ̂2

2

d2b

dx2
(1)− . . . ,

c(1− ερ̂) = c(1)− ερ̂ dc
dx

(1) +
ε2ρ̂2

2

d2c

dx2
(1)− . . . .

Finally, assuming the asymptotic expansion

Û ∼ Û0 + εÛ1 + ε2Û2 + . . . ,

we gather that

−d
2Û0

dρ̂2
− b(1)

dÛ0

dρ̂
= 0,

U0(0) = u0(1).
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Noting that we need another boundary condition for Û0, we try to ensure a “local behavior”
by imposing

lim
ρ̂→∞

Û0(ρ̂) = 0.

Hence, Û0(ρ̂) = u(1) exp
(

−b(1)ρ̂
)

.
Similarly,

−d
2Û1

dρ̂2
− b(1)

dÛ1

dρ̂
= −ρ̂ db

dx
(1)

dÛ0

dρ̂
− c(1)Û0,

U1(0) = u1(1), lim
ρ̂→∞

U1(ρ̂) = 0,

etc. It is possible to show that for all positive integers i there exist ε-independent positive
constants C and α such that

(1.2.4) U i(ρ̂) ≤ C exp(−αρ̂).

So, putting everything together, we have that
(1.2.5)

uε(x) ∼ u0(x)+εu1(x)+ε2u2(x)+· · ·−Û0(ε−1(1−x))−εÛ1(ε−1(1−x))−ε2Û2(ε−1(1−x))−. . . .
By construction, the above infinite power series formally solves the ODE (1.2.1). We did not
make any comment regarding convergence of the above expansion. Actually, what we will
prove is that a truncated expansion approximates well the exact solution.

Remark. Note that each term ui in the series (1.2.5) is independent of ε. Each boundary

corrector terms Û i depends on ε but only up to a change of coordinates.

Remark. Note that the U i does not satisfy the boundary condition at x = 0, but for ε
small enough, this error is exponentially small.

1.2.2. Truncation Error analysis. We start by developing here an analysis quite
similar to that of Subsection 1.1.2. We assume that b(x) > b0 > 0 and 2c− db/dx ≥ 0. Let

a(u, v) = ε

∫ 1

0

du

dx

dv

dx
dx+

∫ 1

0

b
du

dx
v dx+

∫ 1

0

cuv dx

To obtain a coercivity estimate, first note that

a(v, v) = ε

∫ 1

0

(

dv

dx

)2

dx+

∫ 1

0

b
dv

dx
v dx+

∫ 1

0

c|v|2 dx

Integrating by parts yields
∫ 1

0

b
dv

dx
v dx = −1

2

∫ 1

0

db

dx
|v|2 dx for all v ∈ H1

0 (0, 1).

Thus,

(1.2.6) a(v, v) = ε

∫ 1

0

(

dv

dx

)2

dx+

∫ 1

0

(

c− 1

2

db

dx

)

|v|2 dx ≥ ε

∫ 1

0

(

dv

dx

)2

dx ≥ Cε‖v‖2
H1(0,1)

for all v ∈ H1
0 (0, 1).

We again used Poincaré’s inequality at the last estimate.
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Lemma 1.2.1. If Lε v = f weakly, and v ∈ H1
0 (0, 1), then

‖v‖H1(0,1) ≤ Cε−1‖f‖H−1(0,1).

Proof. From (1.2.6), we conclude that

‖v‖2
H1(0,1) ≤ Cε−1a(v, v) = Cε−1(f, v) ≤ Cε−1‖f‖H−1(0,1)‖v‖H1

0 (0,1),

where (·, ·) denotes the L2(0, 1) inner product. �

Corollary 1.2.2. If w ∈ H1(0, 1) is the weak solution of

Lεw = f, w(0) = w0, w(1) = w1,

then
‖w‖H1(0,1) ≤ Cε−1

(

‖f‖H−1(0,1) + |w0|+ |w1|
)

.

Proof. Let wbc be such that wbc(0) = w0, and wbc = w1, with ‖wbc‖H1(0,1) ≤ C
(

|w0| +
|w1|

)

. Then Lemma 1.2.1 with v = w − wbc yields the result. �

With the aid of Corollary 1.2.2, we are ready to estimate how well the asymptotic ex-
pansion approximates the exact solution of (1.2.1)–(1.2.2). Let

(1.2.7) eN(x) = uε(x)−
N
∑

i=0

εiui(x) +
N
∑

i=0

εiU i(ε−1(1− x)),

From its construction, eN ∈ H1(0, 1), and

(1.2.8) Lε eN = εN+1 du
i

dx2
, eN(0) =

N
∑

i=0

εiU i(ε−1), eN(1) = 0.

Using now Corollary 1.2.2, equation (1.2.8), and estimate (1.2.4), we gather that

‖eN‖H1(0,1) ≤ CεN .

This estimate is not sharp. We improve it by adding and subtracting the (N + 1)th term of
the expansion:

‖eN‖H1(0,1) ≤ ‖eN+1‖H1(0,1) + ‖eN − eN+1‖H1(0,1) ≤ CεN+1/2.

Estimates in other norms can be obtained in a similar fashion:

‖eN‖L2(0,1) ≤ ‖eN+1‖H1(0,1) + ‖eN − eN+1‖L2(0,1) ≤ CεN+1.

We obtained then the following important result.

Theorem 1.2.3. Let uε be the solution of the ODE (1.2.1), and let eN be as in (1.2.7).
Then, for every nonnegative integer N , there exists a constant C such that

‖eN‖H1(0,1) ≤ CεN+1/2. ‖eN‖L2(0,1) ≤ CεN+1.

The constant C might depend on N , and on Sobolev norms of f , b, and c, but not on ε.

Remark. Theorem 1.2.3 does not imply convergence of the power series as N goes to
infinity, since the constants that appear in the right hand side of the estimates depend on N .
What the theorem provides is a convergence in ε, i.e., if ε is quite small, then the asymptotic
expansion truncation error gets small.
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To derive estimates in higher order norms, it is enough to gather from (1.2.8) and the
definition of Lε that

‖eN‖Hk(0,1) ≤ ε−1‖eN‖Hk−1(0,1).

Hence, by induction we have that

‖eN‖Hk(0,1) ≤ CεN+1/2−k.

Remark. The asymptotic rule of the thumb works quite well: the error estimates present
in Theorem 1.2.3 are of the same order as the terms left out of the truncated asymptotic
expansion.

1.2.3. Problems with “turning point”. Here, we again follow the outline of [36].
Consider the problem

−εd
2uε

dx2
+ xb(x)

duε

dx
+ c(x)uε = f in (−1, 1),(1.2.9)

uε(−1) = uε(1) = 0.(1.2.10)

We assume that b(x) 6= 0, c(x) ≥ 0, and c(0) 6= 0.
From what we have seen, if b(x) is positive, then xb(x) < 0 at x = −1, and xb(x) > 0 at

x = 1. Hence we can expect boundary layers at −1 and 1. The reduced problem is

xb(x)
du0

dx
+ c(x)u0 = f in (−1, 1),

no further boundary conditions are necessary. Indeed, since c(0) 6= 0, then u0(0) = f(0)/c(0).
An example is given by

x
du0

dx
+ u0 = 2x in (−1, 1).

The solution is simply u0 = x.
If however b is negative, then the boundary layers occur at x = 0 only! In this case, the

reduced problem spits in two:

xb(x)
du0

dx
+ c(x)u0 = f in (−1, 0), u0(−1) = 0,

xb(x)
du0

dx
+ c(x)u0 = f in (0, 1), u0(1) = 0.

Note from the above equations that u0 is continuous, since we still have u0(0) = f(0)/c(0).
An interesting example is given by the problem

(1.2.11) xb
du0

dx
+ cu0 = bxk in (−1, 1),

where b < 0 and c > 0 are constants. The exact solution is

u0(x) =

{

1
k−λ(|x|k − |x|λ) if λ 6= k,

xk ln |x| otherwise,

where λ = −c/b. See figures 10, 11.
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Figure 10. Exact solution of (1.2.11) for k = −c/b = 1
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Figure 11. Exact solution of (1.2.11) for k = −c/b = 1

One last point for discussion is if c(0) = 0. Then u0 might be discontinuous, and uε has
an interior boundary layer. We are still assuming that b is non-negative. For instance,

x
du0

dx
= x

with homogeneous boundary conditions has as solution

u0(x) =

{

−1− x for x ∈ (−1, 0),

1− x for x ∈ (0, 1).



CHAPTER 2

Asymptotic Analysis for Two Dimensional Reaction–Diffusion
Equation

We now investigate two-dimensional domains, and consider a reaction–diffusion problem.
We first develop an asymptotic expansion for the solution, and this time we show how to
deal with the boundary layer in a two-dimensional problem. This will be important to devise
efficient numerical methods.

2.1. Asymptotic Expansion

Consider the singuar perturbed Reaction–Diffusion problem

(2.1.1)
Lε u := −ε2 ∆u+ σ u = f in Ω,

u = 0 on ∂Ω,

where Ω is a smooth two-dimensional bounded domain, ε is a positive constant and σ is a
positive constant. Also assume that f is smooth.

Consider the series

u0 + ε2u2 + ε4u4 + . . .

and formally substitute it in (2.1.1). Then

σ u0 + ε2
(

−∆u0 + σ u2
)

+ · · ·+ ε2i
(

−∆u2i−2 + σ u2i
)

+ · · · = f.

By comparing the different powers of ε, it is natural to require that

(2.1.2) u0 =
f

σ
, u2 =

∆u0

σ
, . . . , u2i =

∆u2i−2

σ
, . . . .

Since the ui are already well-defined, we cannot impose the zero Dirichlet boundary
condition. We again correct this by introducing boundary correctors. We would like to have

(2.1.3) Lε U = 0, in Ω, U = u0 + ε2u2 + ε4u4 + . . . on ∂Ω,

and formally expand

(2.1.4) U ∼ U0 + εU1 + ε2U2 + . . . .

Motivated by the one-dimensional problem, we expect the boundary correctors to have
only a “local” influence, and we introduce for that purpose boundary-fitted coordinates. We
digress now to introduce these coordinates, following the notation of Chen [13]. Suppose
that ∂Ω is arc-length parametrized by z(θ) = (X(θ), Y (θ)). Let s = (X ′, Y ′), n = (Y ′,−X ′)
denote the tangent and the outward normal of ∂Ω, and define the sub-domain Ωb ⊂ Ω,

Ωb =
{

z− ρn : z ∈ ∂Ω, 0 < ρ < ρ0

}

,

13
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θ

Figure 1. Boundary-fitted coordinates

where ρ0 is a positive number smaller than the minimum radius of curvature of ∂Ω. With L
denoting the arc-length of ∂Ω, then

x : (0, ρ0)× R/L→ Ωb,

where

x(ρ, θ) = z(θ)− ρn(θ),

is a diffeomorphism. See figure 1 (based on a figure by Arnold and Falk [4]).

Remark. The smoothness of the domain is important here. In particular for a polygon,
the transformation above is not a diffeomorphism.

From Frenet Formula, we have that z′′ = −κn, where κ is the curvature of ∂Ω. We also
gather the identity

(2.1.5) κ(θ) = −(z′′ × z′) · e3 = Y ′X ′′ −X ′Y ′′.

Note then that

∇∼∼ (ρ,θ)x =
(

∂ρψ ∂θψ
)

=
(

−n(θ) z′(θ)− ρn(θ)
)

=

(

−Y ′ X ′ − ρY ′′
X ′ Y ′ + ρX ′′

)

,

and using (2.1.5), and ρ < ρ0, we obtain that det∇∼∼ (ρ,θ)x = 1− ρκ > 0. Inverting the above

matrix, we have that

∇∼∼ x

(

ρ
θ

)

=

(

∇T
x ρ
∇T

x θ

)

=
1

J

(

−Y ′ − ρX ′′ X ′ − ρY ′′
X ′ Y ′

)

,
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where J(ρ, θ) = 1− ρκ(θ). Hence,

∇x ρ = − 1

J
n− ρ

J
z′′ =

1

J
(−1 + ρκ)n = −n.

Also,

∇x θ =
1

J
s.

Finally, the change of coordinates yields

∂αf = ∂θf∂αθ + ∂ρf∂αρ, for α = 1, 2,

for an arbitrary function f .
The expression for the Laplacian in these new coordinates follows:

(2.1.6) (∂11 + ∂22)U = ∂ρρU −
κ

J
∂ρU +

1

J2
∂θθU +

ρκ′

J3
∂θU

= ∂ρρU +
∞
∑

j=0

ρj
(

aj1∂ρU + aj2∂θθU + aj3∂θU
)

,

where we formally replace each coefficient with its respective Taylor expansion [3], and

aj1 = −[κ(θ)]j+1, aj2 = (j + 1)[κ(θ)]j, aj3 =
j(j + 1)

2
[κ(θ)]j−1κ′(θ).

Defining the new variable ρ̂ = ε−1ρ and using the same name for functions different only up
to this change of coordinates, we have from (2.1.6) that

(2.1.7) (∂11 + ∂22)U = ε−2∂ρ̂ρ̂U +
∞
∑

j=0

(ερ̂)j
(

aj1ε
−1∂ρ̂U + aj2∂θθU + aj3∂θU

)

.

Aiming to solve (2.1.3) we formally use (2.1.4) and (2.1.7), collect together terms with
same order of ε and for k ≥ 2, pose the following sequence of problems parametrized by θ:

(2.1.8)
−∂ρ̂ρ̂Uk + Uk = Fk in R+,

Uk(0, θ) = uk(0, θ),

with the convention that uk = 0 for k odd, and

F0 = 0, F1 = a0
1∂ρ̂U

0,

Fk =
k−1
∑

j=0

ρ̂jaj1∂ρ̂U
k−j−1 +

k−2
∑

j=0

ρ̂j
(

aj2∂θθU
k−j−2 + aj3∂θU

k−j−2
)

, for k ≥ 2.

With the boundary layer terms defined, we gather that the asymptotic expansion is given
by

(2.1.9) uε(x) ∼ u0(x) + ε2u(x) + ε4u4(x) + . . .

− χ(ρ)
[

U0(ε−1ρ, θ) + εU1(ε−1ρ, θ) + ε2U2(ε−1ρ, θ) + . . .
]

,

where χ is a smooth cutoff function identically one if 0 ≤ ρ ≤ ρ0/3 and identically zero if
ρ ≥ 2ρ0/3.
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Remark. The presence of a cutoff function is essential, since the boundary fitted co-
ordinates are only defined in a neighborhood of ∂Ω. Since the boundary correctors decay
exponentially to zero, the cutoff functions will introduce only a exponentially small, thus
negligible, error.

2.2. Error Estimates for the Asymptotic Expansion

Here we estimate how close a truncated asymptotic expansion approximates the exact
solution. We shall assume that C is a constant that might depend on the domain, and the
right hand side f .

We first estimate the boundary correctors. For every s and positive integer i, there exist
ε-independent constants C and α such that

(2.2.1) ‖u2i‖Hs(Ω) ≤ C, U i(ρ̂) ≤ C exp(−αρ̂).

Although (2.1.9) is a formal expansion, a rigorous error estimate shows that the difference
between the exact solution and a truncated asymptotic expansion is of the same order of the
first term omitted in the expansion. In fact, define

(2.2.2) e2N(x) = uε(x)−
N
∑

k=0

ε2ku2k(x) + χ(ρ)
2N
∑

k=0

εkUk(ε−1ρ, θ).

In the theorem below we bound the H1(Ω) norm of e2N .

Theorem 2.2.1. For any positive integer N , there exists a constant C such that the
difference between the truncated asymptotic expansion and the original solution measured in
the original domain is bounded as follows:

(2.2.3) ‖e2N‖H1(Ω) ≤ Cε2N+1/2.

Before we prove Theorem 2.2.1, we develop some other estimates. For instance, in the
L2(Ω) norm, we have from the triangle inequality that

‖e2N‖L2(Ω) ≤ ‖e2N+2‖H1(Ω) + ‖e2N+2 − e2N‖L2(Ω).

Since
(2.2.4)

(e2N+2 − e2N)(x) = −ε2N+1χ(ρ)U2N+1(ε−1ρ, θ) + ε2N+2
[

u2N+2(x)− χ(ρ)U2N+2(ε−1ρ, θ)
]

,

we conclude that
‖e2N‖L2(Ω) = O(ε2N+3/2),

for N nonnegative.
Using similar arguments, it is possible to compute interior estimates, which achieve better

convergence in regions “far away” from the lateral boundary of the plate. The reason for the
improvement in such subdomains is that the influence of the boundary layer is negligible.
The table below presents these interior and various other error estimates. We assume that
f is a sufficiently smooth function and we show only the order of the norms with respect to
ε. “BL” stands for “Boundary Layer” and the “Relative Error” column presents the norm
of e2N divided by the norm of uε. In parentheses are the interior estimates, when these are
better than the global estimates.

The remainder of this section contains a proof of Theorem 2.2.1.
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Table 1. Order with respect to ε of the exact solution, the first term of
the boundary layer expansion, and the difference between the solution and a
truncated asymptotic expansion in various norms.

norm uε BL e2N , N ≥ 0 Relative Error

‖ · ‖L2(Ω) 1 ε1/2 ε2N+3/2(ε2N+2) ε2N+3/2(ε2N+2)

‖∂ρ · ‖L2(Ω) ε−1/2(1) ε−1/2 ε2N+1/2(ε2N+2) ε2N+1(ε2N+2)

‖∂θ · ‖L2(Ω) 1 ε1/2 ε2N+3/2(ε2N+2) ε2N+3/2(ε2N+2)

‖ · ‖H1(Ω) ε−1/2(1) ε−1/2 ε2N+1/2(ε2N+2) ε2N+1(ε2N+2)

Definition 2.2.2. Set

u2N(x) =
N
∑

k=0

ε2ku2k(x), U2N(x) =
2N
∑

k=0

εkUk(ε−1ρ, θ, x3).

Some results regarding the boundary layer terms are collected below.

Lemma 2.2.3. For any positive integer N , there exists positive constants C and α such
that

(2.2.5) ‖χ′U2N‖L2(Ω) + ε‖χ′∂ρU2N‖L2(Ω) ≤ C exp(−αε−1).

Also, for all v ∈ H1
0 (Ω),

(2.2.6)

∣

∣

∣

∣

∫

Ω

∇U2N ∇(χv) + U2Nχv dx

∣

∣

∣

∣

≤ Cε2N‖v‖H1(Ω).

Proof. The inequalities (2.2.5) follow from a change of coordinates, (2.2.1), and the
definition of χ. To see that (2.2.6) holds, first rewrite (2.1.6) as a finite series, using Taylor
expansion with remainders. Then the result follows from the definition of U2N , (2.1.8),
and (2.2.1). �

Proof (of Theorem 2.2.1). Let v ∈ H1
0 (Ω). If we define

E(2N, v) =

∫

Ω

∇(uε − u2N)∇ v + (uε − u2N)v dx,

then, by construction of the asymptotic expansion, we have

E(2N, v) =

∫

Ω

fv dx−
N
∑

k=0

ε2k

∫

Ω

(

∇ u2k∇ v + u2kv
)

dx = −ε2N

∫

Ω

∇u2N ∇ v dx,

and we conclude that

(2.2.7) |E(2N, v)| ≤ Cε2N‖v‖H1(Ω).

