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ABSTRACT

Peak picking algorithms play an important role in audio gsialand synthesis methods based on sinu-
soidal modelling. Peak detection aims at selecting onlgeéhmeaks corresponding to genuine resonant
components present in the signal, while rejecting noisieded ones. This paper investigates the perfor-
mance of four threshold-based schemes for peak detectiorpass split window, low-order autoregres-
sive model, a nonlinear recursive filter and a stochastictep® estimator. The results of performance
comparisons measured under a common metric are reportadséirof specific experimental setups.

0 INTRODUCTION In this stage an algorithm has to decide whether a cer-
) ) ) . tain spectral peak corresponds to a genuine resonance in
Sinusoidal modelling (SM) represents an audio siggme input signal or is a spurious occurrence. The latter

nal as a sum of amplitude and frequency (phase) mogan happen due to either intrinsic characteristics of the

ulated sinusoids. SM finds use in a variety of audiogpeciral analysis or additive noise in the input signal.
related applications, such as speech and audio synthe-

sis, automatic transcription of music, and audio coding. A ¢ommon peak picking approach considers an
First introduced for speech analysis I [1] and for au€nergy-based selection criterion in the frequency do-

dio signals in[2] SM has been expandgH [3] and modinain. For instance, spectral peaks whose energy ex-
fied [4] to suit its dfferent applications. ceeds a certain threshold can be segregated as genuine

This paper considers the classic analysis methd%eak occurrences.

proposed in[[1[12]. A key-task to carry out a success- This paper evaluates a selection of methods that
ful SM analysis is the so-called spectral peak pickingyield frequency dependent threshold curves, within a
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peak detection system. A suitable test environmeniyherew[n] is a window function of lengthN, e.g., the
composed by a test signal generator, a configurabldamming windowk is the frequency bin indexn de-
peak detection system, and a performance meter, is cretes the analysis frame index, akldrepresents the
ated. The objective assessment on how well the invekop size of the analysis frame along time. The output
tigated methods work can be obtained through perfoof the first stage is the magnitude spectrunxfof, m],
mance measurements taken over the peak detection sysich is defined bys[k, m] = [X[k, m]|.
tem. The ‘peak detection’ stage receivB§k, m| as in-
After this introduction, the paper briefly outlines theput and selects only those peaks that correspond to sta-
sinusoidal analysis system studied. Then, it describéi®nary sinusoidal components of the signal present in
the adopted peak picking strategy and its possible préramem. The amplitude and frequency of the detected
cessing configurations. In the sequel, the paper explaipsaks can be finely estimated by a number of dedi-
the structure and setup of the experimental system deated method$1Z] 6]. Finally, a ‘partial tracking’ pro-
vised to assess the performance of the tested methodsdure is responsible for matching peaks across con-
Finally, the measured performance indicators are preecutive frames, in order to form the so-called partial

sented and discussed. tracks. These tracks contain information regarding the
life-cycle of the sinusoidal components present in the
1 SINUSOIDAL MODELLING Signa] under ana|ysis_

Sinusoidal modelling describes an audio signal Since the computational complexity of the ‘partial
X(t) as a sum ofL sinusoids, possibly modulated in tracking’ algorithm increases with the number of se-
amplitude- and (phase- or) frequency lected peaks, the ‘peak detection’ stage should output

only the most prominent spectral peaks. Another rea-

L . .. . .
3 . son for a more judicious selection of spectral peaks is

X(t) = |Z: A sin®i(D), 1 to avoid the formation of too short-living partial tracks
=t ; due to noise-induced peaks. This way, a more precise
P (t) = ¥ (0) + f w(u)du. (2) model for the sinusoidal components of the signal can
0 be obtained. Next section describes the peak picking

The continuous nature of the amplitudgt) and an- Strategy adopted in this work.

gular frequencyw(t) leads to a computationally in- 5 pEaAK PICKING STRATEGY
tractable problem. In order to simplify the analysis,

Eq. [1) is commonly replaced by a discrete model Peak picking in audio spectrum can be carried out

by several means, such as via threshold-based tech-
L _ niques [1,R], analysis-by-synthesis scheniés [4], and
x[n] = Z A[n]sin¥[n], (3)  model-based analysisl[7].