We also have
∣

∣

∣

∣

∫

Ω

∇(χU2N)∇ v −∇U2N ∇(χv) dx

∣

∣

∣

∣

≤
(

‖χ′U2N‖L2(Ω) + ‖χ′∂ρU2N‖L2(Ω)

)

‖v‖H1(Ω).
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Hence, by Lemma 2.2.3

(2.2.8)

∣

∣

∣

∣

∫

Ω

[

∇(χU2N)∇ v + χU2Nv
]

dx

∣

∣

∣

∣

≤ Cε2N‖v‖H1(Ω).

Finally, since e2N vanishes on ∂Ω,

(2.2.9)

‖e2N‖2
H1(Ω) =

∫

Ω

| ∇ e2N |2 + (e2N)2 dx = E(2N, e2N) +

∫

Ω

[

∇(χU2N)∇ e2N + χU2Ne2N

]

dx

≤ Cε2N‖e2N‖H1(Ω),

from (2.2.7) and (2.2.8). The estimate (2.2.9) is not sharp yet, so we use the triangle
inequality:

‖eε2N‖H1(Ω) ≤ ‖e2N+2 − e2N‖H1(Ω) +O(ε2N+2),

and then the result follows from (2.2.4). �

2.3. Estimates for Non Smooth Domain

We consider now estimates for problem (2.1.1) when the domain Ω is not necessarily
smooth, for example, if Ω is polygonal.

We shall need the following interpolation inequality:

(2.3.1) ‖g‖us+v,Ω ≤ ‖g‖u−vs,Ω ‖g‖
v
s+u,Ω, s ≥ 0, u ≥ v ≥ 0.

Furthermore, for g ∈ L2(Ω), let ∆−1 g be the unique function in H2(Ω) ∩ H̊1(Ω) whose
Laplacian is equal to g. Then

(2.3.2) C−1‖∆−1 g‖s+2,Ω ≤ ‖g‖s,Ω ≤ C‖∆−1 g‖s+2,Ω, s ≥ 0.

See [3] for further details.
From [2], we have the following result. We reproduce here the proof, in some detail.

Lemma 2.3.1. Let f ∈ H1(Ω), and u be the solution of (2.1.1). Then there exists a
constant that might depend on Ω and σ such that

ε2‖∇u‖2
0,Ω + ‖u− f/ σ ‖2

0,Ω ≤ C
(

ε‖f/ σ ‖2
0,∂Ω + ε2‖f/ σ ‖2

1,Ω

)

.

Proof. Multiplying the differential equation by −∆u, and integrating by parts yields

ε2‖∆u‖2
0,Ω + σ ‖∇u‖2

0,Ω =

∫

Ω

∇ f ∇u dx−
∫

∂Ω

f
∂u

∂n
ds.

Note that using the trace inequality, and (2.3.1) with u = 1, v = 1/2, and s = 1, we find
that

‖∂u
∂n
‖0,∂Ω ≤ ‖u‖3/2,Ω ≤ ‖u‖1/2

1,Ω‖u‖
1/2
2,Ω.

Hence,

‖∂u
∂n
‖2

0,∂Ω ≤ C
(

ε−1‖u‖2
1,Ω + ε‖u‖2

2,Ω

)

.
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So, for any δ1 > 0,
∣

∣

∣

∣

∫

∂Ω

f
∂u

∂n
ds

∣

∣

∣

∣

≤ ‖f‖0,∂Ω‖
∂u

∂n
‖0,∂Ω ≤ Cδ1ε

−1‖f‖2
0,∂Ω + δ1ε‖

∂u

∂n
‖2

0,∂Ω

≤ Cδ1ε
−1‖f‖2

0,∂Ω + Cδ1

(

‖u‖2
1,Ω + ε2‖u‖2

2,Ω

)

≤ Cδ1ε
−1‖f‖2

0,∂Ω + Cδ1

(

‖u‖2
1,Ω + ε2‖∆u‖2

0,Ω

)

,

where the norm equivalence (2.3.2) was used in the last inequality above. Similarly, for any
δ2 > 0,

∣

∣

∣

∣

∫

Ω

∇ f ∇u dx
∣

∣

∣

∣

≤ ‖f‖1,Ω‖u‖1,Ω ≤ Cδ2‖f‖2
1,Ω + δ2‖u‖2

1,Ω.

It follows from these estimates, and careful choices of δ1 and δ2 that

ε2‖∆u‖2
0,Ω + σ ‖∇u‖2

0,Ω ≤ C(ε−1‖f‖2
0,∂Ω + ‖f‖2

1,Ω).

We finally multiply the above inequality by ε2, and use that

ε2 ∆u = u− f
to conclude the proof. �

Hence, if f ∈ H1(Ω), the solution u converges to f/ σ in L2(Ω) as ε→ 0.





CHAPTER 3

Finite Element Approximations for Reaction–Diffusion Equation

Here we present an introdutory discussion on how to use finite element techniques to
approximate the singuar perturbed Reaction–Diffusion problem

(3.0.3)
Lε u := −ε2 ∆u+ σ u = f in Ω,

u = 0 on ∂Ω,

where Ω is a two-dimensional bounded, Lipschitz domain, ε is a positive constant and σ is
a positive constant.

In what follows, we consider a partition T = {Kj} of Ω into “quadrilateral elements.”
Some usual restrictions apply:

Ki ∩Kj = ∅ if i 6= j, ∪jK̄j = Ω̄,

and for i 6= j, the intersection ∂Ki ∩ ∂Kj is either a common edge or a vertex.
Finally, let P 1(Ω), be the space of continuous functions in Ω that are bilinear polynomials

in each quadrilateral, and define P 1
0 (Ω) = P 1(Ω) ∩H1

0 (Ω).
In Section 3.1, we ilustrate the pitfalls of the Classical Galerkin approximation. Then,

in Section 3.2, we propose a new scheme that is “asymptotically correct,” in the sense that
performs well as the small parameter of the problem approaches zero.

3.1. Classical Galerkin Approximation

We briefly describe a Galerkin approximation for (3.0.3), and show numerical results
displaying its limitations. Basically, the same phenomena that we described in Section 1.1
of Chapter 1 occurs. The error analysis is also similar, with the same shortcomings, hence
we do not repeat it here.

In the Galerkin formulation, we seek uh ∈ P 1
0 (Ω), such that

a(uh, vh) = (f, vh) for all vh ∈ P 1
0 (Ω).

We include an example to show how the Galerkin method fails to approximate boundary
layer, given in a unrefined mesh. Consider Ω = (0, 1)× (0, 1), f = 1 with u = 0 on ∂Ω. The
domain description follows in figure 1.

The Galerkin approximation for ε2 = 10−6 is depicted in figure 2.

3.2. Toward Multiscale Functions: Enriching Finite Element Spaces

In this section we describe the work developed in [21]. We are interested in finding
a finite element discretization for (3.0.3) that is stable and coarse mesh accurate for all
ε. We use the approach of enriching the finite element space. The idea is to add special
functions to the usual polynomial spaces to stabilize and improve accuracy of the Galerkin

21
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Figure 2. Galerkin Solution for ε2 = 10−6

method. This goes along the philosophy of the Residual Free Bubbles (RFB) method [9] (see
also [10], [18], [19], [20]), and actually extends it.

We use a Petrov–Galerkin formulation, i.e., the space of test functions differs from the
trial space. We shall choose the space of test functions as polynomial plus bubbles, but we
use a different trial space.

3.2.1. New Enriched Choice. Consider

Uh = P 1
0 (Ω)⊕ E∗(Ω),
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as the trial space, where E∗(Ω) is yet to be defined. As the test space, we set

P 1
0 (Ω) ⊕

K∈T
H1

0 (K),

In our Petrov–Galerkin formulation, we seek uh = u1 + u∗ ∈ Uh, where u1 ∈ P 1
0 (Ω) and

u∗ ∈ E∗(Ω), and

a(uh, vh) = (f, vh) for all vh ∈ P 1
0 (Ω),(3.2.1)

a(uh, v) = (f, v) for all v ∈ H1
0 (K) and all K ∈ T .(3.2.2)

From (3.2.2), we conclude that, for every K,

(3.2.3) Lu∗ = f − Lu1 in K.

The usual residual-free bubble formulation subjects u∗ to a homogeneous Dirichlet element
boundary condition, i.e., u∗ = 0 on ∂K, for all elements K. Herein, we replace this condition
by a more sophisticated choice, based on ideas by Hou and Wu [23].

To determine u∗ uniquely, we impose the boundary conditions

u∗ = 0 on ∂K, if ∂K ⊂ ∂Ω, L∂K u∗ = R(f − Lu1) on ∂K, if ∂K 6⊂ ∂Ω,(3.2.4)

u∗ = 0 on all vertices of K,(3.2.5)

where R is the trace operator, and we choose

(3.2.6) L∂K v = −ε2∂ssv + σ v,

where s denotes a variable that runs along ∂K. Note that the restriction of f to K must be
regular enough so that its trace on ∂K makes sense. Henceforth, we assume that f ∈ P 1(Ω).

The choice of (3.2.6) is ad hoc, and by no means unique. But it can be justified under the
light of asymptotic analysis. Indeed this is the equation satisfied by the boundary correctors,
in the direction of the boundary layers, see (2.1.8). Hence, we are enriching the space of
polynomials with functions that have the same behavior as the correctors. In some sense,
the polynomial part of the approximation (u1 in our case) “captures” the smooth behavior
of the exact solution. The local, “multiscale behavior” is seen by the enrichment functions
(u∗ in our case), that adds its contribution to the final formulation, without making the
method expensive. In other words, it is possible to describe the multiscale characteristics of
a solution for a singular perturbed PDE, without having to resolve all the fine scales with a
refined mesh.

We can formally write the solution of (3.2.3)–(3.2.6) as

(3.2.7) u∗ = L−1
∗ (f − LT u1) ∈ L2(Ω), where LT =

∑

K∈T

χK L,

and χK is the characteristic function of K. We finally set E∗(Ω) = L−1
∗ P 1(Ω).

Substituting (3.2.7) in (3.2.1), we gather that

(3.2.8) a((I − L−1
∗ LT )u1, vh) = (f, vh)− a(L−1

∗ f, vh) for all vh ∈ P 1
0 (Ω).

Finally, uh = (I −L−1
∗ LT )u1 +L−1

∗ f . Note nevertheless that, because of (3.2.5), uh = u1 at
the nodal points, as in the usual polynomial Galerkin formulation.

Remark. Note that our particular choice of test space allowed the static condensation
procedure, i.e., we were able to write u∗ with respect to u1 and f , as in (3.2.7).
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The matrix formulation can be obtained as follows. Under the assumption that f ∈
P 1(Ω), we write

f =
∑

j∈J

fjψj, u1 =
∑

j∈J0

u1
jψj

where J and J0 are the set of indexes of total and interior nodal points, {ψj}j∈J form a basis
of P 1(Ω), and {ψj}j∈J0 form a basis of P 1

0 (Ω). Substituting in (3.2.7), we have that

(3.2.9) u∗ =
∑

j∈J

fj
σ
L−1
∗ LT ψj −

∑

j∈J0

ulj L−1
∗ LT ψj,

where we used that

(3.2.10) LT ψj = σψj.

To write the variational formulation in an explicit form, it is convenient to define λj =
(σ I − L−1

∗ LT )ψj. Hence, (3.2.8) reads as

(3.2.11)
∑

j∈J0

a(λj, ψi)u
1
j =

∑

j∈J

[

(ψj, ψi)− a(L−1
∗ ψj, ψi)

]

fj for all i ∈ J0.

Using the definition of the bilinear form a(·, ·), and (3.2.10), yields

(3.2.12)
∑

j∈J0

a(λj, ψi)u
1
j =

∑

j∈J

[

(λj, ψi)−
ε2

σ
(∇ψj,∇ψi) +

ε2

σ
(∇λj,∇ψi)

]

fj for all i ∈ J0.

Concrete computations of the matrix formulation follows.

3.2.2. Solving Local Problems. A core and troublesome issue in the present method
is solving the local problems. From its definition, λj solves

(3.2.13)

Lλj = 0 in K,

L∂K λj = 0 on ∂K, λj =

{

1 on the jth vertice of T ,
0 on the other vertices of T ,

Remark. In fact, we have that L∂K λj = L∂K ψj − Lψj on ∂K. Since we are assuming
that ψj is bilinear over a rectangular mesh, we have that ψj is still linear over ∂K. Hence,
L∂K ψj = σ ψj.

If we take a particular node I ∈ J0, and look at all elements connected to this node,
then the equation (3.2.13) can be used to illustrate the nodal shape functions λI . Fixing
σ = 1, we obtain for ε = 1, 10−1, 10−3, the shape functions λI , depicted in figures 3 and 4.
Note that as ε approaches zero, the usual pyramid is squeezed in its domain of influence in
the neighborhood around the node I. The functions plotted below were computed using the
formulas described in subsection 3.2.3.

Actually, the functions used to enrich the finite element space, i.e., the functions in E∗(Ω)
are as in Figures 5 and 6.
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Figure 3. The function λ for ε = 1, 10−1
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Figure 4. The function λ for 10−3

3.2.3. Straight Bilinear Element Case. Consider now a rectangular straight mesh.
Our goal is to find λj. Without loss of generality, consider a rectangle K with vertices
1, · · · , 4 at (0, 0), (hx, 0), (hx, hy), and (0, hy). So, again without loss of generalization, we
want to find λ1. We have that

(3.2.14) −ε2 ∆λ1 + σ λ1 = 0 in K.

On the side y = 0, we have that

−ε2∂xxλ1 + σ λ1 = 0 for x in (0, 1),

λ1(0, 0) = 1, λ1(hx, 0) = 0.

Hence,

(3.2.15) λ1(x, 0) = µx(x) := −
sinh

(

ε−1
√
σ(x− hx)

)

sinh
(

ε−1
√
σhx

) .
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Figure 5. Enriching functions for ε = 1 and ε2 = 0.1.
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Figure 6. Enriching functions for ε2 = 10−3.

Similarly,

(3.2.16) λ1(0, y) = µy(y) := −
sinh

(

ε−1
√
σ(y − hy)

)

sinh
(

ε−1
√
σhy
) , λ1(hx, y) = λ1(x, hy) = 0.
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We propose two simple closed forms for λ1, none of which satisfy (3.2.14)–(3.2.16) exactly.
If we set λ1(x, y) = µx(x)µy(y), then (3.2.15)–(3.2.16) holds, but

−ε2 ∆λ1 + 2σ λ1 = 0 in K,

thus (3.2.14) is not satisfied.
If we let

λ1(x, y) =
sinh

(

ε−1
√

σ
2
(x− hx)

)

sinh
(

ε−1
√

σ
2
(y − hy)

)

sinh
(

ε−1
√

σ
2
hx
)

sinh
(

ε−1
√

σ
2
hy
) ,

then (3.2.14) holds, but the boundary conditions at x = 0 and y = 0 do not hold.

3.2.4. A Numerical Test: Source Problem. As in Section 3.1, consider the unit
source problem (f = 1) defined on the unit square depicted in Figure 1, subject to a ho-
mogeneous Dirichlet boundary condition. For a fixed σ = 1, and small ε, boundary layers
appear close to the domain boundary. Figure 7 shows, for ε2 = 10−6, the solutions of three
different methods, Galerkin, Residual Free Bubble, and the present enriched method. It
is clear that the current method performs better than the other two methods. Examining
the solutions profiles, see Figure 8, it becomes clear that the current method is superior to
other methods. For ε2 = 10−3 and ε = 1, all methods have comparable performance, see
Figures 9, 10 .
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Figure 7. Comparison among Galerkin, Residual Free Bubble, and the en-
riched methos for ε2 = 10−6.
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CHAPTER 4

Modeling PDEs in domains with Rough Boundaries

We are interested in PDEs defined in domains where at least part of the boundary is
rugous. The goal is to avoid the expensive discretization of the rough domain, and replace
the original PDE by another, in a domain that is easier to discretize. Asymptotic Expansions
play a key role here, motivating the development of models, and helping in deriving error
estimates.

4.1. Asymptotic Expansion Definition

Let Ωε ⊂ R2 be the domain depicted in figure 1. It is basically a square with sides of
length one, where the bottom is rugged.

The bottom of Ωε, containing the wrinkles, is described by ψε(x1) = (x1, εψr(ε
−1x1)),

where x1 ∈ [0, 1]. The function ψr : R → R is independent of ε, Lipschitz-continuous with
ψr(0) = 0, and periodic of period 1. Without loss of generality, we can assume ‖ψr‖L∞(R) = 1.

We now consider the problem

(4.1.1)
−∆uε = f in Ωε,

uε = 0 on ∂Ωε.

It is clear that the solution uε depends in a nontrivial way on the small parameter ε.
It is our goal to make clear how is this dependence, and how this can be used to develop
models for (4.1.1). We shall search for a formal asymptotic expansion in the general form,

(4.1.2) uε ∼ u0 + εv1(ε) + εΨ1(ε) + ε2v2(ε) + ε2Ψ2(ε) + · · · ,
where the Ψi(ε) are boundary correctors. The terms vi(ε), and Ψi(ε) depend on ε, as the
notation indicates. Although this appears strange at first sight, it actually renders the

PSfrag replacements

Figure 1. Description of the domain Ωε.
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development of the expansion easier. At a second stage, it is possible to reorder (4.1.2) as a
formal power series where all the terms are independent of ε.

Our procedure to find out the terms in the expansion has a “domain decomposition
flavor”, and uses the following result.

Lemma 4.1.1. Let Ω be a Lipschitz bounded domain of R2 and Γ an interface that divide
Ω into two sub-domains Ω− and Ω+. Assume that e satisfies e = 0 on ∂Ω−\Γ ∪ ∂Ω+\Γ.
Then there exists a constant c such that

(4.1.3) ‖e‖H1(Ω−) + ‖e‖H1(Ω+) ≤ c
(

‖∆ e‖0,Ω− + ‖∆ e‖0,Ω+ + ‖[e]‖ 1
2
,Γ + ‖[∂e/∂n]‖− 1

2
,Γ

)

where [·] represent the jump function over Γ. The constant c is independent of Ω−.

Proof. We first define

e− = e|Ω− , e+ = e|Ω+ .

It follows from Green’s identity that
∫

Ω−
| ∇ e−|2 dx = −

∫

Ω−
e−∆ e− dx−

∫

Γ

e−
∂e−

∂n+
dΓ,

∫

Ω+

| ∇ e+|2 dx = −
∫

Ω+

e+ ∆ e+ dx +

∫

Γ

e+ ∂e
+

∂n+
dΓ,

where n+ indicates the outward normal vector with respect to Ω+. Combining both identities,
and adding and subtracting

∫

Γ
e−∂e+/∂n+ dΓ, we gather that

|e−|2H1(Ω−) + |e+|2H1(Ω+)

= −
∫

Ω−
e−∆ e− dx−

∫

Ω−
e+ ∆ e+ dx +

∫

Γ

e−
(

∂e+

∂n+
− ∂e−

∂n+

)

dΓ +

∫

Γ

(e+ − e−)
∂e+

∂n+
dΓ

≤ ‖e−‖L2(Ω−)‖∆ e−‖L2(Ω−) + ‖e+‖L2(Ω+)‖∆ e+‖L2(Ω+)

+ ‖e−‖H1/2(Γ)‖[
∂e

∂n
]‖H−1/2(Γ) + ‖[e]‖H1/2(Γ)‖

∂e

∂n

+

‖H−1/2(Γ)

≤ (‖∆ e−‖L2(Ω−) + ‖∆ e+‖L2(Ω+))‖e‖L2(Ω)

+ ‖e−‖H1(Ω−)‖[
∂e

∂n
]‖H−1/2(Γ) + ‖[e]‖H1/2(Γ)‖e+‖H1(Ω+).

To obtain the inequalities above, we used Cauchy–Schwartz and trace inequalities, and the
duality between H−1/2(Γ) and H1/2(Γ). The lemma follows now from an application of the
Poincaré inequality. �

We define now sub-domains of Ωε, one “close” to the rugosity, the other one far from it.
See figure 2. Let δ = c0ε, where c0 > 1. Let

Ωs = {x = (x1, x2) ∈ Ωε : x2 > δ }, Ωε
r = {x = (x1, x2) ∈ Ωε : x2 < δ },

Γ = {x = (x1, x2) ∈ Ωε : x2 = δ }.
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Figure 2. Domain decomposition

It is natural to define the first term of the asymptotics such that

(4.1.4)
−∆u0 = f in Ωs,

u0 = 0 on ∂Ωs, u0 = 0 on Ωε
r.

Applying Lemma 4.1.1 with e = uε−u0, we see that the source of error is the x2-derivative
jump [∂x2u

0]:

‖e‖H1(Ωεr)
+ ‖e‖H1(Ωs) ≤ c‖∂x2u

0‖H−1/2(Γ).

We next remedy this. Let φ0(x1) = ∂x2u
0(x1, δ), i.e., φ0 is the restriction of ∂x2u

0 on Γ, and
χεr be the characteristic function of the set Ωε

r, i.e.,

χεr(x) =

{

1 if x ∈ Ωε
r,

0 otherwise.

We add then the function −χεr(x)x2φ
0(x1) to the asymptotic expansion, to correct the jump

of the x2-derivative. Since the zero Dirichlet boundary condition at Γεr is not satisfied, we
add a corrector to the asymptotics: Ψ1(ε)− χεrZ1(ε). The boundary corrector Ψ1(ε) is such
that

−∆ Ψ1(ε) = −χεr ∆(ε−1x2φ
0 + Z1(ε)) in Ωε,(4.1.5)

Ψ1(ε) = ε−1x2φ
0 + Z1(ε) on Γεr.(4.1.6)

The introduction of Z1(ε) is necessary to guarantee an exponential decay of Ψ1(ε) to zero in
the x2-direction. Both Ψ1(ε) and Z1(ε) depend on ε, and the are not even well-defined yet.
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In fact, we shall set, in general, Ψi(ε) and Zi(ε) as formal expansions in ε,

Ψi(ε)(x) ∼ ψ0(ε−1x)φi−1(x1) + εψ1(ε−1x)∂x1φ
i−1(x1) + ε2ψ2(ε−1x)∂x1x1φ

i−1(x1) + · · · ,
(4.1.7)

Zi(ε)(x) ∼ z0φi−1(x1) + εz1∂x1φ
i−1(x1) + ε2z2∂x1x1φ

i−1(x1) + · · · .(4.1.8)

In the above, ψi is periodic with period ε−1 in the x1 direction, and zi are ε-independent
constants that depend on the geometry of the wrinkles only. We postpone the precise
definition of the terms for now.

So, with the error function e = uε −
[

u0 − χεrx2φ
0 − εχεrZ1(ε) + εΨ1(ε)

]

, we have

‖e‖1,Ωεr + ‖e‖1,Ωs ≤ ε‖Z1(ε) + c0φ
0‖ 1

2
,Γ.

We continue to define the terms of the expansion. Set

(4.1.9)
−∆u1 = 0 in Ωs,

u1 = −(c0 + z0)φ0 on Γ, u1 = 0 on ∂Ωs\Γ, u1 = 0 on Ωε
r.

So, if e = uε −
[

u0 − x2χ
ε
rφ

0 − εZ1(ε)χεr + εΨ1(ε) + εu1
]

, then

‖e‖1,Ωεr + ‖e‖1,Ωs ≤ ε‖∂x2u
1‖− 1

2
,Γ + ε2‖z1∂x1φ

0 + εz2∂x1x1φ
0 + · · · ‖ 1

2
,Γ.

We define φ1 = ∂x2u
1|Γ, and add −εχεrx2φ

1 + ε2Ψ2(ε)− ε2χεrZ
2(ε) to the expansion, where

−∆ Ψ2(ε) = −χεr ∆(ε−1x2φ
1 + Z2(ε)) in Ωε,

Ψ2(ε) = ε−1x2φ
1 + Z2(ε) on Γεr.

So far,

e = uε −
[

u0 − x2χ
ε
rφ

0 − εZ1(ε)χεr + εΨ1(ε) + εu1 − εx2χ
ε
rφ

1 + ε2Ψ2(ε)− ε2χεrZ
2(ε)

]

,

and
‖e‖1,Ωεr + ‖e‖1,Ωs ≤ ε2‖Z2(ε) + c0φ

1 + z1∂x1φ
0 + εz2∂x1x1φ

0 + · · · ‖ 1
2
,Γ.

We proceed one more step by defining φ2 = ∂x2u
2|Γ, and adding

ε2u2 − ε2x2χ
ε
r∂x2u

2 + ε3Ψ3(ε)− ε3χεrZ
3(ε)

to the expansion, where

(4.1.10)
−∆u2 = 0 in Ωs,

u2 = −(c0 + z0)φ1 + z1∂x1φ
0 on Γ, u2 = 0 on ∂Ωs\Γ, u2 = 0 on Ωε

r,

and

(4.1.11)
−∆ Ψ3(ε) = −χεr ∆(ε−1x2φ

2 + Z3(ε)) in Ωε,

Ψ3(ε) = ε−1x2φ
2 + Z3(ε) on Γεr.

The asymptotic error is now

e = uε −
[

u0 − x2χ
ε
rφ

0 + εΨ1(ε)− εχεrZ1(ε) + εu1 − εx2χ
ε
rφ

1 + ε2Ψ2(ε)− ε2χεrZ
2(ε)

+ ε2u2 − ε2x2χ
ε
r∂x2u

2 + ε3Ψ3(ε)− ε3χεrZ
3(ε)

]

,

and
‖e‖1,Ωεr + ‖e‖1,Ωs ≤ ε3‖z2∂x1x1φ

0 + z1∂x1φ
1 + z0φ2 + ε · · · ‖ 1

2
,Γ.
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The expansion pattern should be clear by now, and the successive terms are defined in
similar manner.

4.2. The boundary Corrector problem

We now analise the boundary corrector problem in more details. Consider the problem
of finding Ψ, and Z such that

−∆ Ψ = −χεr ∆(ε−1x2φ+ Z) in Ωε,(4.2.1)

Ψ = ε−1x2φ+ Z on Γεr.(4.2.2)

Here, while φ is a given function of x1 only, Z is unknown a priori, and it is introduced to
guarantee that Ψ decays exponentially to zero in the x2 direction. The solutions Ψ and Z
will depend on ε in a nontrivial way, so we assume that formally

(4.2.3) Ψ ∼ Ψ0 + εΨ1 + ε2Ψ2 + · · · , Z ∼ Z0 + εZ1 + ε2Z2 + · · · ,
The functions involved in (4.2.1), (4.2.2) are not periodic in general. Nevertheless, we try

to make use of the periodicity of the wrinkles and recast the corrector problem as a sequence
of problems in periodic domains. Furthermore, motivated by the “rapidly” variations of the
wrinkles, we make use of the stretched coordinates

x̂ = (x̂1, x̂2) = (ε−1x1, ε
−1x2),

and assume that a first approximation for Ψ and Z is given by

(4.2.4) Ψ0(x) = ψ0(x̂)φ(x1), Z0(x1) = z0φ(x1),

where ψ0 is x̂1-periodic, z0 is a constant, and both Ψ0 and z0 are to be determined.

Remark. At this stage, there are no good arguments indicating that z0 is only a constant,
but notice that the simpler Z0 is, the better. And we will show, a posteriori, that the form
we are assuming for Z0 suffices to make Ψ0 exponentially decaying.

It follows from a straightforward computation that the laplacian of a function in the form
u(x̂1, x̂2)v(x1) is

(4.2.5) −(∂11 + ∂22)(uv) = −ε−2
(

∂x̂2x̂2u+ ∂x̂1x̂1u
)

v − 2ε−1∂x̂1wv
′ − wv′′.

Hence,

(4.2.6)
−∆(ψ0φ) = −ε−2

(

∂x̂2x̂2ψ
0 + ∂x̂1x̂1ψ

0
)

φ− 2ε−1∂x̂1ψ
0φ′ − ψ0φ′′,

−∆(x̂2φ) = −x̂2φ
′′, −∆(z0φ) = −z0φ′′.

Based on (4.2.1), (4.2.3), (4.2.4), and (4.2.6), and formally equating the same powers of ε, we
gather that ψ0 is harmonic. The boundary condition over the wrinkles comes from (4.2.2),
(4.2.3), and (4.2.4). The final problem determining the function ψ0 and the constant z0 is
then

∂x̂1x̂1ψ
0 + ∂x̂2x̂2ψ

0 = 0 in Ωr, ψ0 = x̂2 + z0 on Γ−r ,

ψ0 is x̂1-periodic, lim
x̂2→∞

ψ0 = 0.

The domain Ωr occupies the semi-infinite region limited by straight lateral boundaries at
x̂1 = 0 and x̂1 = 1, and by the lower boundary Γ−r = { (x̂1, ψr(x̂1)) : x̂1 ∈ (0, 1) }.
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Hence we have that

−∆[(ψ0 − χεrx̂2 + χεrz
0)φ] = −2ε−1∂x̂1ψ

0φ′ − ψ0φ′′ + χεrx̂2φ
′′ − χεrz0φ′′ in Ωε,

ψ0 − x̂2 + z0 = 0 on Γεr.

We set then Ψ1 = ψ1φ′, Z1 = z1φ′ where

−[∂x̂2x̂2ψ
1 + ∂x̂1x̂1ψ

1] = 2∂x̂1ψ
0 in Ωr, ψ1 = z1 on Γ−r .

Hence,

−∆[(ψ0 − χεrx̂2+χεrz
0)φ+ ε(ψ1 + χεrz

1)φ′]

= −ψ0φ′′ + χεrx̂2φ
′′ − χεrz0φ′′ − 2∂x̂1ψ

1φ′′ − εψ1φ′′′ − εχεrz1φ′′′ in Ωε,

(ψ0 − χεrx̂2 + χεrz
0)φ+ ε(ψ1 + χεrz

1)φ′ = 0 on Γεr.

Now, Ψ2 = ψ2φ′′, and Z2 = z2φ′′ where

−[∂x̂2x̂2ψ
2 + ∂x̂1x̂1ψ

2] = ψ0 − χrx̂2 + χrz
0 + 2∂x̂1ψ

1 in Ωr, ψ2 = z2 on Γ−r ,

where χr(x̂2) = 1 if x̂2 ≤ c0, and χr(x̂2) = 0 otherwise. It is easy to see that the right hand
sides of the equations become more involved as we proceed. The crucial point is to note that
in the above cases, the equations did not involve φ or their derivatives.

We finally conclude that

(4.2.7) Ψ(ε) ∼ ψ0φ+ εψ1φ′ + ε2ψ2φ′′ + · · · , Z(ε) ∼ z0φ+ εz1φ′ + ε2z2φ′′ + · · · .

4.3. Derivation of wall-laws

Our goal is to approximate uε using finite elements (or finite differences), without having
to discretize the rough boundary. One first step would be to try to approximate uε in Ωs

only, since this is a smooth domain. We consider the series

u0 + εψ0φ0 + εu1.

The functions u0, u1 are defined by (4.1.4), (4.1.9), and ψ0 is defined in the previous section.
We would like to approximate uε by the above sum, but without solving all the problems that
define each term. Heuristically, we consider only the functions that actually have influence
in the interior of the domain, i.e.,

u ≈ u0 + εu1.

Hence, over Γ, u ≈ u0 + εu1 = −ε(c0 + z0)φ0, and ∂x2u ≈ φ0 + εφ1, so

u+ ε(c0 + z0)∂x2u ≈ ε2(c0 + z0)φ1,

and this amount can be small enough for certain applications.
So we define ū approximating uε in Ωs by

(4.3.1)
−∆ ū = f in Ωs,

ū+ ε(c0 + z0)∂x2ū = 0 on Γ, ū = 0 on ∂Ωs\Γ.

The error estimates follow by developing asymptotic expansions for ū. In fact, it is easy
to see that

ū ∼ ū0 + εū1 + ε2ū2 + · · · ,
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Table 1. Relative error convergence rates for order 0 model.

quantity L2(Ωs) error L2(Ω̊s) norm error

u O(ε) O(ε)

∇u O(ε1/2) O(ε)

Table 2. Relative error convergence rates for order 1 model.

quantity L2(Ωs) error L2(Ω̊s) norm error

u O(ε2) O(ε2)

∇u O(ε1/2) O(ε2)

where

(4.3.2)
−∆ ūi = δi,0f in Ωs,

ūi = −(c0 + z0)∂x2ū
i−1 on Γ, ūi = 0 on ∂Ωs\Γ.

Also,

(4.3.3)

∥

∥

∥

∥

ū−
n
∑

i=0

εiūi
∥

∥

∥

∥

Hk(Ωs)

≤ cεn+1.

The modeling error estimates are then as follows.

‖uε − ū‖H1(Ωs) ≤ ‖uε − u0 − εu1‖H1(Ωs) + ‖ū− ū0 − εū1‖H1(Ωs)

≤ ‖uε − u0 − εu1 − εψ0φ0‖H1(Ωs) + ε‖ψ0φ0‖H1(Ωs) + cε2 ≤ cε1/2,

where in the first inequality we used the triangle inequality, and the identities u0 = ū0 and
u1 = ū1.

In a similar fashion, we can consider other norms, for instance

‖uε − ū‖L2(Ωs) ≤ cε2,

Another important measure is how well our model approximates the exact solution in

the interior of the domain, i.e., consider Ω̊s ⊂ Ωs such that Ω̊s ∩ Γ = ∅. Hence

‖uε − ū‖L2(Ωs) + ‖uε − ū‖Hk(Ω̊s)
≤ cε2.

This improved convergence is due to the fact that the boundary layer has no influence far
from the wrinkles.

We also compare in tables 1 and 2 the approximability properties of our model and a
simple minded model, which approximates uε by u0 only. We call such model as “order
zero model,” and our model as “order one model.” Note the improved convergence rate for
most of the norms, with the exception of the H1 norm. This is due to the fact that neither
approaches captures the boundary layer exactly.





CHAPTER 5

Hierarchical Modeling of the Heat Equation in a Thin Plate

Much investigation has been done in the recent and not so recent past to take advantage
of the small thickness to solve or approximate elliptic problems in thin domains. Indeed it is
tempting to use dimension reduction, i.e., to pose and solve a modified problem in a region
with one less dimension and then extend the reduced solution to the more general domain. It
is reasonable to expect that the new problem will be simpler than the original one, but it is
not easy to predict how far apart are the two solutions. Here, we analyze the approximation
properties of some classes of models for elliptic problems in thin domains, not only as the
thickness of the domain goes to zero, but also as the “degree” of the models increases, in a
sense that we will make clear.

In this chapter we use a slightly different notation for vectors. We use one underbar for
3-dimnesional vectors, and one undertilde for 2-dimnesional vectors. We can then decompose
3-vectors as follows:

u =

(

u∼
u3

)

.

5.1. Introduction

We assume that the thin domain is a three-dimensional plate of the form P ε = Ω×(−ε, ε),
where Ω is a two-dimensional smoothly bounded region and ε < 1 is a small positive quantity.
For simplicity, we analyze the Poisson problem with vanishing Dirichlet boundary condition
on the lateral boundary ∂Ω × (−ε, ε), despite the fact that other equations and conditions
are also of interest. Let ∂P ε

L = ∂Ω × (−ε, ε) be the lateral boundary of the plate and
∂P ε
± = Ω×{−ε, ε} its top and bottom. We define then uε ∈ H1(P ε) as the weak solution of

(5.1.1)

−∆uε = f ε in P ε,

∂uε

∂n
= gε on ∂P ε

±,

uε = 0 on ∂P ε
L,

where f ε : P ε → R and gε : P ε
± → R. We denote a typical point in P ε by xε = (x∼, x

ε
3), with

x∼ = (x1, x2) ∈ Ω.

In general, the solution of (5.1.1) will depend on ε in a nontrivial way. In fact the above
problem is a singularly perturbed one, and as ε goes to zero it “loses” ellipticity. This results
in the onset of boundary layers, as we make clear below.

Projecting the exact solution of (5.1.1) into the space of functions with polynomial depen-
dence in the transverse direction results in a whole hierarchy of models that approximate the

39
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original problem with increasing accuracy as the semi-discrete space gets richer, and main-
tain the lower dimensional character. For symmetric elliptic problems, one possibility is to
use a Ritz projection [38], deriving the minimum energy models. See also [37], [6], [7], [27].

Characterizing the solution of (5.1.1) as the minimizer of the associated energy functional,
i.e.,

uε = arg min
v∈V (P ε)

J (v), where J (v) =
1

2

∫

P ε
|∇v|2 dx−

∫

P ε
f εv dx−

∫

∂P ε±

gεv dx∼,

and V (P ε) =
{

v ∈ H1(P ε) : v = 0 on ∂P ε
L

}

, we aim to find a “good” approximation for uε

searching for

(5.1.2) uε(p) = arg min
v∈H̊1(Ω;Pp(−ε,ε))

J (v),

where H̊1(Ω;Pp(−ε, ε)) is the space of polynomials of degree p in (−ε, ε) with coefficients in

H̊1(Ω). It immediately follows from its definition that uε(p) is the Ritz projection of uε into

H̊1(Ω;Pp(−ε, ε)), and (5.1.2) characterizes a minimum energy model. Observe that using
higher polynomial degrees, i.e., higher order models, we obtain a hierarchy of models that
furnish increasingly better solutions.

As an example, we write the model explicitly for p = 1. Note that (5.1.2) is equivalent
to

(5.1.3)

∫

P ε
∇u(1) · ∇v dx =

∫

P ε
f εv dx+

∫

∂P ε±

gεv dx for all v ∈ H̊1(Ω;P1(−ε, ε)).

Assuming that uε(1)(xε) = ω0(x∼) + ω1(x∼)xε3, and integrating the in the xε3 direction, we
conclude that
∫

Ω

∇∼ ω0(x∼) · ∇∼ v(x∼) dx∼ =

∫

Ω

f 0(x∼)v(x∼) dx∼+ ε−1

∫

Ω

g0(x∼)v(x∼) dx∼ for all v ∈ H̊1(Ω),

where

f 0(x∼) =
1

2ε

∫ ε

−ε
f ε(x∼, x

ε
3) dxε3, g0(x∼) =

1

2

[

gε(x∼, ε) + gε(x∼,−ε)
]

.

Hence,

(5.1.4) ∆2D ω0 = −f 0 − ε−1g0, ω0 = 0 on ∂Ω,

where ∆2D = ∂11 + ∂22.
Similarly, assuming test function of the form v(x∼)xε3 in (5.1.3), we have that

ε2

3

∫

Ω

∇∼ ω1(x∼) · ∇∼ v(x∼) dx∼ =

∫

Ω

f 1(x∼)v(x∼) dx∼+ ε−1

∫

Ω

g1(x∼)v(x∼) dx∼ for all v ∈ H̊1(Ω),

where

f 1(x∼) =
1

2ε

∫ ε

−ε
f ε(x∼, x

ε
3)xε3 dx

ε
3, g1(x∼) =

1

2

[

gε(x∼, ε)− g
ε(x∼,−ε)

]

.