I=1 The present research focuses on threshold-based
which can be further considered short-time stationarfy€ak picking approaches. For that purpose, a general
in amplitude and frequency. That is, for a given partiaP€@k picking strategy is employed. It can be divided
I, and assuming thay[n] and¥[n] possess much nar- iNto two main parts: a spectral pre-processing stage and
rower bandwidth than that of the signal under analysigt Peak selection algorithm, as depicted in Eg. 2. The
the approximation&[n] ~ A and¥[n] ~ Qn+¥,[0], latter will be fixed for all test cases investigated here-
whereA andQ, are constant values, hold true during sfter. On the contrary, the pre-processing stage is the
time interval ofN samples. variable element of the peak detection system: the sys-

Fig. [ illustrates the typical processing stages intem performance will be assessed w.rt fouffetent
volved in the analysis part of a sinusoidal modellingnethods for spectral pre-processing. All these methods,

system[[5]. as well as the peak ;electlon criterion, are described in

the subsequent sections.
X[n] | Time/Frequenc Peak Partial | partial ,

Decomposition| | Detection | | Tracking Tracks S D S’ Peak P
_ Selection
Figure 1: The three essential processing stages of a si- A
nusoidal analysis system. j;?(al E
Pre-pfocessing

The ‘time/frequency decomposition’ stage per- _ _ _
forms a discrete-time Short Time Fourier Transfigure 2: Block diagram illustrating the strategy

form (STFT) [3] on the audio signal, i.e., adopted in the peak detection system.
X[k, m] = STFTK(N, m]) (4) 2.1 Spectral Pre-Processing
1 N-1 2.1.1 Motivation
ik 2
=N Z winx[n+ mH]e *%", (5) In threshold-based schemes, the usual selection cri-
n=0 terion consists of choosing those spectral peaks that ex-
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ceed a pre-defined energy level. While simple, suck®S"[K]. Note that the FIR filters used in first and third
criterion is indfective when dealing with general audiostages are normalized for unity DC gain.
signals, which typically exhibit a spectral pattern whose In the TPSW procedures[K] is considered within
energy decreases with frequenCy [8]. As a result, gefhe range between from 0 o In order to avoid bound-
uine low-energy spectral peaks in the high-frequencary efects during the filtering, it is extended by about
range may be discarded as spurious occurrences, Z®% of its original size. For that, part of the spectrum
seen in FiglB. at both extremities 08[k] is mirrored. Moreover, fil-
tering delays are compensated in order to guarantee the
synchronism between input and output. This is accom-
Sk : :
- - ~Threshold plished by taking only the central part of the correla-
b=t T I tion from the filtering results. In the end, the extensions
| 1 appended t&S[K] are discarded in order to restore its

o

I
N
=

Magnitude (dB)
A
o

-60t original size.
0 : 10 15 20 When it comes to the choice of the split-window pa-
Frequency (kHz) rameters, the smoothness of the estimate increases with

Figure 3: Inadequacy of applying a constant threshol®y*". The value oM*" should be set appropriately cho-
to an observed spectrum of a noisy harmonic signal. Sen as to yield the window gap as large as the band-
width of a typical peak present B[k]. The value ofx
The pre-processing stage attempts to overcome therelated to the peak rejection capability. It should be
aforementioned diiculty compensating the observedchosen small enough to guarantee that the component
spectral tilt. In a perhaps oversimplified manner, thg,§[k] is below the average magnitude of the peaks and
spectral tilt can be compensated by an estimate of thgrge enough to place the compone&k] above the

colouring profile associated with the additive backnoise floor. Typically, choosing 2 @ < 8 provides
ground noise that corrupts the signal of interest. Altersatisfactory results.

natively, an equally plain solution resorts to an estimat L
oo g’pectr:: em}’e'loope_ 522 b)Low-Order AR Estimation

The ensuing sections describe four methods that Autoregressive (AR) models are widely used in au-
have been designed to provide estimates for both 0 Signal processing, such as vocal tract estimation in
spectral envelope and the noise spectral profile. Eith§P€ech processing [A0.J111].

way, the desired estimates are referred t&g. _ Here, the idea is to take the specteaivelopees-
timate of a given audio signal for the desired spectral

2.2 Spectral Tilt Estimators tilt curve. Thus, the procedure consists of fitting a low-

221 a)Two-Pass Split Window order AR model to the time-domain signgln] asso-

ciated withS[k]. The desired envelopE®[k] is the

The TPSW filtering has been originally proposedy,qnitude spectrum of the estimated AR model.
for noise spectrum estimation in sonar systelihs [9]. The In mathematical terms, a relaxed assumption is that

procedure consists of three stages. In the first stage the, : d by the following AR model
sampled magnitude spectrusfk] of a given input sig- Qﬁ)(] IS governed by the Toflowing mode

nal is filtered through a split window defined &5 [9] q
xn] = > alulx{n—u] +r[n], 8)
MsW u=1
vty = > 1 . ® o
1, MSW<|n < N9, whereq is the (instificient) model ordera[u] are the

model codficients, and[n] is the modeling error.
with 0 < M*" < N°%, beingN*" and M** positive in- The model parameters can be estimated via any
tegers that control, respectively, the length of the spli§tandard AR estimator, such as the Yule-Walker
window and the gap size. . and Burg methods. Once the modé(z) =
The output of the first stag8[k] is then modified [1 3 23 1aur”]_l is available, the desired spectral en-

according to the following criterion velope is obtained bEV[K] = |A(€“)], wherewy
A SIK. if S[K] < a&[K] , 2k with N being the length of DFT kier used in the
[K] = S, if SI > o3[K.. (7) spectral analysis.

2.2.3 c) Nonlinear Recursive Smoothing Filter
wherea > 1is a parameter related to the abilitytoreject  In [[[Z] a nonlinear recursive smoothing filter
peaks in the observed spectrum. (NRSF) is proposed for estimating the spectral profile

In final stage, the modified spectrugfk], which  of coloured noise in audio spectra. The filter, devised
is supposed to be free of prominent peaks, is filterednder the assumption that the power spectrum density
through a conventional moving average filter, with thef the noise component would vary slowly over fre-
same length as that of the split window. The outpuguency, works by limiting in modulus the first deriva-
of this third stage corresponds to the desired estimatiye (or slew rate) of the spectrum samples, with respect
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to frequency. The nonlinear recursive filter that imple2.2.5 Performance Comparison

ments the solution is given by In order to illustrate the qualitative performance of
the previously described methods, they are tried over a

f f ign( S[K]-E""s k-1
E"S(K] = EMSk — 1g59SH-E"TL) (g test-signal, under the processing setups detailed below.

whereS[K] is the observed magnitude spectrum of the e Input signal: 2048 samples of a noisy harmonic

signal under testE“’Sf[k] is the desired spectrum esti- signal with fundamental frequency equal to 1 kHz,
mate; signk) = 1if x > 0 and sign) = -1 if x < O; sampled at 44.1 kHz, and windowed by a 2048-
andg is a constant slightly larger than unity. sample Hann window;

The paramete$ can be expressed As= 1+ 4. In e S[k]: magnitude of a 2048-point DFT applied to
theory, 4 should be chosen as to exceed the maximum  the input signal;

slew rate associated with the power density spectrumof , Tpg\y filtering:NS" = 51, MS" = 8, anda = 4;
the noise component. In practice, as can be seen from . .

) e AR method:q = 10;
Eqg. [@), the value oft controls the forgetting factor of h sse _
the filter. Thus, the larget, the higher the variance of ~ * SSE methodN**=101;
E"sk] becomes. Choosing = 0.05 provides a sffi- e NLRF methodj = 1.01.

i nrsf]
ciently smootkE [k_] [12]. _ o The attained results are summarized in Hg. 4. It can
_ When dealing with recursive schemes, filter initialhe gpserved that all methods succeed in catching the
ization should be considered carefully. Ar: IMPrope€hyerall shape of the spectrum. It is also worth noticing
initialization can bias the initial samples Bf**[k] and o+ \with exception oE2[k], the remaining spectral

thus degrade the overall performance of the algorithmy,e|opes follow closely the local average of the noise
Ohe possible splut|on is to _exter&ﬂ_k] at the bound- _floor. The suspended?[K] is nothing to worry about,

aries, as described earlier n Section 2.1.2.a, and indjnce those estimates will not be used directly as vari-
tialize the recursion witE™k — 1] = 0. Of course, 4p1e magnitude thresholds for the reference spectrum.
the spectrum extension should be long enough for thea ey they will serve to compensate the spectral tilt of

influence of a wrong initialization bfe mitigated. Af- e reference spectrum, before proceeding to the peak
terwards, the estimated values Bf*K] outside the yataction staae.