Hence,

(5.1.5)
ε2

3
∆2D ω1 − ω1 = −f 1 − g1 in Ω, ω1 = 0 on ∂Ω,
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Note that the two differential equations in (5.1.4) and (5.1.5) are independent of each
other. We can express in a unique way any function defined on P ε as a sum of its even and
odd parts with respect to xε3. The even parts of f ε, gε appear only in the equation for ω0,
and the respective odd parts show up in the equation for ω1. Also, the equation determining
ω1 is singularly perturbed, but this is not the case for the equation determining ω0. If higher
order methods were used, we would have two independent singularly perturbed systems of
equations, corresponding to the even and odd parts of uε(p). A similar splitting also occurs
for the linearly elastic isotropic plate, where the equations decouple into two independent
problems corresponding to bending and stretching of the plate.

The natural question of how close uε(p) is to uε is not easy to answer due to the complex
influence of ε in both the original and model solutions. We resolve this not by comparing
the exact and model solutions directly, but rather by first looking at the difference between
the solutions and their truncated asymptotic expansions, and then comparing the asymp-
totic expansions. This is possible because the projection used to define each model can
be used to find terms of the asymptotic expansion of the model. This allows the compar-
ison between corresponding terms of the expansions. Schematically, this is how it works:

uε
Asymptotic
Expansion of uε

Asymptotic
Expansion of uε(p)

uε(p)

Several authors investigated various aspects of this and other related problems. For a
review of the literature, see [29]. It is worth mentioning nevertheless the work of of Vogelius
and Babuška. In a series of three remarkable papers [38], [39], [40], they investigated
various aspects of minimum energy methods for scalar elliptic homogeneous problems in
a N -dimensional plate, with Neumann boundary condition on the top and bottom of the
domain. They started by showing how to optimally choose the semidiscrete subspace that
characterizes each model. This space depends only on the coefficients of the differential
equation, and a truncated outer asymptotic expansion (i.e., ignoring boundary layer terms)
of the exact solution belongs to it. Then they estimated the rate of convergence of the model
solution (with respect to the thickness, in the energy norm). To do this they assumed that
the volume loads vanished and that the surface loading was such that boundary layer layer
effects were of higher order than the first truncated term of the outer expansion. They then
estimated the difference between the exact solution and the truncated expansion. As this
quantity is certainly bigger than the error of the minimum energy model in the energy norm,
they the obtained an upper bound for the modeling error. This procedure was extended by
Miara [32] to linearly elastic plates, again with strong restrictions on the volume and surface
loads. In this case the optimal subspace might depend on the data, a clear disadvantage.
Recent work by Ovaskainen and Pitkäranta [34] used similar ideas to obtain more refined
estimates for minimum energy methods applied to a thin linearly elastic strip under traction.
Some limitations of this approach are that it is not clear how to extend it to models that are
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not energy minimizers, nor how to obtain sharp estimates in norms other than energy or in
the interior of the domain.

Our approach differs significantly from the aforementioned ones. Although we also use
asymptotic expansion techniques, we do not rely on the fact that our solution minimizes
the potential energy. In fact our arguments work for saddle point models as well [29]. In
addition to the flexibility to tackle different models, we are also able to obtain sharp estimates
in different norms and interior estimates.

We consider the Poisson problem as it contains the same basic characteristics and diffi-
culties of more complex elliptic equations, but is still simple enough so that technicalities do
not overshadow the main aspects of our analysis. We avoid nonetheless using specificities of
the problem, and the arguments employed here extend in a natural way to the analysis of
hierarchical models for linearly elastic plates. Indeed, based on the asymptotic expansions
developed by Monique Dauge and her collaborators [14], [15], a similar kind of study can
be performed.

We now briefly introduce and explain some basic notation that we use throughout this
chapter. For an integer p and a positive real number a, we define Pp(−a, a) as the space of
polynomials of degree p in (−a, a). If s is a real number and D an open set, then Hs(D)

is the Sobolev space of order s, and H̊s(D) is the closure in Hs(D) of the set of smooth
functions with compact support in D. For m ∈ N and a separable Hilbert space E, we
denote Hm(D;E) as the space of functions defined on D with values in E such that the

E-norm of all partial derivatives of order less or equal to m are in L2(D). Also, L̂2(−a, a)
is the set of square integrable functions with mean value zero in the domain (−a, a), for
a positive number a. Finally D(D) denotes the space of C∞ functions in D with compact
support, while D′(D) denotes the space of distributions.

We denote by lowercase c a generic constant (not necessarily the same in all occurences)
which is independent not only of ε and p, but also of f and g, while we use uppercase C
when the constant may depend on f and g but not ε and p.

Next, we outline the contents of this chapter. In Section 5.2 we develop an asymptotic
expansion for the solution of (5.1.1), presenting upper bounds for the difference between
the exact solution and truncated asymptotic expansions. The following section contains the
same sort of development, but this time concerning the hierarchical model solution. We
present modeling error estimates in Section 5.4. Finally, many issues involving the boundary
correctors are discussed in the appendix, including existence, uniqueness and exponential
decay of solutions, approximation by polynomials, and corner singularities.

5.2. Asymptotic Expansions for the Exact Solution

We start this section by developing an asymptotic expansion for uε. As in [12], we define
an ε-independent domain P = Ω× (−1, 1). A point x = (x∼, x3) in P is related to a point xε

in P ε by x3 = ε−1xε3. We accordingly define ∂PL = ∂Ω× (−1, 1), and ∂P± = Ω× {−1, 1}.
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P ε

x3 = ε−1xε3

·

xε = (x∼, x
ε
3)

P

1

−1

·
x = (x∼, x3)

In this new domain we define u(ε)(x) = uε(xε), f(x) = f ε(xε), and g(x) = ε−1gε(xε). We
infer from (5.1.1) that

(5.2.1)

∆2D u(ε) + ε−2∂33u(ε) = −f in P ,

∂u(ε)

∂n
= ε2g on ∂P±,

u(ε) = 0 on ∂PL.

We assume that f , g are ε-independent, but this restriction could be relaxed, for instance by
assuming that f and g can be represented as a power series in ε, plus a small remainder [30].
Also, how exactly f and g scales with respect to ε is immaterial since we are considering a
linear problem and the final rates of convergence are in relative norms.

Consider the asymptotic expansion

(5.2.2) u0 + ε2u2 + ε4u4 + · · · ,

and formally substitute it for u(ε) in (5.2.1). Grouping together terms with same power in
ε we have

ε−2∂33u
0 +

(

∆2D u
0 + ∂33u

2
)

+ ε2
(

∆2D u
2 + ∂33u

4
)

+ · · · = −f,(5.2.3)

∂u0

∂n
+ ε2∂u

2

∂n
+ ε4∂u

4

∂n
+ · · · = ε2g on ∂P±.(5.2.4)

It is then natural to require that

∂33u
0 = 0,(5.2.5)

∂33u
2 = −f −∆2D u

0,(5.2.6)

∂33u
2k = −∆2D u

2k−2, for all k > 1,(5.2.7)

along with the boundary conditions

(5.2.8)
∂u2k

∂n
= δk1g on ∂P±, for all k ∈ N.

Equations (5.2.5)–(5.2.8) define a sequence of Neumann problems on the interval x3 ∈ (−1, 1)
parametrized by x∼ ∈ Ω. If the data for these problems is compatible then the solution can
be written as

(5.2.9) u2k(x) = û2k(x) + ζ2k(x∼), for all k ∈ N,
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where

(5.2.10)

∫ 1

−1

û2k(x∼, x3) dx3 = 0,

with û2k uniquely determined, but ζ2k an arbitrary function of x∼ only. As we shall see, the

ζ2k will be determined using the condition of compatibility of the data for the Neumann
problems. From the Dirichlet boundary condition in (5.2.1), it would be natural to require
that u2k = 0 on ∂PL. This is equivalent to imposing

ζ2k = 0 on ∂Ω,(5.2.11)

û2k = 0 on ∂PL.(5.2.12)

However, in general, only (5.2.11) can be imposed and (5.2.12) will not hold. We shall
correct this discrepancy latter. Now we show that the functions ζ2k, û2k (and so u2k) are
uniquely determined from (5.2.5)–(5.2.11). In fact, (5.2.5) and (5.2.8) yields û0 = 0. From
the compatibility of (5.2.6) and (5.2.8) we see that

(5.2.13) ∆2D ζ
0(x∼) = −1

2

∫ 1

−1

f(x∼, x3) dx3 −
1

2
[g(x∼, 1) + g(x∼,−1)],

which together with (5.2.11), determines ζ0 and then, from (5.2.9), u0. In view of the
compatibility condition (5.2.13), û2 is fully determined by (5.2.6), (5.2.8), and (5.2.10).
Next, the Neumann problem (5.2.7), (5.2.8) admits a solution for k > 1 if and only if
∆2D ζ

2k−2 = 0. But in view of (5.2.11), this means ζ2k−2 = 0, for k > 1, and then û2k is
uniquely determined from (5.2.7), (5.2.8). Note that u0 = ζ0 and u2k = û2k for k ≥ 1.

Observe that u0 = 0 on the lateral boundary of P , since û0 = 0 and so (5.2.12) holds
for k = 0. However, u2, u4, etc, will not in general vanish on ∂PL (although their vertical
integrals do). Thus (5.2.2) does not give a complete asymptotic expansion of u(ε) and we
seek a boundary corrector U , which should satisfy

(5.2.14)
∆2D U + ε−2∂33U = 0 in P,

∂U

∂n
= 0 on ∂P±, U ∼ ε2u2 + ε4u4 + · · · on ∂PL.

To study this singular perturbation problem, we again use a system of boundary-fitted
horizontal coordinates. See Chapter 2 for details.

Defining the new variable ρ̃ = ε−1ρ and using the same name for functions different only
up to this change of coordinates, we have from (2.1.6) that

(5.2.15) ∆2D U = ε−2∂ρ̃ρ̃U +
∞
∑

j=0

(ερ̃)j
(

aj1ε
−1∂ρ̃U + aj2∂θθU + aj3∂θU

)

,

Aiming to solve (5.2.14), we insert the asymptotic expansion

(5.2.16) U ∼ ε2U2 + ε3U3 + ε4U4 + · · · ,
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in (5.2.15), and collect together terms with same order of ε. This leads us to pose a sequence
of problems in the semi-infinite strip Σ = R+ × (−1, 1), for k ≥ 2:

(5.2.17)

(∂ρ̃ρ̃ + ∂33)Uk = Fk in Σ,

∂Uk

∂n
= 0 on R+ × {−1, 1},

Uk(0, θ, x3) = uk(0, θ, x3) for x3 ∈ (−1, 1),

where

Fk =
k−2
∑

j=0

ρ̃j
(

aj1∂ρ̃U
k−j−1 + aj2∂θθU

k−j−2 + aj3∂θU
k−j−2

)

,

with the convention that uk = 0 for k odd and U0 = U1 = 0. Note that the problem
described by (5.2.17)—we show that it is well–defined further ahead—is parametrized by θ,
and that the geometry of Ω plays an important role through the coefficients aj1, aj2, aj3.

Combining (5.2.2) and (5.2.16) we obtain the formal asymptotic expansion

(5.2.18) uε(xε) ∼
∞
∑

k=0

ε2ku2k(x∼, ε
−1xε3)− χ(ρ)

∞
∑

k=2

εkUk(ε−1ρ, θ, ε−1xε3).

Here χ(ρ), is a smooth cutoff function which is identically one if 0 ≤ ρ ≤ ρ0/3 and identically
zero if ρ ≥ 2ρ0/3. (This does not turn out to be a significant source of error since Uk decays
exponentially to zero in the normal direction.)

Although our reasoning has been formal so far, we shall rigorously justify this asymptotic
expansion in Theorem 5.2.3. Before doing that, we first study the terms entering into the
expansion.

We use the following notation:

‖v‖(m,n,P ) = ‖v‖Hm(Ω;Hn(−1,1)), |||(f, g)|||m,P = ‖f‖(m,0,P ) + ‖g‖Hm(∂P±).

In the lemma below, the bounds follow from standard regularity estimates for equations
(5.2.13), (5.2.6)–(5.2.8).

Lemma 5.2.1. Suppose that f and g are smooth functions on P and ∂P±, respectively.
Then the functions u0, u2, · · · on P are uniquely determined by (5.2.5)–(5.2.11), and u0(x) =
ζ0(x∼) is independent of x3. Moreover, for m a nonnegative integer and s a real number such
that s ≥ 2, there exists a constant c independent of f and g such that

‖ζ0‖Hm+1(Ω) ≤ c|||(f, g)|||m−1,P ,

‖u2(x∼, ·)‖Hs(−1,1) ≤ c
(

‖f(x∼, ·)‖Hs−2(−1,1) + |g(x∼,−1)|+ |g(x∼, 1)|
)

,

‖u2‖(m,s,P ) ≤ c
(

‖f‖(m,s−2,P ) + ‖g‖Hm(∂P±)

)

.

The next lemma, whose proof we postpone to the appendix, guarantees the existence,
uniqueness, and exponential decay of solutions for (5.2.17).

Lemma 5.2.2. Assume, for a fixed positive integer k, that uk is defined as above. Then,
for each θ, there exists a unique weak solution Uk(·, θ, ·) ∈ H1(Σ) to (5.2.17). Also, there
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exist positive constants C and α such that

(5.2.19)

∫ ∞

t

∫ 1

−1

(Uk)2 + (∂ρ̃U
k)2 + (∂3U

k)2 dx3 dρ̃ ≤ Ce−αt,

for every nonnegative real number t. The constant α may depend on Ω and k, but is
independent of f and g, while the constant C may depend on Ω, k, f , and g.

Remark. The dependence of the constant C in the lemma on f and g may be specified
explicitly in terms of finitely many Sobolev norm of these functions. However the dependence
is quite complicated and so we shall not do so. See [29] for such expressions in a 2D version
of this problem.

Although (5.2.18) is a formal expansion, a rigorous error estimate shows that the differ-
ence between the exact solution and a truncated asymptotic expansion is of the same order
of the first term omitted in the expansion. In fact, define

(5.2.20) eε2N(xε) = uε(xε)−
N
∑

k=0

ε2ku2k(x∼, ε
−1xε3) + χ(ρ)

2N
∑

k=2

εkUk(ε−1ρ, θ, ε−1xε3).

In the theorem below we bound the H1(P ε) norm of eε2N .

Theorem 5.2.3. For any positive integer N , there exists a constant C such that the
difference between the truncated asymptotic expansion and the original solution measured in
the original domain is bounded as follows:

(5.2.21) ‖eε0‖H1(P ε) ≤ Cε3/2, ‖eε2N‖H1(P ε) ≤ Cε2N+1.

Since the domain P ε depends on ε, the interpretation of the convergence estimates given
in Theorem 5.2.3 is not straightforward. The relative error may be more informative in this
case. For this we may use (5.2.21) and the triangle inequality to obtain a lower bound on
the H1(P ε) norm of the solution. The leading term of the asymptotic expansion for uε is ζ0,
unless ζ0 is identically zero, that is, unless the quantity

(5.2.22) −1

2

∫ 1

−1

f(x∼, x3) dx3 −
1

2
[g(x∼, 1) + g(x∼,−1)]

appearing on the right-hand side of (5.2.13), vanishes. Assuming momentarily that ζ0 does
not vanish, then we easily conclude from (5.2.21) and the triangle inequality that there exists
a strictly positive constant C depending on f and g, such that ‖uε‖H1(P ε) ≥ Cε1/2 for all
ε sufficiently small. If, on the other hand ζ0 vanishes, but f and g do not both vanish
identically, then it can be seen from (5.2.6) and (5.2.8) that u2 does not vanish. Applying
the second estimate of (5.2.21) with N = 1 and using the triangle inequality, we conclude
‖uε‖H1(P ε) ≥ Cε3/2 in this case. Thus in any case (as long as f and g do not both vanish
identically) we have

‖uε‖H1(P ε) ≥ Cνε1/2, where ν =

{

1, ζ0 6≡ 0,

ε, ζ0 ≡ 0.
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Thus, for any positive integer N ,

‖eε0‖H1(P ε)

‖uε‖H1(P ε)

= O(ν−1ε),
‖eε2N‖H1(P ε)

‖uε‖H1(P ε)

= O(ν−1ε2N+1/2).

It is easy to estimate the convergence in some other norms as well. For instance, in the
L2(P ε) norm, we have from the triangle inequality that

‖eε2N‖L2(P ε) ≤ ‖eε2N+2‖H1(P ε) + ‖eε2N+2 − eε2N‖L2(P ε).

Since

(5.2.23) (eε2N+2 − eε2N)(xε) = −ε2N+1U2N+1(ε−1ρ, θ, ε−1xε3)

+ ε2N+2
[

u2N+2(x∼, ε
−1xε3)− U2N+2(ε−1ρ, θ, ε−1xε3)

]

,

we easily conclude from a scaling argument that ‖eε2N‖L2(P ε) = O(ε2N+2), for N positive.
Using similar arguments, it is possible to compute interior estimates, which achieve better

convergence in regions “far away” from the lateral boundary of the plate. The reason for the
improvement in such subdomains is that the influence of the boundary layer is negligible.
The table below presents these interior and various other error estimates. We assume that
f and g are sufficiently smooth functions and we show only the order of the norms with
respect to ε. “BL” stands for “Boundary Layer” and the “Relative Error” column presents
the norm of eε2N divided by the norm of uε. In parentheses are the interior estimates, when
these are better than the global estimates.

Table 1. Order with respect to the thickness of the exact solution, the first
term of the boundary layer expansion, and the difference between the solution
and a truncated asymptotic expansion in various norms.

norm uε BL eε2N , N ≥ 1 Relative Error

‖ · ‖L2(P ε) ν2ε1/2 ε3 ε2N+2(ε2N+5/2) ν−2ε2N+3/2(ν−2ε2N+2)

‖∂ρ · ‖L2(P ε) ν3/2ε1/2(ν2ε1/2) ε2 ε2N+1(ε2N+5/2) ν−3/2ε2N+1/2(ν−2ε2N+2)

‖∂θ · ‖L2(P ε) ν2ε1/2 ε3 ε2N+2(ε2N+5/2) ν−2ε2N+3/2(ν−2ε2N+2)

‖∂xε3 · ‖L2(P ε) ε3/2 ε2 ε2N+1(ε2N+3/2) ε2N−1/2(ε2N)

‖ · ‖H1(P ε) νε1/2 ε2 ε2N+1(ε2N+3/2) ν−1ε2N+1/2(ν−1ε2N+1)

The remainder of this section contains the proof of Theorem 5.2.3. In our demonstration,
we follow the basic steps of a similar proof for an elasticity problem [14].

Definition 5.2.4. Set

u2N(x) =
N
∑

k=0

ε2ku2k(x), U2N(x) =
2N
∑

k=2

εkUk(ε−1ρ, θ, x3).

Some results regarding the boundary layer terms are collected below.
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Lemma 5.2.5. For any positive integer N , there exists positive constants C and α such
that

(5.2.24) ‖χ′(ρ)U2N‖L2(P ) + ε‖χ′∂ρU2N(ρ)‖L2(P ) ≤ Cε5/2 exp(−αε−1).

Also, for all v ∈ H1(P ) that vanishes on ∂PL,

(5.2.25)

∣

∣

∣

∣

∫

P

∇∼ U2N ∇∼ (χv) + ε−2∂3U2N∂3(vχ) dx

∣

∣

∣

∣

≤ Cε2N‖v‖H1(P ).