original range ofS[k] are discarded. Alternatively,

E"STk — 1] can be set as the median value among th & 20 I 20 — 94
first C samples oBS[K]. In both cases, the original fre- < o — g o — e
quency range o8[K] is from O ton. é 20 20 Pe—
2.2.4 d) Stochastic Spectrum Estimation §-40 -40
The stochastic spectrum estimator (SSE) is anoth oo o - 0 >0
non-linear stochastic spectrum estimator that has be
introduced byl[[183]. — E— E—
. . 2 20 20
AssumingS[K] as defined before, the SSE methoc = o —E[K® o — e[
consists of the four steps described below: 2 0 20
5
1. PassS[K] through a three-tap moving average fil- = "gg "gg
ter, in order to obtain &*[K] possibly free of null s 0 0 10 20
magnitude samples; Frequency (kHz) Frequency (kHz)
2. ComputeR[K] = g Figure 4: Qualitative performance comparison among

3. ObtainR![K] as a smoothed out version@fk], by  the methods under evaluation.
computing a cyclic convolution betwedik] and . o
anNSs*¢tap moving average FIR filter; 2.3 Peak Selection Criterion

4. Compute the desired estimatem8K] = R+[k]_ As/depictgd i_n Fig_ElZ, peak selection is_ performed
overS’[K], which is a tilt-compensated version $fK].
As with the TPSW method, the smoothness olNote that the compensation is carried out in the log-
ESS{K] increases with the value dd5¢ Moreover, all arithmic scale. Fig[l5 compares an origifgik] and
FIR filters used in the procedure are normalized to forcis tilt-compensated versid® [K], in an example where
the DC gain equal to 0 dB. Berently from the TPSW E®**{k] was used. Now, it is clear that a constant magni-
filtering, in the SSE schent®[k] should be considered tude threshold can be employed to discriminate genuine
within the whole range between 0 and,2n order to  from spurious spectral peaks.
make éfective the use of the cyclic convolution. It  Asregards the adopted peak selection criterion, as-
should be noticed, however, that one could emi3fy] sume firstthe sk e {2, 3,..., (N/2- 1)} of S’[K] bin
within the range between 0 and provided that this indices. For all elements d{ collect in a sub-sePp,
S[K] is sufficiently extended at both extremities via thethe indicekpeax that satisfy simultaneously the follow-
mirroring scheme mentioned in Section 2.1.2a. ing conditions:
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In reality, for a given signal-to-noise ratio (SNR),
the larger the number of genuine peaks present in the
signal, the less they tend to stand out from the noise
floor, due to energy sharing among peaks. This favors
the occurrence of detection errors and requires a more
careful selection ofl. On the contrary, placing the se-

: : : lection threshold is easier when dealing with a few gen-
407 —SK uine spectral peaks, even for low SNRs.

200 The aforementioned condition motivates the follow-
ing strategy to set the value df

o
T

Magnitude (dB)
A
Q o

I
o
e

o
3
=
o
=L
o
N
o

ok

29 5

Magnitude (dB)

15 20 1. Calibrated in order to assure a satisfactory detec-
_ _ o tion performance considering a scenario with SNR
Figure 5: Comparison between the original (top) and  as low as 10 dB and a spectrum densely populated

10
Frequency (Hz)

tilt-compensated spectra (bottom). with genuine peaks;
1. S’[K] > S'[k-1]; 2. Attribute the previously found \églue dfto dmin;
2. S'[K] > S'[k+1]; 3. Computep = 1 (P2EML) wherear b
3. S'[K] > dy; stands for ‘maximum betweemnandb’;

In condition 3,d is an empirically chosen multiplier 4. Maked = pdmin.
andu is an estimate of the standard deviation of the

noise observed i6’[K]. The selected indicdgeakcon- Although adequate for cases with many spectral
tain the desired bin indices associated with the detectgaaks, the value dlni, tends to be too low foB’[K]
peaks inS’[K]. bearing few peaks of interest. As a consequence, the