Proof. The inequalities (5.2.24) follow from a change of coordinates, Lemma 5.2.2,
and the definition of χ. To see that (5.2.25) holds, first rewrite (2.1.6) as a finite series,
using Taylor expansion with remainders. Then the result follows from the definition of
U2N , (5.2.17), and Lemma 5.2.2 �

We obtain now a rough estimate for the asymptotic expansion error.

Lemma 5.2.6. For any positive integer N , let e2N(x) = eε2N(xε). Then there exists a
constant C such that

‖e2N‖H1(P ) ≤ Cε2N .

Proof. We use in this proof that uε2N solves the Poisson problem up to arbitrary powers
of ε. First note that e2N vanishes on ∂PL. Hence, in view of the Poincaré’s inequality,

(5.2.26) ‖e2N‖2
H1(P ) ≤ c

∫

P

| ∇∼ e2N |2 + ε−2(∂3e2N)2 dx,

and we estimate next the right hand side of (5.2.26). Let v ∈ H1(P ) such that v = 0 on
∂PL. If we define

E(2N, v) =

∫

P

∇∼ (u(ε)− u2N)∇∼ v + ε−2∂3(u(ε)− u2N)∂3v dx∼,

then, by construction of the asymptotic expansion, we have

E(2N, v) =

∫

P

fv dx∼+

∫

∂P±

gv dx∼−
N
∑

k=0

ε2k

∫

P

(

∇∼ u
2k∇∼ v + ε−2∂3u

2k∂3v
)

dx∼

= −ε2N

∫

P

∇∼ u
2N ∇∼ v dx∼,

and we conclude that

(5.2.27) |E(2N, v)| ≤ Cε2N‖v‖H1(P ).

We also have
∣

∣

∣

∣

∫

P

∇∼ (χU2N)∇∼ v −∇∼ U2N ∇∼ (χv) + ε−2
[

∂3(χU2N)∂3v − ∂3U2N∂3(χv)
]

dx∼

∣

∣

∣

∣

≤
(

‖χ′U2N‖L2(P ) + ‖χ′∂ρU2N‖L2(P )

)

‖v‖H1(P ).

Hence, by Lemma 5.2.5

(5.2.28)

∣

∣

∣

∣

∫

P

[

∇∼ (χU2N)∇∼ v + ε−2∂3(χU2N)∂3v
]

dx∼

∣

∣

∣

∣

≤ Cε2N‖v‖H1(P ).
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Making v = e2N we have
∫

P

| ∇∼ e2N |2 + ε−2(∂3e2N)2 dx∼ = E(2N, e2N) +

∫

P

[

∇∼ (χU2N)∇∼ e2N + ε−2∂3(χU2N)∂3e2N

]

dx∼

≤ Cε2N‖e2N‖H1(P ),

from (5.2.27) and (5.2.28), and the result follows from (5.2.26). �

The estimate in Lemma 5.2.6 is not sharp. The powers of ε can be shown to be 2N+1/2.
We make this improvement when we consider the error on the unscaled plate P ε.

Proof (of Theorem 5.2.3). Assume first that N is positive. From Lemma 5.2.6, we
immediately obtain ‖eε2N‖H1(P ε) = O(ε2N−1/2). This result too is not sharp. To obtain a
sharp result, we use the triangle inequality:

‖eε2N‖H1(P ε) ≤ ‖eε2N+2 − eε2N‖H1(P ε) +O(ε2N+3/2),

and then the result follows from (5.2.23) and a scaling argument. A similar argument holds
for N = 0. �

5.3. Asymptotic Expansions for the Model Solution

To develop an asymptotic expansion for the solution of the hierarchical models, we reason
as before, but use weak equations instead of their strong form. We start by posing a problem
for the solution of the minimum energy model in the scaled domain P . If we define u(p)(x) =
uε(p)(xε), then
(5.3.1)
∫

P

∇∼ u(p)∇∼ v + ε−2∂3u(p)∂3v dx∼ =

∫

P

fv dx∼+

∫

∂P±

gv dx∼ for all v ∈ H̊1(Ω;Pp(−1, 1)).

Considering the asymptotic expansion

(5.3.2) u0(p) + ε2u2(p) + ε4u4(p) + · · · ,

and formally substituting it for u(p) in (5.3.1), we conclude that for all v ∈ H̊1(Ω;Pp(−1, 1)),
∫

P

∂3u
0(p)∂3v dx∼ = 0,(5.3.3)

∫

P

∂3u
2(p)∂3v dx∼ =

∫

P

(

f + ∆2D u
0(p)

)

v dx∼+

∫

∂P±

gv,(5.3.4)

∫

P

∂3u
2k(p)∂3v dx∼ =

∫

P

∆2D u
2k−2(p)v dx∼, for k > 1.(5.3.5)

Let P̂p(−1, 1) be the space of polynomials of degree p in (−1, 1) with zero average. Repeating
the arguments of the expansion for the exact solution, we set u0(p)(x) = ζ0(x∼) and u2(p)(x∼, ·)
as the Galerkin projection of u2(x∼, ·) into P̂p(−1, 1) for almost every x∼ ∈ Ω, i.e.,

(5.3.6)

∫ 1

−1

∂3u
2(p)(x∼, x3)∂3v(x3) dx3 =

∫ 1

−1

[f(x∼, x3) + ∆2D ζ
0(x∼)]v(x3) dx3

+ g(x∼,−1)v(−1) + g(x∼, 1)v(1), for all v ∈ P̂p(−1, 1).
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For any integer k ≥ 2, we define u2k(p)(x∼, ·) ∈ P̂p(−1, 1) by

(5.3.7)

∫ 1

−1

∂3u
2k(p)(x∼, x3)∂3v(x3) dx3 =

∫ 1

−1

∆2D u
2k−2(p)(x∼, x3)v(x3) dx3,

for all v ∈ P̂p(−1, 1), and for almost every x∼ ∈ Ω.

The ansatz (5.3.2) does not satisfy the Dirichlet boundary conditions at ∂PL and we use
then boundary correctors Uk(p). These functions are polynomial in the transverse direction,
and are defined in the semi-infinite strip Σ. We need to define the spaces

V (Σ, p) =
{

v ∈ D′(R+;Pp(−1, 1)) : ‖∇∼ v‖L2(Σ) + ‖v(0, ·)‖L2(−1,1) <∞
}

,

V0(Σ, p) =
{

v ∈ V (Σ, p) : v(0, ·) = 0
}

.

For any positive integer k, let Uk(p) ∈ V (Σ, p) be the solutions of

(5.3.8)

∫

Σ

∇∼ U
k(p) · ∇∼ v dρ̃ dx3 =

∫

Σ

Fk(p)v dρ̃ dx3 for all v ∈ V0(Σ, p),

Uk(p)(0, θ, x3) = uk(p)(0, θ, x3) for all x3 ∈ (−1, 1),

Fk(p) =
k−1
∑

j=0

ρ̃j
(

aj1∂ρ̃U
k−j−1(p) + aj2∂θθU

k−j−2(p) + aj3∂θU
k−j−2(p)

)

,

where uk = 0 for k odd and U0(p) = U1(p) = 0.
A result analogous to Lemma 5.2.2 holds for Uk(p), guaranteeing existence, uniqueness

and exponential decay, with the same decaying rate [29]. This implies in particular that
there exist constants C and α such that

(5.3.9)

∫

Σ

[χ′(ερ̃)U2(p)]2 dρ̃ dx3 ≤ C exp(−αε−1).

The above inequality will be of use further on. Similarly to (5.2.18), we have that

uε(p)(xε) ∼ ζ0(x∼) +
∞
∑

k=1

ε2ku2k(p)(x∼, ε
−1xε3)− χ(ρ)

∞
∑

k=2

εkUk(p)(ε−1ρ, θ, ε−1xε3),

where ζ0 solves (5.2.13).
We present next an estimate, in theH1(P ε) norm, of uε(p) minus its truncated asymptotic

expansion. Since the proofs of the previous section work here with minor modifications, we
refrain from repeating them. We would like to remark that this result gives a bound that is
uniform in p, and that the bound is the same (up to a constant) as in Theorem 5.2.3.

Theorem 5.3.1. For any positive integer N , let

eε2N(p)(xε) = uε(p)(xε)−
N
∑

k=0

ε2ku2k(p)(x∼, ε
−1xε3) + χ(ρ)

2N
∑

k=2

εkUk(p)(ε−1ρ, θ, ε−1xε3).

Then there exists a constant C such that ‖eε2N(p)‖H1(P ε) ≤ Cε2N+1, for all p ∈ N.
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5.4. Estimates for the modeling error

In this section, we estimate the modeling error. As we mentioned before, this is done
by comparing the asymptotic expansions of the exact and model solution. A key point is to
estimate the difference between terms of the respective expansions. We need the following
definitions.

Definition 5.4.1. For a nonnegative real number s, let

as = ‖f‖L2(Ω;Hs(−1,1)) + ‖g‖L2(∂P±), a1
s = ‖f‖H1(Ω;Hs(−1,1)) + ‖g‖H1(∂P±),

abs =

(∫

∂Ω

‖f(x∼, ·)‖
2
Hs(−1,1) + |g(x∼,−1)|2 + |g(x∼, 1)|2 dx∼

)1/2

.

The comparison between u2(p) and u2 is straightforward since the former is a Galerkin
projection of the latter. Indeed, let π̂1

p be the orthogonal projection operator fromH1(−1, 1)∩
L̂2(−1, 1) to P̂p(−1, 1), with respect to the inner product that induces the norm | · |H1(−1,1).
The next classical result [8], estimates the projection error.

Lemma 5.4.2. For any nonnegative real number s, there exists a constant C such that if
0 ≤ r ≤ 1 ≤ s, then

‖φ− π̂1
pφ‖Hr(−1,1) ≤ Cpr−s‖φ‖Hs(−1,1) for φ ∈ Hs(−1, 1) ∩ L̂2(−1, 1).(5.4.1)

From (5.2.6), (5.2.8)–(5.2.11), and (5.3.6), we gather that u2(p) = π̂1
pu

2, for all x∼ ∈ Ω.
From Lemmas 5.4.2, and 5.2.1, we conclude the following result.

Lemma 5.4.3. For any nonnegative real number s, there exists a constant c independent
of ε, p, f , and g, such that

‖u2 − u2(p)‖L2(P ) ≤ cp−2−sas,

‖∇∼ u
2 −∇∼ u

2(p)‖L2(P ) ≤ cp−2−sa1
s,

‖∂x3u
2 − ∂x3u

2(p)‖L2(P ) ≤ cp−1−sas.

Bounding the difference U2−U2(p) is harder due to the presence of corner singularities.
Since both U2 and U2(p) are originally defined in the semi-infinite strip Σ, it is natural to
investigate the approximation properties in this domain, and such is done in the appendix.
We apply these approximation results to estimate the difference between boundary correctors
in P ε.

Definition 5.4.4. Let x∼ ∈ ∂Ω, and let s be a nonnegative real number. Let

(5.4.2) N(s) = max{n ∈ Z : 2n < s}.

If supx3∈{−1,1} |g(x∼, x3)| 6= 0, set m = 1. If |g(x∼,−1)| = |g(x∼, 1)| = 0 and

(5.4.3) sup
x3∈{−1,1}

N(s+5/2)
∑

j=2

|∂2j−3
3 f(x∼, x3)| 6= 0,
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let m be the minimum integer in {2, . . . , N(s+5/2)} such that supx3∈{−1,1} |∂2m−3
3 f(x∼, x3)| 6=

0. We define in both cases µ(x∼, s, δ) = min{4m−2− δ, s+ 3/2}. If |g(x∼,−1)| = |g(x∼, 1)| = 0

and (5.4.3) does not hold, then define µ(x∼, s, δ) = s+ 3/2. Finally, set

µ̄(s, δ) = inf
x
∼
∈∂Ω

µ(x∼, s, δ).

Remark. Four our purposes, the minimum value that µ̄(s, δ) can assume is 2− δ, since
we will always impose s > 3/2.

We pospone the proof of the next Lemma to the appendix II.

Lemma 5.4.5. Let Z(xε) = χ(ρ)[U2 − U2(p)](ε−1ρ, θ, ε−1xε3). For any nonnegative real
number s such that s+ 1/2 is not an even integer, and for any arbitrarily small δ > 0, there
exists a constant c independent of ε, p, f , and g, such that

‖∂ρZ‖L2(P ε) + ‖∂x3Z‖L2(P ε) ≤ cp−µ̄(s,δ)abs.

Finally, we present the convergence results for the hierarchical models. Let P ε
0 = Ω0 ×

(−ε, ε), here Ω0 is an open domain such that Ω̄0 ⊂ Ω. This is usefull to obtain interior
estimates.

Theorem 5.4.6. For any nonnegative real numbers s and s∗ such that s∗+ 1/2 is not an
even integer, and for any arbitrarily small δ > 0, there exist constants c and C independent
of ε and p, with c also independent of f and g, such that the error between uε and its
approximation uε(p) is bounded as

‖uε − uε(p)‖L2(P ε) ≤ cε5/2p−2−sas + Cε3,

‖∂ρ[uε − uε(p)]‖L2(P ε) ≤ cε2p−µ̄(s∗,δ)abs∗ + Cε5/2,

‖∂θ[uε − uε(p)]‖L2(P ε) ≤ cε5/2p−2−sa1
s + Cε3,

‖∇∼ u
ε −∇∼ u

ε(p)‖L2(P ε0 ) ≤ cε5/2p−2−sa1
s + Cε9/2,

‖∂xε3u
ε − ∂xε3u

ε(p)‖L2(P ε) ≤ cε3/2p−1−sas + Cε2,

‖uε − uε(p)‖H1(P ε) ≤ cε3/2p−1−sas + Cε2.

Moreover, if f ≡ 0, then ‖uε − uε(p)‖H1(P ε) ≤ cε2p−µ̄(s∗,δ)abs∗ + Cε5/2.

Proof. We prove the second estimate. Using the triangle inequality, the following holds:

(5.4.4) ‖∂ρ[uε − uε(p)]‖L2(P ε) ≤ ‖eε2‖H1(P ε) + ‖eε2(p)‖H1(P ε)

+ ε5/2‖∇∼ u
2 −∇∼ u

2(p)‖L2(P ) + ε2‖∂ρZ‖L2(P ε).

From Theorems 5.2.3 and 5.3.1, we have that ‖eε2‖H1(P ε) +‖eε2(p)‖H1(P ) ≤ Cε3. The estimate
for ‖∂ρZ‖L2(P ε) comes from Lemma 5.4.5. Finally we apply Lemma 5.4.3 to bound ‖∇∼ u

2 −
∇∼ u

2(p)‖L2(P ), and substituting in (5.4.4) we have the result. The other estimates follow
from similar arguments. �

Remark. In the worst case scenario, when g does not vanish identically along the bound-
ary of ∂P±, i.e., supx

∼
∈∂Ω maxx3∈{−1,1} |g(x∼, x3)| 6= 0, then µ̄(s∗, δ) = 2− δ.
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We summarize the convergence results in the table below. We present only the leading
terms of the errors and in parenthesis we show interior estimates if those are better than the
global ones.

Table 2. Rates of convergence of the model error.

norm uε − uε(p) Relative Error

‖ · ‖L2(P ε) ε5/2p−2−sas ν−2ε2p−2−sas

‖∂ρ · ‖L2(P ε) ε2p−µ̄abs (ε5/2p−2−sa1
s) ν−3/2ε3/2p−µ̄abs (ν−2ε2p−2−sa1

s)

‖∂θ · ‖L2(P ε) ε5/2p−2−sa1
s ν−2ε2p−2−sa1

s

‖∂xε3 · ‖L2(P ε) ε3/2p−1−sas p−1−sas

‖ · ‖H1(P ε) ε3/2p−1−sas ν−1εp−1−sas

The estimates of the table above indicate that the rate of convergence in ε is the same
regardless of the value of p. Nonetheless, increasing p does diminish the modeling error,
as expected. It is interesting to see that for the relative error norm, when ζ0 ≡ 0 there is
no convergence in ε, only in p. Finally, if f is polynomial in the transverse direction, then
u2 = u2(p) in this case, for p high enough, and it is possible to obtain better convergence
rates with respect to ε in all norms of Table 2, with the exception of the L2(P ε) norm of the
normal derivative of the error [29].

5.5. Appendices

5.5.1. Appendix I. In this appendix, we discuss several issues related to the boundary
correctors. Our first goal is to prove existence, uniqueness and regularity of solutions for
Poisson problems in the semi-infinite strip Σ. We also prove that under certain conditions,
such solutions and their approximations decay exponentially. Next, we will study the prop-
erties of a standard Galerkin approximations for the boundary corrector U2 in spaces with
polynomial dependence in the vertical direction. We show estability and convergence results.
We do not use the technique of separation of variables, although it would simplify some of
the proofs, because it does not generalize to the case of linear elasticity.

In this appendix, we denote a typical point in Σ by x∼ = (x1, x2). It is useful to consider
the sets

Σ(t, s) =
{

x∼ ∈ Σ : t < x1 < s
}

, and γt =
{

x∼ ∈ Σ : x1 = t
}

,

for 0 ≤ t ≤ s < ∞. Let V (Σ) =
{

v ∈ D′(Σ) : wv ∈ L2(Σ), ∇∼ v ∈ L∼
2(Σ)

}

, where

w(x∼) = (1+x1)−1. By means of Hardy’s inequality, it is possible to show that V (Σ) endowed

with the inner product
∫

Σ
∇∼ u · ∇∼ v dx∼+

∫

γ0
uv dx2 is a Hilbert space [29]. We denote V0(Σ)

as the set of functions in V (Σ) that vanish on γ0. The following well-posedness result holds.
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Theorem 5.5.1. Assume that w−αf ∈ L2(Σ), where α ≥ 1, and let U0 ∈ H1/2(γ0). Then
there exists unique U ∈ V (Σ) such that

∫

Σ

∇∼ U · ∇∼ v dx∼ =

∫

Σ

f v dx∼ for all v ∈ V0(Σ),(5.5.1)

U = U0 on γ0.(5.5.2)

Moreover, there exists a constant c independent of f such that

|U |H1(Σ) ≤
2

2α− 1
‖w−αf‖L2(Σ) + c‖U0‖H1/2(γ0).

With the questions of existence and uniqueness answered, we proceed to further charac-
terize the boundary correctors. We show that they decay exponentially fast to a constant,
in a sense that we will make clear. Our proof generalizes previous approaches [22]. It allows
a nontrivial right hand side, and, more importantly, it works not only for the exact solution
of (5.5.1), but also for some of its approximations. So, Ū does not necessarily solves (5.5.1),
but it might be the projection of the solution into some particular space. Similarly, σ̄∼ might

be either the gradient of the solution or its approximation. In our applications, Ū and σ̄∼ are
given by Galerkin or mixed approximations. As we see below, sufficient conditions for such
exponential decay are that Ū ∈ L2

w(Σ), σ̄∼ ∈ L∼
2(Σ), and that Ū , σ̄∼ satisfy for 0 ≤ t ≤ s <∞:

∫

Σ(t,s)

|σ̄∼|
2 dx∼ =

∫

Σ(t,s)

fŪ dx∼−
∫

γt

σ̄1Ū dx2 +

∫

γs

σ̄1Ū dx2,(C1)

∫

Σ(t,s)

f dx∼ =

∫

γt

σ̄1 dx2 −
∫

γs

σ̄1 dx2,(C2)

−
∫

Σ(0,t)

x1f dx∼ =

∫

γ0

Ū dx2 +

∫

γt

(tσ̄1 − Ū) dx2,(C3)

∫

γt

Ū2 dx2 ≤ cW

∫

γt

σ̄2
2 dx2 +

1

2

(∫

γt

Ū dx2

)2

for some cW ≥ 0.(C4)

The constant cW in the condition (C4) mimics the Wirtinger inequality (the one-dimensional
version of the Poincaré’s inequality [31]).

Assume that there exist positive constants c0 and M such that

(5.5.3)

(∫

Σ(t,∞)

f(x∼)2 dx∼

)1/2

+

∣

∣

∣

∣

∫

Σ(t,∞)

(t− x1)f(x∼) dx∼

∣

∣

∣

∣

≤M exp(−c0t)

and define

(5.5.4) c∞(Ū) =

∫

Σ

x1f(x∼) dx∼+

∫

γ0

Ū dx2.

In the following two lemmas we show that results similar to (C1)–(C3) are valid in unbounded
sections of Σ as well.
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Lemma 5.5.2. Assume that (5.5.3) holds, wU ∈ L2(Σ), σ∼ ∈ L∼
2(Σ) and that conditions

(C2), (C3) are satisfied. Then for t ≥ 0
∫

Σ(t,∞)

f dx∼ =

∫

γt

σ1 dx2,(5.5.5)

∫

γt

U dx2 = c∞(U) +

∫

Σ(t,∞)

(t− x1)f(x∼) dx∼.(5.5.6)

Proof. If we define P (s) =
∫

γs
σ1 dx2, then in view of (C2) we have that

P (s) =

∫

γt

σ1 dx2 −
∫

Σ(t,s)

f dx∼.

Thus P is a continuous function and lims→∞ P (s) = d, where d is the constant

d =

∫

γt

σ1 dx2 −
∫

Σ(t,∞)

f dx∼.

Since |σ∼| ∈ L
2(Σ), then P (s) ∈ L2(R+). Hence d = 0 and identity (5.5.5) follows. Now, to

conclude (5.5.6), we use (C3) and then equations (5.5.4), (5.5.5). �

The proof of the lemma below follows from similar arguments

Lemma 5.5.3. Assume that U , |σ∼| ∈ L
2(Σ) and that condition (C1) is satisfied. Then,

for t ≥ 0

(5.5.7)

∫

Σ(t,∞)

|σ∼|
2 dx∼ = −

∫

γt

σ1U dx2 +

∫

Σ(t,∞)

f U dx∼.

We have the following results.

Theorem 5.5.4. Assume that (5.5.3) holds, that wŪ ∈ L2(Σ), σ̄∼ ∈ L∼
2(Σ) satisfy (C1)–

(C4), and also that c∞(Ū) = 0. Then there exists a constant c depending only on c0 and cW
such that

(5.5.8)

∫

Σ(t,∞)

Ū2 + |σ̄∼|
2 dx∼ ≤ c

(

1 +

∫

Σ

|σ̄∼|
2 dx∼

)

exp(−t/c1),

where c1 = max{1 + cW , 1/c0}.

Proof. Let I(t) =
∫

γt
Ū dx2. Then, from Lemma 5.5.2 and equation (5.5.3),

(5.5.9) |I(t)| ≤M exp(−c0t).

If we define the function E(t) =
∫

Σ(t,∞)
|σ̄∼|

2 dx∼, then E ′(t) = −
∫

γt
|σ̄∼|

2 dx2 and (C4) yields
∫

γt

Ū2 dx2 ≤ −cWE ′(t) +
I(t)2

2
,(5.5.10)

∫

Σ(t,∞)

Ū2 dx∼ ≤
∫ ∞

t

(

cW

∫

γx1

|σ̄∼|
2 dx2 +

1

2
I(x1)2

)

dx1 = cWE(t) +
1

2

∫ ∞

t

I(x1)2 dx1.

(5.5.11)
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We can now bound the growth of the energy. From (5.5.9) and (5.5.11), we conclude that
Ū ∈ L2(Σ), and using Lemma 5.5.3 we gather that:
(5.5.12)

E(t) = −
∫

γt

σ̄1Ū dx2 +

∫

Σ(t,∞)

f Ū dx∼

≤ 1

2

∫

γt

σ̄2
1 dx2 +

1

2

∫

γt

Ū2 dx2 +
α

2

∫

Σ(t,∞)

Ū2 dx∼+
1

2α

∫

Σ(t,∞)

f 2 dx∼

≤ −(1 + cW )

2
E ′(t) +

I(t)2

4
+
αcW

2
E(t) +

α

4

∫ ∞

t

I(x1)2 dx1 +
1

2α

∫

Σ(t,∞)

f 2 dx∼,

where (5.5.10) and (5.5.11) were used in the last inequality. Choose α = (cW )−1 in (5.5.12)
to conclude that (recall that E ′(t) is nonpositive):

(5.5.13) c1E
′(t) ≤ (1 + cW )E ′(t) ≤ −E(t) +G(t),

where

(5.5.14) c1 = max{1 + cW ,
1

c0

}, G(t) =
I(t)2

2
+

1

2cW

∫ ∞

t

I(x1)2 dx1 + cW

∫

Σ(t,∞)

f 2 dx∼.

We estimate now the energy norm. Define W (t) such that

W ′(t) = −W (t)

c1

+
G(t)

c1

, W (0) = E(0).

Then

(5.5.15) E(t) ≤W (t) =
1

c1

exp(−t/c1)

∫ t

0

exp(x1/c1)G(x1) dx1 + E(0) exp(−t/c1).

Using (5.5.14), (5.5.3), and (5.5.9) we have that the integral in (5.5.15) is uniformly bounded
and then E(t) decays exponentially. Combining (5.5.9) and (5.5.11), we have the correspond-
ing decay of ‖Ū‖L2(Σ(t,∞)). �

Using the previous theorem, we can decompose a general solution as a constant term
plus a exponentially decaying function, as the result below shows.

Corollary 5.5.5. Assume that (5.5.3) holds and that Ū ∈ V (Σ), σ̄∼ ∈ L2(Σ) satisfy

(C1)–(C4). Defining c∞(Ū) as in (5.5.4), we have the decomposition

(5.5.16) Ū =
1

2
c∞(Ū) + Ū∗,

where Ū∗, σ̄∼ decay to zero exponentially as in Theorem 5.5.4, i.e., (5.5.8) is satisfied with Ū

replaced by Ū∗.

In the rest of this appendix, we investigate how well elements of V (Σ, p) can approximate
the solution of

(5.5.17)

∆U = 0 in Σ,

∂U

∂n
= 0 on R+ × {−1, 1},

U = U0 on γ0,
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where U0 ∈ Hr0(γ0)∩L̂2(γ0) for some r0 > 3/2. The approximation rates are severely limited
by the presence of corner singularities in U . We describe these singularities explicitly and
expose their influence in the convergence rates.

To describe the singular behavior of the solution of (5.5.17), we introduce in Σ two polar
coordinate systems, (rl, θl), l = 1, 2 relative to the vertices P1 = (0, 1) and P2 = (0,−1).
The convention is that rl gives the distance to Pl and the angle θl ∈ [0, π/2] increases
counterclockwise, so points lying on γ0 have θ1 = 0 and θ2 = π/2.

The next theorem [28], shows a decomposition of the solution U in singular and smooth
parts and it is of paramount importance in future estimates.

Theorem 5.5.6. Let U ∈ V (Σ) be the solution of (5.5.17) with r0 > 3/2 such that
r0 + 1/2 is not an even integer. Then there exist constants cj such that

(5.5.18) U = US +W, US = χ̌
2
∑

l=1

N(r0+1/2)
∑

j=1

cj∂
(2j−1)
2 U0

(

(−1)l+1
)

vjl ,

where χ̌ is a smooth cutoff function that equals the identity for x1 < 1 and vanishes for
x1 > 2, N is as in (5.4.2), and

vj1 =
[

θ1 cos
(

(2j − 1)θ1

)

+ log r1 sin
(

(2j − 1)θ1

)]

r
(2j−1)
1 ,

vj2 =
[(π

2
− θ2

)

sin
(

(2j − 1)θ2

)

+ log r2 cos
(

(2j − 1)θ2

)]

r
(2j−1)
2 .

Furthermore, ‖W‖Hr0+1/2(Σ) ≤ c‖U0‖Hr0 (γ0) for some constant c.

Remark. Note that vj1 = vj2 = 0 when x1 = 0, and therefore US is identically zero at
x1 = 0.

Remark. Since U0 ∈ Hr0(−1, 1) and 2N(r0 + 1/2) − 1 < r0 − 1/2, then US is well
defined. Also, note that the singular behavior of U depends not only on the regularity of
the Dirichlet data U0 but also on how many derivatives of U0 vanish at the endpoints −1, 1.
For instance, although U0(y) = y is smooth, it gives rise to a singular solution.

Let π̂
1(x2)
p be the operator that acts like π̂1

p in each fiber, i.e., if φ ∈ L2(R+;H1(−1, 1) ∩
L̂2(−1, 1)), then π̂

1(x2)
p φ ∈ L2(R+; P̂p(−1, 1)), and

∫

Σ

∂2(φ− π̂1(x2)
p φ)∂2ψ dx∼ = 0 for all ψ ∈ L2((−1, 1); P̂p(−1, 1)).

Also, let πp be the orthogonal L2 projection operator from L2(Σ) into L2(R+;Pp(−1, 1), and
let Π1

p be the orthogonal H1 projection operator from H1(Σ) into H1(R+;Pp(−1, 1).
To estimate the projection error of the singular function US, we apply the ideas of

Dorr [16], [17], and the Remark 6.3 of Bernardi and Maday [8]. See [29] for a descrip-
tion of how such convergence rates can be obtained.

Lemma 5.5.7. Let v(r, θ) = χ̌rα[ξ1(θ) + ξ2(θ) log r], where ξ1, ξ2 ∈ C∞([0, π/2]), and α
is a nonnegative real number. Then, for every δ, there exists a constant c such that

‖v − π(ρ̃2)
p v‖H1(Σ) ≤ cp−2α+δ.
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The result below estimates approximations given by projection operators, based on the
decomposition (5.5.18).

Lemma 5.5.8. Assume that U ∈ V (Σ) solves (5.5.17) with r0 > 3/2 such that r0 + 1/2
is not an even integer, and that W and US are as in (5.5.18). Then, there exists a constant
c such that

‖W − π1(x2)
p W‖H1(Σ) ≤ cp1/2−r0‖U0‖Hr0 (γ0).

Also, if US is not the zero function then for any arbitrarily small δ > 0, there exists a constant
c such that

‖US − π(x2)
p US‖H1(Σ) ≤ cp−4m+2+δ‖U0‖Hr0 (γ0),

where m ∈ {1, . . . , N(r0 + 1
2
)} is the minimum integer such that

|∂(2m−1)
2 U0(−1)|+ |∂(2m−1)

2 U0(1)| 6= 0.

Remark. Using the work of Babuška and Suri [5], it is possible to improve the esti-
mate of Lemma 5.5.8 slightly, replacing p−4m+2+δ by p−4m+2(log p), at the expense of many
technicalities.

We define the rate of convergence of our approximation result below.

Definition 5.5.9. For U0 ∈ Hr0(−1, 1), and N as in (5.4.2), if there exists an minimum
integer m ∈ {1, . . . , N(r0 + 1

2
)} such that |∂2m−1

2 U0(−1)| + |∂2m−1
2 U0(1)| 6= 0, let γ(r0, δ) =

min
{

4m− 2− δ, r0 − 1/2
}

, otherwise let γ(r0, δ) = r0 − 1/2.

We conclude now the following approximation result for U .

Theorem 5.5.10. Assume that U solves (5.5.17) with r0 > 3/2 such that r0 + 1/2 is not
an even integer. Then

‖U − Π1
pU‖H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0),

where γ is as in Definition 5.5.9. The constant c depends on r0 and δ > 0 only.

Proof. Using the best approximation property of Π1
p, Theorem 5.5.6, and Lemma 5.5.8,

we have that

‖U − Π1
pU‖H1(Σ) ≤ ‖US − π(x2)

p US‖H1(Σ) + ‖W − π1(x2)
p W‖H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0).

�

Now we use the above result to estimate the errors due to the Galerkin projections.

Theorem 5.5.11. For any real number r0 > 3/2 such that r0 + 1/2 is not an even
integer, and any arbitrarily small δ > 0, there exists a constant c such that if U ∈ V (Σ)

solves (5.5.17) with U0 ∈ Hr0(γ0) ∩ L̂2(γ0), and if U(p) ∈ V (Σ, p) solves
∫

Σ

∇∼ U(p) · ∇∼ v dx∼ = 0 for all v ∈ V0(Σ, p),

U(p) = π̂1
pU0 on γ0,

then
|U − U(p)|H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0),

where γ is as in Definition 5.5.9.
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Proof. Let Ũ0 be the trace of Π1
pU on γ0. Then, from the trace Theorem and Theo-

rem 5.5.10,

‖U0 − Ũ0‖H1/2(γ0) ≤ c‖U − Π1
pU‖H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0).

Also,

‖Û0 − π̂1
pU0‖H1/2(γ0) ≤ ‖Ũ0 − U0‖H1/2(γ0) + ‖U0 − π̂1

pU0‖H1/2(γ0) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0).

Introduce now Ũ ∈ V (Σ) such that
∫

Σ

∇∼ Ũ · ∇∼ v dx∼ = 0 for all v ∈ V0(Σ),

Ũ = Ũ0 on γ0,

and also Ũ(p) ∈ V (Σ, p) such that
∫

Σ

∇∼ Ũ(p) · ∇∼ v dx∼ = 0 for all v ∈ V0(Σ, p),

Ũ(p) = Ũ0 on γ0,

Then,

(5.5.19) |U − Ũ |H1(Σ) + |Ũ(p)− U(p)|H1(Σ)

≤ c‖U0 − Ũ0‖H1/2(γ0) + c‖Ũ0 − π̂1
pU0‖H1/2(γ0) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0).

Now we advance to estimate |Ũ − Ũ(p)|H1(Σ). Since Ũ(p)− Π1
pU ∈ V0(Σ, p), then

|Ũ(p)−Π1
pU |2H1(Σ) =

∫

Σ

∇∼ (Ũ(p)−Π1
pU) ·∇∼ (Ũ−Π1

pU) dx∼ ≤ |Ũ(p)−Π1
pU |H1(Σ)|Ũ−Π1

pU |H1(Σ),

and therefore, |Ũ(p)− Π1
pU |H1(Σ) ≤ |Ũ − Π1

pU |H1(Σ). So, using the triangle inequality

|Ũ − Ũ(p)|H1(Σ) ≤ |Ũ − Π1
pU |H1(Σ) + |Π1

pU − Ũ(p)|H1(Σ) ≤ 2|Ũ − Π1
pU |H1(Σ)

≤ 2|Ũ − U |H1(Σ) + 2|U − Π1
pU |H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0).

from (5.5.19) and from Theorem 5.5.10. Finally,

|U−U(p)|H1(Σ) ≤ |U− Ũ |H1(Σ) + |Ũ− Ũ(p)|H1(Σ) + |Ũ(p)−U(p)|H1(Σ) ≤ cp−γ(r0,δ)‖U0‖Hr0 (γ0),

and the result follows. �

Remark. It is interesting to see how the corner singularities spoil an otherwise good
convergence rate. For example, if U0(y) = y, the Galerkin projection converges as p−2+δ in
H1(Σ), while if U0 is still smooth but has all derivatives vanishing at the endpoints, then
the convergence is faster than polynomial [29].
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5.5.2. Appendix II. In this second part of the appendix, we include proofs of results
stated throughout the chapter and which proofs use results developed in the first part of this
appendix.

Proof. (of Lemma 5.2.2) We use induction on k to prove the result and the relation

(5.5.20)

∫

Σ

ρ̃l∂ρ̃U
k dρ̃ dx3 =

∫

Σ

ρ̃lUk dρ̃ dx3 = 0, l = 0, 1, · · · .

Recall that, by convention, U1 = 0, and assume that the lemma and (5.5.20) hold for
k = 1, · · · , K − 1. We show now that the same holds for k = K. From the definition of
FK , the hypotheses of Theorem 5.5.1 are fulfilled, and there exists a unique function UK

solving (5.2.17) such that |∂ρ̃Uk| + |∂3U
k| ∈ L2(Σ). To conclude (5.2.19), we first note

from Corollary 5.5.5 that UK decays towards the constant cK(θ) =
∫

Σ
ρ̃FK(ρ̃, θ, x3) dρ̃ dx3 +

∫ 1

−1
ūK(0, θ, x3) dx3. Our goal now is to show that this constant is actually zero. Since uK

has zero average in each fiber, using the definition of Fk, it is enough to prove (5.5.20) for
any positive integer l. Using the formula

∫

Σ

u∆ v dρ̃ dx3 =

∫

Σ

v∆u dρ̃ dx3 +

∫

∂Σ

u
∂v

∂n
− v ∂u

∂n
dρ̃ dx3,

with u = UK and v = ρ̃l+2/[(l + 2)(l + 1)], we get

∫

Σ

ρ̃lUK dρ̃ dx3 =

∫

Σ

ρ̃l+2

(l + 2)(l + 1)
FK dρ̃ dx3 = 0

from the definition of FK and the inductive hypothesis. Similarly, using integration by parts,
we also have that

∫

Σ
ρ̃l∂ρ̃U

K dρ̃ dx3 = 0. Hence (5.5.20) holds and the lemma follows. �

Proof. (of Lemma 5.4.5) From Theorem 5.5.11, with u2(0, θ, ·) replacing U0, we have
that for each θ,

(5.5.21) |U2 − U2(p)|H1(Σ) ≤ cp−γ(s+2,δ)‖u2(0, θ, ·)‖Hs+2(−1,1).

Changing coordinates, we have that

‖∂ρZ‖2
L2(P ε) ≤ c

∫ L

0

∫

Σ

|∂ρ[U2 − U2(p)]|2 dρ̃ dx3 dθ + c

∫ L

0

∫

Σ

|χ′|2[U2 − U2(p)]2 dρ̃ dx3 dθ

≤ cp−γ(s+2,δ)‖u2(0, θ, ·)‖Hs+2(−1,1),

where we used Lemma 5.2.5 and equations (5.3.9) and (5.5.21) in the last inequality. Now,
from the definitions 5.4.4 and 5.5.9, γ(r + 2, δ) = µ̄(s, δ), and from Lemma 5.2.1, we have
that

‖u2(0, θ, ·)‖Hr+2(−1,1) ≤ abs,

and the result follows. �
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Proof of Lemma 5.4.5. For x∼ ∈ ∂Ω fixed, let θ be such that z∼(θ) = x∼. From equa-

tions (5.2.17), (5.3.8), and Theorem 5.5.11, there exists a constant c such that

(5.5.22)

∫

Σ

|∂ρ̃[U2 − U2(p)]|2 + |∂x3 [U2 − U2(p)]|2 dρ̃ dx3 ≤ cp−γ(s+2,p)‖u2(x∼, ·)‖Hs+2(−1,1)

≤ cp−γ(s+2,p)(‖f(x∼, ·)‖Hs(−1,1) + |g(x∼,−1)|+ |g(x∼, 1)|).