The first two conditions above define which sam-occurrence of false detections is favored.
ples of S’[K] could be qualified as peaks, regardless of In the computationp, the quantity (max$’[K]) —
being genuine or spurious. The third condition sets thg) can interpreted as the available room in magnitude
value of the discrimination threshold, which sets théetween the spectral maxima and the average level of
minimum energy a peak should possess to be qualifigde noise floor. Thus, if this room is larger than 10 dB,
as a genuine peak. the multiplierp > 1 contributes to raise the threshold
The value ofu can be obtained by any estimator ro-by about half the magnitude room excess. Otherwise,
bust enough to provide reliable estimates for the stap- = 0 andd = dyin. The former situation is likely
dard deviation of data series, despite the presence wf happen when there are few genuine peakS’[k],
outliers. It was found experimentally that, when dealavoiding the occurrence of false alarms.
ing with spectra which are densely populated by gen-
uine peaks (outliers here), the median operator ten%s SIMULATION SETUP
to over-estimate the standard deviation of the noise.
Fortunately, with exception of the AR-based technique, This section describes the experimental setup used
the very spectrum pre-processing methods presentedtin evaluate how well the peak detection system per-
Section 2.1.2 are competitive alternatives to aid the efarms. As depicted in Fidl6, the test setup consists
timation of the noise standard deviation. of a signal generator, whose outpx[in] is fed to a
Among the available options for computipg the  STFT analyser, which in its turn provides the magni-
SSE method was found to be the leaeeted by the tude spectrun8[k] to the peak detection system (see
presence of genuine peaks. This is justified not onlffig.[d). Moreover, a performance meter assesses the
by the SSE’s own formulation, but also experimentallypeak detection results in quantitative terms, by count-
Thus, the adopted solution was to estimases ing how many of the selected peaks are in fact correctly
4t = meanEsS{k]). (10) detected, according to a reference indicator.

whereE**7K] is the curve output by the SSE method to | | . S(m. K] peak | Pm]
any tilt-compensated spectrusi[K]. Generator STFT Detection

As for the value ofd, one assumes that the pre- j
processing was successful in ‘whitening’ the noise
component, which can be considered Gaussian. More- /
over,u is believed to be a reliable estimate for the stan- L PR
dard deviation of the noise, as observed in the frequen(l:él . .
domain. In such case, settingd < 5, assures a confi- igure 6: Setup devised to assess the performance of
dence interval greater than 95% that the spurious pea}&e peak detection system.
will fall below the adopted threshold.

Performance
Evaluation
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3.1 3.1 Test Signal Generation a frequency grid as fine as desirable. In order to ensure
meaningful peak detection performance assessment,
of two components: one deterministic and anoth e reference domain should be made compatible to the

stochastic. The former consists of a sum of harmonig'®asurement domainj The following sections examine

signals with fundamental frequencigg. For eachfy;, '€ iSSue in more detail.

which is chosen randomly between 200 Hz and 1 kHz3.3.1 3.3.1 Reference Domain Alignment

with uniform probability, harmonics are generated Up  Fjrst |et the sed contain all the frequencies as-

to the Nyquist frequency. Moreover, the amplitude 0k jated with the deterministic part of the input signal.

the harmonics can be either constant or decaying oVefe primary goal is to foresee which bins in the ob-

frequency. servation domain would be more strongly activated by
As for the zero-mean additive stochastic compoggse frequencieg;. Thus, each element is quan-

nent, it can be either white or pink noise. In mathetjzed to the nearest frequency bin, i.= kFs/N, for

The test signal, sampled at 44.1 kHz, is compos€

matical terms the test signal is defined as k= roundg;N/Fs), whereN is the length of the STFT
- analysis bffer andFg the sampling frequency.
: 2rjfoin ; g
X[n] = Z Z ai cos( JTo,i ) + o[, (11) Gathering qll non-repegted occurrencek afi a set
Fs K, one can define a preliminary reference vector, whose

i=0 j=1 -
elements are defined as

The double summation in E{J11) represents the ,
K {1, ifk € K

deterministic part of the signal, wheFg is the sam- i
0, otherwise

pling frequency,l is the number of fundamental fre-
quencies in the mixture, antl = [%J with [.] denot- )
ing ‘the greatest integer less than or equal to’, defines  'NOt&, however, that[k] = 1 may not necessarily

the number of harmonics associated with a gifgn ~ coincide with observed peaks of any kind $fk,ml.
The amplitude of the harmonies is set either to unity This is because the position of an observed local maxi-

or decreases with frequency accordingito= 1 mum inS[k, m], due to a givew;, is influenced not only

ifoi” ; i
The second part of EqCTL1) represents the noisb the corrupting noise, but also by the presence of the

component, being[n] with 0 < n < (N - 1), one re- herg.