Replacing U0(·) by u2(x∼, ·) in Definition 5.5.9, and using (5.2.6), (5.2.8), and (5.2.13), it is

not hard to show that γ(s+ 2, p) ≤ µ̄(s, δ). Integrating (5.5.22) in θ and using Lemma 5.2.1,
we conclude the proof. �





CHAPTER 6

Hierarchical Modeling of Linearly Elastic Plates

This chapter presents various classes of models for a linearly elastic isotropic plate prob-
lem. The models that we consider here are based on two variational principles, the Hellinger–
Reissner principles. This approach appeared in a joint work with Alessandrini, Arnold and
Falk [2], which included an error analysis for one of the models, based on the two energy
principles (Prager–Synge theorem).

In what follows we describe the resulting equations for some “low order” models.

6.1. Introduction

Let Ω ⊂ R2 be a smoothly bounded domain and let ε ∈ (0, 1] represent the plate thickness.
The plate occupies the set P ε = Ω×(−ε, ε). We denote its lateral side by ∂P ε

L = ∂Ω×(−ε, ε),
and the union of its top and bottom by ∂P ε

± = Ω × {−ε, ε}. We are concerned with the
problem of finding the displacement u : P ε → R3 and stress σ : P ε → R3×3

sym (the space of
3× 3 symmetric matrices) such that

(6.1.1)
Aσε = e(uε), div σε = −f ε in P ε,

σεn = gε on ∂P ε
±, uε = 0 on ∂P ε

L,

where f ε : P ε → R3 and gε : ∂P ε
± → R3 represent the volume and traction loads. We denote

the symmetric part of the gradient of u by

e(uε) =
1

2
(∇uε +∇T uε),

i.e., eij(u
ε) = (∂iu

ε
j + ∂ju

ε
i)/2. Also, (div σε)i =

∑3
j=1 ∂jσ

ε
ij. The compliance tensor A is such

that Aτ = (1 + ν)τ/E− ν tr(τ)δ/E, where E > 0 is the Young’s modulus, ν ∈ [0, 1/2) is the

Poisson’s ratio, and δ is the 3× 3 identity matrix.
Extending the notation previously employed, we use one underbar for first order tensors

in three variables, two underbars for second order tensors in three variables, etc. Similar
notation holds with undertildes for tensors in two variables. We can then decompose 3-
vectors and 3× 3 matrices as follows:

u =

(

u∼
u3

)

, σ =

(

σ∼∼
σ∼

σ∼
T σ33

)

.

The three-dimensional elasticity problem decouples into two problems, one related to the
stretching of the plate, another related to the bending. For a function k defined on P ε or
∂P ε
±, there is a unique decomposition into its even and odd parts with respect to xε3, i.e.,

63
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k = keven + kodd where

keven(xε) =
k(x∼

ε, xε3) + k(x∼
ε,−xε3)

2
, kodd(xε) =

k(x∼
ε, xε3)− k(x∼

ε,−xε3)

2
.

We decompose then

uε = uε
s

+ uε
b

, σε = σε
s

+ uε
b

, gε = gε
s

+ gε
b

, f ε = f ε
s

+ f ε
b

,

where

uε
s

=

(

u∼
εeven

uε
odd

3

)

, σε
s

=

(

σ∼∼
εeven

σ∼
εodd

(σ∼
εodd

)T σε
even

33

)

,(6.1.2)

uε
b

=

(

u∼
εodd

uε
even

3

)

, σε
b

=

(

σ∼∼
εodd

σ∼
εeven

(σ∼
εeven

)T σε
odd

33

)

,(6.1.3)

gε
s

=

(

g∼
εeven

gε
odd

3

)

, gε
b

=

(

g∼
εodd

gε
even

3

)

, f ε
s

=

(

f∼
εeven

f ε
odd

3

)

, f ε
b

=

(

f∼
εodd

f ε
even

3

)

.(6.1.4)

It is easy to see that the stretching part uε
s
, σε

s
is the solution of (6.1.1) with gε replaced

by gε
s

and f ε replaced by f ε
s

. Similarly for the bending part uε
b
, σε

b
.

6.2. Consistency

As the plate thickeness approach zero, the membrane part of the exact solution ap-
proaches the solution of the membrane equation. Similarly, the bending solution converges
to the biharmonic model.

Let ω be the solution of the biharmonic equation

(6.2.1)

Dε3 ∆2 ω(x∼) = lK in Ω,

ω0(x∼) =
∂ω

∂n
(x∼) = 0 on ∂Ω,

where D = 2E/[3(1− ν2)], and

lK(x∼) =

∫ ε

−ε
f ε3(x∼, x3) dx3 +

[

gε3(x∼, ε) + gε3(x∼,−ε)
]

+

∫ ε

−ε
x3 div f∼

ε(x∼, x3) dx3 + ε div
[

g∼
ε(x∼, ε)− g∼

ε(x∼,−ε)
]

.

Also, let η∼ solve the membrane equation

(6.2.2)
−ε div∼ A∼∼∼∼

−1 e∼∼
(η∼) = 2

∫ ε

−ε
f∼
ε(x∼, x3) dx3 + 2

[

g∼
ε(x∼, ε) + g∼

ε(x∼,−ε)
]

in Ω,

η∼ = 0 on ∂Ω.

Then uε converges asymptotically to

(6.2.3)

(

η∼(x∼)− x3∇∼ ω(x∼)

ω(x∼)

)

.
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We turn back to the modeling question. Mathematically, we define a sequence of problems
parametrized by the half-thickness ε, and say that a model is consistent, or convergent, if its
displacements uM,ε satisfy

(6.2.4) lim
ε→0

‖uε − uM,ε‖L2(P ε)

‖uε‖L2(P ε)

= 0,

for all loads such that at least one of the functions η∼ and ω are nonzero. If (6.2.4) does not

hold, then the model is divergent. In [35], a slightly different definition of consistency is
used. There, an approximation is consistent if it converges in a proper, scaled sense.

6.3. The HR models

It is possible to characterize the solution of (6.1.1) in an alternative manner. Indeed, let

V (P ε) = { v ∈ H1(P ε) : v = 0 on ∂P ε
L }, S(P ε) = L2(P ε).

Then the first Hellinger-Reissner principle, or HR for short, holds.
HR: (uε, σε) is the unique critical point of

L(v, τ) =
1

2

∫

P ε
Aτ : τ dxε −

∫

P ε
τ : e(v) dxε +

∫

P ε
f ε · v dxε +

∫

∂P ε±

gε · v dx∼
ε

on V (P ε)× S(P ε).
Finding the critical point of L is equivalent to find uε ∈ V (P ε) and σε ∈ S(P ε) such that

∫

P ε
Aσε : τ dx−

∫

P ε
e(uε) : τ dxε = 0 for all τ ∈ S(P ε),(6.3.1)

∫

P ε
σε : e(v) dxε =

∫

P ε
f · v dxε +

∫

∂P ε±

g · v dx∼
ε for all v ∈ V (P ε).(6.3.2)

A first type of models appears when we look for critical points of L in subspaces of V (P ε)
and S(P ε) that have polynomial dependence in the transverse direction. For instance, let p
be a positive integer and let

V (P ε, p) =
{

v ∈ V (P ε) : deg3 v∼ ≤ p, deg3 v3 ≤ p− 1
}

,(6.3.3)

S(P ε, p) =
{

τ ∈ S(P ε) : deg3 τ∼∼
≤ p, deg3 τ∼ ≤ p− 1, deg3 τ33 ≤ p− 2

}

.(6.3.4)

Then a critical point (uε(p), σ∼∼
ε(p)) ∈ V (P ε, p) × S(P ε, p) of L characterizes the HR1(p)

model. Carefully varying the polynomial degrees of the components for displacements and
stress yields different subspaces and models. We summarize some of them in the table below.
Besides the already defined HR1(p), we also present the HR2(p) and HR3(p) models.

Table 1. The principle plate models based on the HR principle. The degree
p is a positive integer.

model deg3 σ∼∼
deg3 σ∼ deg3 σ33 deg3 u∼ deg3 u3

HR1(p) p p− 1 p− 2 p p− 1
HR2(p) p p− 1 p p p− 1
HR3(p) p p+ 1 p p p+ 1
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In the case of a plate under bending, for p odd, HR2(p) was called MPp in Alessandrini’s
thesis [1]. For p = 3 it yields the model of Lo, Christensen and Wu [27] (for both bending
and stretching). Still considering the bending situation, the HR3(p) models were denoted by
MP(p+ 1) by Alessandrini [1], and for p = 1 it is also referred as the (1, 1, 2) model [6].

Analogously to the original three-dimensional problem, the models can be equivalently
characterized by a weak formulation, i.e., we shall seek uε(p) ∈ V (P ε, p) and σε(p) ∈ S(P ε, p)
such that

∫

P ε
Aσε(p) : τ dx−

∫

P ε
e(uε(p)) : τ dxε = 0 for all τ ∈ S(P ε, p),(6.3.5)

∫

P ε
σε(p) : e(v) dxε =

∫

P ε
f · v dxε +

∫

∂P ε±

g · v dx∼
ε for all v ∈ V (P ε, p).(6.3.6)

With the choices of spaces presented in Table 1, the existence and uniqueness of solutions
for (6.3.5) and (6.3.6) follows from e(V (P ε, p)) ⊂ S(P ε, p). Note also that for both the HR2(p)
and HR3(p) models, A−1 e(V (P ε, p)) ⊂ S(P ε, p) and it follows that the constitutive equation

Aσε(p) = e(uε(p)) is satisfied exactly. As a consequence, uε(p) is the minimizer (in V (P ε, p))

of the potential energy

J(v) =
1

2

∫

P ε
A−1 e(v) : e(v) dxε −

∫

P ε
f ε · v dxε −

∫

∂P ε±

gε · v dx∼
ε,

i.e., HR2(p) and HR3(p) are minimum energy models. This sort of model is quite widespread
in the literature, but a very upsetting characteristic is that its simplest version, HR2(1),
is worthless. In fact, Paumier and Raoult [35] showed that for a minimum energy model
to be consistent, i.e. to be asymptotically convergent to the biharmonic model as ε → 0,
u3(p) must be at least a quadratic polynomial. HR3(1) is the simplest consistent minimum
energy model, but its final form is more complicated than the membrane and the Resissner–
Mindlin models, having one extra equation (and unknown) in each case. The HR1(p) is not
a minimum energy model. It is convergent for p = 1 and it yields a membrane problem for
the stretching part and a problem of Resissner–Mindlin type with shear correction factor 1
for the bending part.

Before presenting details regarding the lowest order example for each of the HR models,
some notation is necessary. If we define A∼∼∼∼

τ∼∼
= (1 + ν)τ∼∼

/E − ν tr(τ∼∼
)δ∼∼
/E, then

Aτ =

(

A∼∼∼∼
τ∼∼
− ν

E
τ33δ∼∼

1+ν
E
τ∼

1+ν
E
τ∼
T τ33

E
− ν

E
tr(τ∼∼

)

)

.

It is useful to know (and straightforward to check) that

A∼∼∼∼
−1τ∼∼

=
E

1 + ν

(

τ∼∼
+

ν

1− ν
tr(τ∼∼

)δ∼∼

)

.

Let

fk(x∼
ε) = ε−1

∫ ε

−ε
f ε(x∼

ε, xε3)Qk(x
ε
3) dxε3,

g0(x∼
ε) =

1

2

[

gε(x∼
ε, ε) + gε(x∼

ε,−ε)
]

, g1(x∼
ε) =

1

2

[

gε(x∼
ε, ε)− gε(x∼

ε,−ε)
]

,
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where Qj(z) = εjLj(ε
−1z), and Lj are the Legendre polynomials in (−1, 1). The first few

polynomials are L0(z) = 1, L1(z) = z, L2(z) = (3z2 − 1)/2, L3(z) = (5z3 − 3z)/2. The
constants

λ =
E

2(1 + ν)
, c1 =

−Eν2

12(1− ν2)(2ν − 1)
, c2 =

2(1− ν)

ν
,

will appear in what follows.

6.3.1. The HR1(1) model. We first present its final form and then show how to derive
it. Writing the model solution as

(6.3.7)

u(xε) =

(

η∼(x∼
ε)

0

)

+

(

−φ∼(x∼
ε)xε3

ω(x∼)

)

,

σ(p)(xε) =

(

σ∼∼
0(x∼

ε) 0

0 0

)

+

(

σ∼∼
1(x∼

ε)xε3 σ∼
0(x∼

ε)

(σ∼
0)T (x∼

ε) 0

)

,

Then for the stretching part we have that η∼ satisfies the membrane equation (6.2.2). After
determining η∼, we are able to find the in-plane components of the stress from

(6.3.8) σ∼∼
0 = A∼∼

−1 e∼∼
(η∼).

Concerning the bending part, φ∼ and ω solve the Reissner–Mindlin equation with shear cor-
rection factor 1:

−ε
3

3
div∼ A∼∼∼∼

−1 e∼∼
(φ∼) + ελ(φ∼ −∇∼ ω) = −ε

(1

2
f∼

1 + g∼
1
)

in Ω,(6.3.9)

ελ div(φ∼ −∇∼ ω) =
ε

2
f 0

3 + g0
3 in Ω,(6.3.10)

φ∼ = 0, ω = 0 on ∂Ω.(6.3.11)

The in-plane and shear stress components are found from

(6.3.12) σ∼∼
1 = −A∼∼∼∼

−1 e∼∼
(φ∼), σ∼

0 = λ(−φ∼ +∇∼ ω).

We deduce the above equations by assuming (6.3.7), and using (6.3.5), (6.3.6). Consid-
ering the stretching problem first, we use test functions of the form

τ(xε) =

(

τ∼∼
(x∼

ε) 0

0 0

)

, where τ∼∼
∈ L∼∼

2(Ω),

in (6.3.5). From

Aτ =

(

A∼∼∼∼
τ∼∼

0

× − ν
E

tr(τ∼∼
)

)

,

and an integration in the vertical direction, equation (6.3.8) holds. Similarly, if we substitute

vT (xε) = (v∼
T , 0)(x∼

ε), where v∼ ∈ H̊∼ 1(Ω), in (6.3.6) and integrate in the vertical direction, then

(6.3.13)

∫

Ω

σ∼∼
0 : e∼∼

(v∼) dx∼
ε =

∫

Ω

(
1

2
f∼

0 + ε−1g∼
0) · v∼ dx∼

ε for all v∼ ∈ H̊∼ 1(Ω).

Equation (6.2.2) follows from (6.3.13) after an integration by parts and from (6.3.8).
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The procedure to realize the bending part of HR1(1) is basically the same. Assuming the
test functions in (6.3.5) to be of the form

τ(xε) =

(

τ∼∼
(x∼

ε)xε3 τ∼(x∼
ε)

τ∼
T (x∼

ε) 0

)

, where τ∼∼
∈ L∼∼

2(Ω) and τ∼ ∈ L∼
2(Ω),

and using that

Aτ =

(

A∼∼∼∼
τ∼∼
xε3

1+ν
E
τ∼

1+ν
E
τ∼
T − ν

E
tr(τ∼∼

)xε3

)

,

we see that (6.3.12) follows. Next we use vT (xε) = (v∼
T (x∼

ε)xε3, 0) with v∼ ∈ H̊∼ 1(Ω) as test

functions in (6.3.6), and then

(6.3.14)

∫

Ω

2ε3

3
σ∼∼

1 : e∼∼
(v∼) + 2εσ∼

0 · v∼ dx∼
ε =

∫

Ω

(εf∼
1 + 2εg∼

1) · v∼ dx∼
ε for all v∼ ∈ H̊∼ 1(Ω).

Substituting (6.3.12) and integrating by parts yields (6.3.9). We assume then that vT (xε) =

(0, v(x∼
ε)) where v ∈ H̊1(Ω) and (6.3.6) yields

(6.3.15)

∫

Ω

2εσ∼
0 · ∇∼ v dx∼

ε =

∫

Ω

(εf0
3 + 2g0

3)v dx∼
ε for all v ∈ H̊1(Ω).

Finally, using (6.3.12), we see that (6.3.10) holds.

The derivation for other models is analogous and become tedious as p increases. We
present then the final equations for few of them.

6.3.2. The HR2(1) Model. . The simplest minimum energy model, HR2(1), is not
consistent. It is worthwhile to mention that the same spurious mode that appears in the
bending part also shows up in the stretching situation. In this case it can be shown that u
is the same as in (6.3.7) (and σ is given by an expression a bit more complicated which we
don’t report here), except that the equations (6.2.2), (6.3.9) are replaced by

−2ε
[

div∼ A∼∼∼∼
−1 e∼∼

(η∼) + c∇∼ div∼ η∼

]

= 2g∼
0 + f∼

0 in Ω,

and

−2ε3

3

[

div∼ A∼∼∼∼
−1 e∼∼

(φ∼) + c∇∼ div φ∼

]

+ ε
E

(1 + ν)
(φ∼ −∇∼ ω) = −2εg∼

1 − εf∼
1).

respectively, with c = −Eν2/[(1 − ν2)(2ν − 1)]. These additional terms are spurious, and
cause the HR2(1) model to be divergent as ε tends to 0 (in a sense which will be made precise
in §4).

Thus the HR2(1) model is incorrect. For p ≥ 3 it can be shown that the HR2(p) model
is convergent. For p = 3, it can be shown to be identical to a method of Lo, Christensen,
and Wu [27]. However, we feel it possible that even for larger p, the HR2(p) method is both
more complicated than and less accurate than the HR1(p) method.
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6.3.3. The HR3(1) Model. . It is the simplest consistent minimum energy model.
Writing the solutions as

u(xε) =

(

η∼(x∼
ε)

ω(x∼
ε)xε3

)

+

(

−φ∼(x∼
ε)xε3

ω0(x∼
ε) + ω2(x∼

ε)Q2(xε3)

)

,(6.3.16)

σ(xε) =

(

σ∼∼
0(x∼

ε) σ∼
1(x∼

ε)xε3
(σ∼

1)T (x∼
ε)xε3 σ0

33(x∼
ε)

)

+

(

σ∼∼
1(x∼

ε)x∼
ε σ∼

0(x∼
ε) + σ∼

2(x∼
ε)Q2(xε3)

(σ∼
0)T (x∼

ε) + (σ∼
2)T (x∼

ε)Q2(xε3) σ1
33(x∼

ε)xε3

)

,

(6.3.17)

then we have for the stretching part that

−ε div∼ A∼∼∼∼
−1 e∼∼

(η∼)− 12εc1∇∼ (div η∼+
c2

2
ω) =

ε

2
f∼

0 + g∼
0 in Ω,

6c1c2(div η∼+
c2

2
ω)− ε2

3
λ∆ω =

1

2
f 1

3 + g1
3 in Ω,

η∼ = 0, ω = 0 on ∂Ω.

Note that this model takes into account the transverse components of the load that also
contribute for the stretching. These terms are not present in the HR1(1) model or in the
membrane equation coming from asymptotic methods. The stress components for stretching
come from substituting

σ∼∼
0 = A∼∼∼∼

−1 e∼∼
(η∼) + 12c1(div η∼+

c2

2
ω)δ∼∼

,

σ∼
1 = λ∇∼ ω, σ0

33 = 6c1c2(div η∼+
c2

2
ω).

The displacement components under bending solve

−ε
3

3
div∼ A∼∼∼∼

−1 e∼∼
(φ∼)− 4ε3∇∼ c1(div φ∼ −

3

2
c2ω

2) + ελ(φ∼ −∇∼ ω
0) = −ε(1

2
f∼

1 + g∼
1),

ελ div(φ∼ −∇∼ ω
0) =

ε

2
f 0

3 + g0
3,

ε2

30
λ div∇∼ ω

2 + c1c2(div φ∼ −
3

2
c2ω

2) =
ε−2

6
(−f 2

3 − εg0
3).