alization of a stochastic process having constant/ér 1 rrThe kﬁé/—ptomt hire IS t?rbglld atrrelferebncer\;nﬁlski:]h'?ht
power spectrum density, amda variable that controls corresponds o peak occurrences truly observable €

the noise power in order to force a desired SNR measurement domain. It is then evident that frequency
' guantization alone is an infficient criterion to align

3.2 Peak Detection Setup the reference and measurement domains.
The computation oB[k, m] and S'[k.m] is identi- A A more adequate domain alignment can be created

. means of an auxiliary binary vector, the elements of
cal to the procedures and parameters described as |¥1. ! y y
which are defined as

Section 2.1.3. Those processing parameters were em-
pirically tuned across the flierent methods as to render 1, ifk € Oy
(K =17

N
forOsk<§. (12)

N
fair the comparisons among their performance. forO<k< > (13)

As regards the peak selection algorithm, the main
parameter to be set is the multipligi, of the noise \yhereo,, is a set with cardinalityOn| containing all
standard deviation. It was found thin = 2 iS @ SUit- i jndices associated witbhservedpeaks inS[k, i,
ablesgehmce. The length of the second SSE filter was Sgfiher genuine or spurious. Then, the aligned reference
to N**= 150. vector is obtained by

0, otherwise’

3.3 Performance Evaluation ra[Kl = ro[K] @ r_1[K] & r,1[K], (14)

Peak detection performance is assessed basically by
means of counting the number of correctly detecte®ith ro[K] = r[K] A c[K], r_1[K] = r[k — 1] A c[k], and
peaks and that of false alarms. Here, the main isstiei[k] = r[k+ 1] A c[k], for 1 < k < (N/2 - 1), where
to consider is the obser\/qﬂ'esenca)f a gi\/en peak, the Symbols/\ and® stand for the boolean operations
regardless of whether it was detected with precisely eAND’ and XOR’, respectively.
timated magnitude and frequency. In any case, itis nec- The parts of J[K] can be interpreted as follows:
essary to define the conditions upon which a peak can - ) ] ) )
be considered correctly detected. ° _ro[k] nullifiesr[K] if c[k] = 0, i.e., when active bins
On the measurement side, the peak observation do- in the reference are not observed peaks;
main isS[k,m]. Thus, the frequency of any observed ® f-1[k] moves an active bin im[k] to the adjacent
peak can only lie in one of the available frequency bins, ~ one on the left side if[k] = 0 butc[k — 1] = 1;
i.e.,kFs/N, for 0 < k < N/2. On the reference side, the e r.1[K] moves an active bin im[k] to the adjacent
frequencies of the peaks in the test signal can be set in one on the right side if[k] = 0 butc[k + 1] = 1.
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Table 1: Performance indicators obtained froest 1.

SNR (dB)

0 [ 5 [10][ 15[ 20 0 [ 5 [10[15] 20 0 [ 5 [ 10 [ 15 [ 20
TPSW 856|989 99.3| 995|996 | 175| 46 [ 05| 03| 0.2 || 0.68| 0.94| 0.99 | 0.99 | 0.99
AR 889 99.7| 99.8| 99.8| 99.8 || 225| 134 | 14| 02| 0.1 || 0.66| 0.86| 0.98 | 1.00 | 1.00
NRSF 83.3|97.1|99.2| 99.3|99.2|| 150 1.7 | 07| 04| 0.29 | 0.68| 0.95| 0.99 | 0.99 | 0.99
SSE 85.6 | 979 99.2| 99.3|99.3| 181| 25 | 0.7| 05| 0.3 || 0.68| 0.95| 0.99 | 0.99 | 0.99

No method || 38.3 | 63.0 | 84.9| 93.6 | 985 || 6.3 23 10904 02| 032|061 0.84| 0.93| 0.98

[ Metric | Y [ ¢ [ x |

Table 2: Performance indicators obtained froest 2.

number offo; (1)

3 [ 4156 [7[3]4]s5[6[7[] 3] 4[]5]6]7
TPSW 97.2| 916| 857 | 780 | 71.0| 3.0| 35| 3.6 | 3.8| 4.0 094 | 0.88| 0.82| 0.74| 0.67
AR 98.3| 925|864 | 784|714 45| 43| 39|37|35| 094 0.88| 0.83| 0.75| 0.68
NRSF 914 | 846| 794 | 725| 66.4| 21| 36| 45| 53| 58| 0.89| 0.81| 0.75| 0.67 | 0.61
SSE 94.3| 885|829 755|69.0| 20| 29| 33| 38| 41| 092| 0.86| 0.80| 0.72| 0.65