Here we have a set of equations that are more complex than HR1(1) but also include the
second moment of f3.

The equations below yield the stress components:

σ∼∼
1 = −A∼∼∼∼

−1 e∼∼
(φ∼)− 12c1(div φ∼ −

3

2
c2ω

2)δ∼∼
,

σ∼
0 = λ(−φ∼ +∇∼ ω

0), σ∼
2 = λ∇∼ ω

2,

σ1
33 = −6c1c2(div φ∼ −

3

2
c2ω

2).
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6.4. The HR′ models

Another way to characterize the solution of (6.1.1) is by the second Hellinger–Reissner
principle, or HR′ for short.

Define

V ′(P ε) = L2(P ε), S ′
g
(P ε) = { τ ∈ H(div, P ε) : τn = g on ∂P ε

± }.

Then we have
HR′: (uε, σε) is the unique critical point of

L′(v, τ) =
1

2

∫

P ε
Aτ : τ dxε +

∫

P ε
div τ · v dxε +

∫

P ε
f ε · v dxε

on V ′(P ε)× S ′
g
(P ε).

An equivalent statement is that uε ∈ V ′(P ε) and τ ∈ S ′
g
(P ε) satisfy

∫

P ε
Aσε : τ dx+

∫

P ε
uε · div τ dxε = 0 for all τ ∈ S ′

0
(P ε),

∫

P ε
div σε · v dxε =

∫

P ε
−f · v dxε for all v ∈ V ′(P ε).

By seeking a critical point for L′ on subspaces V ′(P ε, p)×S ′
g
(P ε, p) ⊂ V ′(P ε)×S ′

g
(P ε), we

define classes of HR′ models. The elements of these subspaces will have certain polynomial
dependence in the transverse direction, and we will specify four differents classes of HR′

models in the table below.

Table 2. The principle plate models based on the HR′ principle. The degree
p is a positive integer.

model deg3 σ∼∼
deg3 σ∼ deg3 σ33 deg3 u∼ deg3 u3

HR′1(p) p p− 1 p p p− 1
HR′2(p) p p+ 1 p p p− 1
HR′3(p) p p+ 1 p p p+ 1
HR′4(p) p p+ 1 p+ 2 p p+ 1

For pure bending and p odd, Alessandrini [1] denoted HR′1(p) by HRp.0, HR′3(p) by
HRp + 1.0, and HR′4(p) by HRp + 1.1. A nice feature of some of the above models is that
divS ′0(P ε, p) = V ′(P ε, p) and therefore, not only

div σε(p) = −πV ′f
ε,

where πV ′f
ε is the orthogonal L2 projection of f ε into V ′(P ε, p), but also σε(p) minimizes

the complementary energy

Jc(τ) =
1

2

∫

P ε
Aτ : τ dxε

over all τ ∈ S ′g(P ε, p) such that div τ = −πV ′f
ε.
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We summarize next, for p = 1, some of the HR′ models. To derive the equations of a
particular model, we proceed as in Section 6.3. See also [2], where the equations for HR′4(1)
are found explicitly. As the HR′1(1), and HR′3(1) models are not consistent we do not show
them here.

6.4.1. The HR′2(1) Model. Assume that the displacement

u(xε) =

(

η∼(x∼
ε)

0

)

+

(

−φ∼(x∼
ε)xε3

ω(x∼
ε)

)

,

and the stress

(6.4.1) σ(xε) =

(

σ∼∼
0(x∼

ε) ε−1g∼
0xε3

ε−1(g∼
0)Txε3 g1

3

)

+

(

σ∼∼
1(x∼

ε)xε3 σ∼
0(x∼

ε)[1− ε−2Q2(xε3)] + g∼
1

(σ∼
0)T (x∼

ε)[1− ε−2Q2(xε3)] + (g∼
1)T ε−1g0

3x
ε
3

)

.

Then, the equations defining the first components of the displacement for the stretching part
are

−ε div∼ A∼∼∼∼
−1 e∼∼

(η∼) =
ε

2
f∼

0 + g∼
0 + ε

ν

1− ν
∇∼ g

1
3 in Ω,(6.4.2)

η∼ = 0 on ∂Ω.(6.4.3)

Note that here we have basically the same equations as in HR1(1) plus a term taking into
account the contributions of g1

3. It is easy to compute the in-plane stress components by
substituting

σ∼∼
0 = A∼∼∼∼

−1 e∼∼
(η∼) +

ν

1− ν
g1

3δ∼∼
.

For the bending part we have that

−ε
3

3
div∼ A∼∼∼∼

−1 e∼∼
(φ∼) +

5

6
ελ(φ∼ −∇∼ ω) = −ε(1

2
f 1 +

5

6
g∼

1)− ν

3(1− ν)
ε2∇∼ g

0
3 in Ω,(6.4.4)

5

6
ελ div(φ∼ −∇∼ ω) =

ε

2
f 0

3 + g0
3 +

ε

6
div g∼

1 in Ω,(6.4.5)

φ∼ = 0, ω = 0 on ∂Ω.(6.4.6)

This time we find the Reissner–Mindlin model with shear correction factor 5/6.
The stress components can be found by substituting

σ∼∼
1 = −A∼∼∼∼

−1 e∼∼
(φ∼) +

ν

1− ν
ε−1g0

3δ∼∼
, σ∼

0 =
5

6
[λ(−φ∼ +∇∼ ω)− g∼

1].

6.4.2. The HR′4(1) Model. We look for displacement solution in the form:

u(xε) =

(

η∼(x∼
ε)

ω(x∼
ε)xε3

)

+

( −φ∼(x∼
ε)xε3

ω0(x∼
ε) + ω2(x∼

ε)[Q2(x∼
ε) + ε2

5
]

)

,
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and the stress

(6.4.7) σ(xε) =

(

σ∼∼
0(x∼

ε) ε−1g∼
0xε3

ε−1(g∼
0)Txε3 (1− ε−2Q2(xε3))σ0

33(x∼
ε) + g1

3

)

+

(

σ∼∼
1(x∼

ε)xε3 σ∼
0(x∼

ε)(1− ε−2Q2(xε3)) + g∼
1

(σ∼
0)T (x∼

ε)(1− ε−2Q2(xε3)) + (g∼
1)T σ1

33(x∼
ε)(xε3 − ε−2Q3(xε3)) + ε−1g0

3x
ε
3

)

.

The equations defining the first two displacement components for the pure stretching case
are

−ε div∼ A∼∼∼∼
−1 e∼∼

(η∼) =
ε

2
f∼

0 + g∼
0 + ε

ν

1− ν
∇∼ (

ε

3
div g∼

0 +
1

2
f 1

3 + g1
3) in Ω,

η∼ = 0 on ∂Ω.

Next we can compute the other unknowns by substitution.

σ∼∼
0 = A∼∼∼∼

−1 e∼∼
(η∼) +

ν

1− ν

(

ε

3
div g∼

0 +
1

2
f 1

3 + g1
3

)

δ∼∼
,

σ0
33 =

ε

3
div g∼

0 +
1

2
f 1

3 ,

ω =
1

E
[−ν tr(σ∼∼

0) +
6

5
σ0

33 + g1
3].

For pure bending,

−ε
3

3
div∼ A∼∼∼∼

−1 e∼∼
(φ∼) +

5

6
ελ(φ∼ −∇∼ ω) = −ε(1

2
f∼

1 +
5

6
g∼

1)

− ν

15(1− ν)
ε3∇∼ (div g∼

1 + 6ε−1g0
3 +

1

2
f 0

3 +
5

2
ε−2f 2

3 ) in Ω,

5

6
ελ div(φ∼ −∇∼ ω) =

ε

2
f 0

3 + g0
3 +

ε

6
div g∼

1 in Ω,

φ∼ = 0 quadω = 0 on ∂Ω.

This is again a Reissner–Mindlin model, with shear correction factor of 5/6. Additional
moments of the load are taken into account. Compare with the HR1(1) and HR′2(1) models.

For the other unknowns,

σ∼∼
1 = −A−1 e∼∼

(φ∼) +
ν

5(1− ν)
(div g∼

1 + 6ε−1g0
3 +

1

2
f 0

3 +
5

2
ε−2f 2

3 )δ∼∼
,(6.4.8)

σ∼
0 =

5

6
λ(−φ∼ +∇∼ ω)− 5

6
g∼

1, σ1
33 =

1

5
(div g∼

1 + ε−1g0
3 +

1

2
f 0

3 +
5

2
ε−2f 2

3 ),(6.4.9)

ω2 = − ν

3E
tr(σ∼∼

1) +
10

21E
σ1

33 +
ε−1

3E
g0

3.(6.4.10)



CHAPTER 7

Asymptotic Expansion for a Reissner–Mindlin Model

We consider here a simple Reissner–Mindlin model for pure bending of elastic plates. We
then assume that the volume plate load f ε and the traction load gε satisfy

f∼
ε odd in x3, f ε3 even in x3,

g∼
ε(x∼) = g∼

+,ε(x∼, ε) = −g∼
−,ε(x∼,−ε), gε3(x∼) = g+,ε

3 (x∼, ε) = g−,ε3 (x∼,−ε).

In this case, it is easy to check that u∼
ε is odd in x3 and uε3 is even in x3.

7.1. Asymptotic Expansions

We follow the paper by D. Arnold and R. Falk [3].1 Consider a Reissner–Mindlin model
given by

−L∼(φ∼) +
1

α
ε−2(φ∼ −∇∼ w) = F∼ in Ω,

1

α
ε−2 div(φ∼ −∇∼ w) = G in Ω,

φ∼ = 0, ω = 0 on ∂Ω.

in Ω, where L∼(φ∼) = 2
3

div∼ C∼∼∼∼
∗ e∼∼

(φ∼), with C∼∼∼∼
∗ e∼∼

(φ∼) = 2µ e∼∼
(φ∼) + λ∗ div φ∼ δ∼∼

, λ∗ = 2µλ/(2µ + λ)

and α = 3/(5µ). Here, λ and µ are the Lamé coefficients. Also,

F∼ = −2ε−2

(

g∼
ε +

1

2ε

∫ ε

−ε
f∼
ε(x∼, x3)x3 dx3

)

, G = ε−3

(

2gε3 +

∫ ε

−ε
f ε3(x∼, x3) dx3

)

.

It is reasonable to expect an asymptotic expansion of the solution of the form

φ∼ ∼ φ∼
I + φ∼

B, w ∼ wI + wB,

where φ∼
I is a series of the form

∑

i ε
iφ∼i, and φ∼

B represents a boundary layer expansion of

the for
∑

i ε
iΦ∼ i, where Φ∼ i depends on ε through the variable ρ/ε where ρ is the distance to

∂Ω, and Φ∼ i behaves like a decaying exponential in ρ, and similarly for wB. Now, using the

identity divL∼(φ∼) = D∆ div φ∼, where D = 8µ(µ+ λ)/[3(2µ+ λ)], we obtain

D∆ div φ∼ = G− divF∼ ,(7.1.1)

φ∼ = ∇∼w + αε2(L∼φ∼ + F∼),(7.1.2)

div φ∼ = ∆w + αε2G,(7.1.3)

D∆2w = G− divF∼ − αε
2D∆G.(7.1.4)

1Actually, I believe that great part of the text itself came from a course on plate theory by Arnold.
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Thus w satisfies and a biharmonic equation, and so w does not have a boundary layer. Sim-
ilarly, div φ∼ satisfies a Poisson equation, which would suggest that the divergence annhilates

the boundary layer of φ∼, and φ∼
B = curl∼ pB for some pB. Recall that

curl∼ v =

(

−∂v/∂x2

∂v/∂x1

)

To construct an asymptotic expansion of this form, we will ask that the pair (φ∼
I , w) satisfy

the Reissner–Mindlin system and the pair (curl∼ pB, 0) satisfy the homogeneous Reissner–
Mindlin system, and that their sum satisfy the boundary conditions. From this we shall
deduce recipes for the series representing φI , w = wI , and pB.

Inserting w ∼
∑

i ε
iwi into (7.1.4) gives

D∆2wi = δi0(G− divF∼)− δi2αD∆G.

Inserting φI ∼
∑

i ε
iφ∼i into (7.1.2) and using the identity L∼∇∼v = D∇∼ ∆ v we get

φ∼1 = ∇∼ w1,

φ∼3 = ∇∼ w3 + αL∼φ∼1 = ∇∼ (w3 + αD∆w1),

φ∼5 = ∇∼ w5 + αL∼φ∼3 = ∇∼ (w5 + αD∆w3 + α2D2 ∆2w1),

φ∼7 = ∇∼ w7 + αL∼φ∼5 = ∇∼ (w7 + αD∆w5 + α2D2 ∆2w3 + α3D3 ∆3w1),

etc. In view of the biharmonic equations satisfied by the wi, these simplify to

φ∼1 = ∇∼ w1,

φ∼2i+1 = ∇∼ (w2i+1 + αD∆w2i−1), i = 1, 2, . . . .

For the even indexed terms we get

φ∼0 = ∇∼ w0,

φ∼2i = ∇∼ (w2i + αD∆w2i−2 + · · ·+ αiDi ∆iw0) + αiL∼
i−1F∼ , i = 1, 2, . . . .

Using the biharmonic equations to simplify this gives

φ∼0 = ∇∼ w0,

φ∼2 = ∇∼ (w2 + αD∆w0) + αF∼ ,

φ∼4 = ∇∼ [w4 + αD∆w2 + α2D(G− divF∼)] + α2L∼F∼ ,

φ∼2i = ∇∼ (w2i + αD∆w2i−2 − αiDi−1 ∆i−1 divF∼) + αiL∼
i−1F∼ , i = 3, 4, . . . .

We have thus derived PDE’s for the wi and formulas for the φ∼i in terms of the wi.
Next we determine differential equations for the boundary layer functions. When we put
φ∼ = curl∼ pB, w = 0 into the homogeneous Reissner–Mindlin equations, and use the identity

L∼ curl∼ p = (3α)−1 curl∼ ∆ p we get

curl∼ (−1

3
ε2 ∆ pB + pB) = 0,

or

−1

3
ε2 ∆ pB + pB = constant.
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Since we want pB to decay exponentially, the constant must be zero.
Inserting pB ∼

∑

εiPi for P and gathering like powers of ε, using boundary fitted coor-
dinate (ρ, θ) and ρ̂ = ε−1ρ gives

∆ pB =
∞
∑

i=0

εi−2

[

∂2Pi
∂ρ̂2

+
∞
∑

j=0

ρ̂j
(

aj1
∂Pi−j−1

∂ρ̂
+ aj2

∂2Pi−j−2

∂θ2
+ aj3

∂Pi−j−2

∂θ

)

]

,

where Pk = 0 for k < 0. Thus the differential equation for pB leads to

−1

3

∂2Pi
∂ρ̂2

+ Pi = Fi(ρ̂, θ),

Fi(ρ̂, θ) =
1

3

i−1
∑

j=0

ρj
(

aj1
∂Pi−j−1

∂ρ̂
+ aj2

∂2Pi−j−2

∂θ2
+ aj3

∂Pi−j−2

∂θ

)

.

Note that these are simple ODEs for the Pi. They admit exponentially increasing and
decreasing solutions. We shall only allow the latter, i.e., we insist that limρ̂→∞ Pi(ρ̂, θ) = 0.

Once the Pi are known, we get

curl∼ Pi =
∂Pi
∂ρ̂

curl∼ ρ̂+
∂Pi
∂θ

curl∼ θ.

But

curl∼ ρ̂ = ε−1 curl∼ ρ = −ε−1s∼,

and

curl∼ θ = −σ(ερ̂, θ)n∼ = −
∑

j

εj[ρ̂κ(θ)]jn∼.

Thus

φ∼
B = curl∼ pB = −

∑

i

εi

(

∂Pi+1

∂ρ̂
s∼+

i
∑

j=0

[ρ̂κ(θ)]j
∂Pi−j
∂θ

n∼

)

,

so φ∼
B =

∑

i ε
iΦ∼ i, with

Φ∼ i = −

(

∂Pi+1

∂ρ̂
s∼+

i
∑

j=0

[ρ̂κ(θ)]j
∂Pi−j
∂θ

n∼

)

.

7.1.1. Boundary conditions. Now we turn to the boundary conditions. Since w ∼
∑

εiwi, we impose

(7.1.5) wi = 0 on ∂Ω.

Now

φ∼ =
∑

εiφ∼i −
∑

i

εi

[

∂Pi+1

∂ρ̂
s∼+

i
∑

j=0

[ρ̂κ(θ)]j
∂Pi−j
∂θ

n∼

]

,

so,

(7.1.6) φ∼i =
∂Pi+1

∂ρ̂
s∼+

∂Pi
∂θ

n∼ on ∂Ω.
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Now if we take the tangential component of (7.1.5) for i = −1 we see that

∂P0

∂ρ̂
= 0 at ρ̂ = 0.

Together with differential equation

−2

5

∂2P0

∂ρ̂2
+ P0 = 0,

and the condition limρ̂→∞ Pi = 0, we get P0 ≡ 0. If we then take the normal component
on (7.1.6) for i = 0 we get

φ∼0 · n∼ = 0,

or
∂w0

∂n
= 0.

We thus see that w0 satisfies the biharmonic equation

D∆2w0 = G− divF∼
together with homogeneous Dirichlet boundary conditions. So, ω0 and φ0 = ∇∼w0 are deter-

mined completely. Actually, from (6.2.1), we conclude that w0 solves the biharmonic model.
Hence the Reissner–Mindlin model is consistent. We also have φ∼0 · s∼ = 0 on ∂Ω, so the

tangential component on (7.1.6), case i = 0, gives

∂P1

∂ρ̂
= 0 at ρ̂ = 0.

This leads again to P1 ≡ 0. Then we find that w1 satisfies a homogeneous biharmonic
problem with homogeneous Dirichlet boundary conditions, so w1 and φ∼1 vanish identically.
This in turn implies that P2 satisfies homogeneous Neumann boundary conditions, so it too
vanishes. Considering next the normal component of (7.1.6) for i = 2 gives the vanishing of
φ∼2 · n, or, in view of the relation of φ∼2 and w2,

∂w2

∂n
= −αD∂∆w0

∂n
− αF∼ · n.

Together with the inhomogeneous biharmonic equation for w2 and the boundary condi-
tion (7.1.5), we can then determine w2 and φ2.

This time φ∼2 · s∼ does not vanish, and so P3 will not, in general vanish:

P3(ρ̂, θ) = c(θ)e−
√

1/3ρ̂,

where c(θ) is the trace of −
√

3φ∼2 · s∼ on the boundary. Note that in general, we have φ∼i = 0
for i = 0 and 1, but not for i = 2.

We continue as follows: knowing P3, econdition (7.1.6) gives us an inhomogeneous bound-
ary condition for φ∼3 · n∼, and hence for ∂w3/∂n. Then we can determine w3 and φ∼3. This
gives us the Neumann boundary data for P4, which can then be determined. Etc.

In this way all the functions wi, φ∼i, Pi, and φ∼i can be computed. The functions w1, φ1,
φ∼0, and φ∼1 vanish. From the formula for it, we also see that φ∼2 · n∼ vanishes. No other terms
of the expansion vanish in general.
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[15] M. Dauge, I. Gruais, A. Rössle, The influence of lateral boundary conditions on the asymptotics in thin
elastic plates I: Clamped and simply supported plates,Institut de Recherche Mathématique de Rennes,
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