No method || 48.4 | 38.2| 33.1| 25.6 | 240 22| 28| 3.3| 39| 45| 046 | 0.35| 0.30| 0.25| 0.21

[ Metric | y [ ¢ [ « |

In practice, the indicek for whichrg[k] = 1in- 4 RESULTS
dicate the reference spectral locations against which to

confront those of the detected peaksSfk, m]. Once All four methods discussed previously were tested

. ; ith the same test signals, in order to investigate their
ra[K] is obtained, the percentage of correctly detecte . . . i
ehaviour under identical conditions. Moreover, the re-
peaks can be computed as

sults when no spectral tilt compensation is applied are

y = G (15) also calculated and displayed as ‘no method’. The sim-

Q’ ulation setup and its processing parameters are the same
N ) ) as those described in the previous section.

whereQ = X7 o ra[k] is theN count of all peaks in the  gach test signal was designed to accommodate 10

reference vector an@ = 2 g[K] is the count of all analysis frames. For each test, 500 realizations were

correctly detected peaks, with generated. The reported results correspond then to
) the average performance indicators measured for each
o[K] = {fa[k], ke Pm (16) frame and for each signal. For convenience the values

0, otherwise of y and¢ are displayed in %.

Test 1aims at assessing peak detection performance

under diferent SNRs. The chosen test signal consists of
1

where®n, is a set of cardinalityP,| containing the in-
dices of all detected peaks fra®&i[k, m].

The percentage of false alarms can be computed gss_lnglefo,i (I = 1_)’ with & = Jfo;? |mm_ersed in pink
PG noise. The SNR is set from 0 to 20 dB in steps of 5 dB.
[— m —

(== (17) The attained results are seen in Tdhle 1.
IOml = Q The values o show that most of the genuine peaks
where|P| — G is the count of all incorrectly detected are correctly classified even in low SNR conditions. As
peaks andD,| — Q is the count of all observable peaksexpected, the lower the SNR, the higher the values of

in S’[k, m] that should have remained undetected. showing a tendency to misclassify spurious peaks. All
In addition, one can define the meter methods yielded similar values efevidencing that all
perform equally well, under the tested conditions. By
K=y-4¢, (18) contrast, the systematic lower valuescafhen spectral

which aggregates the two previous measures into a sifilt compensation is not applied demonstrate tffee

gle performance indicator. Ideallyl < « < 1 and a tiveness of its use.

perfect detection is achieved when= 1. A value of Test 2 measures peak detection performance w.r.t.
« close to 1 indicates the occurrence of more correcti{he number of harmonic signals present in the mixture.
detected than false alarms. On the contrary, a value &ftup: test signals containings3 | < 7 fundamental

« close to—1 indicates a larger count of false alarms infrequencies, withg;; = ]f—lo immersed in pink noise,
comparison to that of correctly detected peaks. and SNR= 10dB. Table2 summarizes the results.
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It can be observed that tends to decrease with [2] J. O. Smith Il and X. Serra,

the increase of. As for ¢, with exception of the AR

method, it tends to increase with Among the tested

methods, the NRSF method achieves the lowest perfor-
mance whereas the AR scores are the highest, revealing

some robustness to the increasé.of

Test 3 strains the methods by replacing pink wit

white Gaussian noise. This time= 3, a; = —+, and

L 3]

SNR = 10 dB. The results are organized in Table 3.
As one could anticipate, the performance of all meth-

ods decreases. The AR method showed a higalue,

(4]

sinceE?TK] tends to decay with frequency, favoring the
detection of more genuine peaks immersed in noise. A

side-dfect is an also high grade fgrthat reduces the
value ofk. Overall, according ta, the TPSW method

achieves the highest performance.

Table 3: Performance indicators obtained froest 3.

Method
TPSW| AR | NRSF| SSE| No method
v 64.2 | 76.9| 44.1 | 41.6 38.9
I4 11.0 | 315| 2.1 2.1 0.2
K 0.53 | 0.46| 0.42 | 0.39 0.39

5 CONCLUSION

This work investigated thefkect spectral tilt com-

(5]

(6]

[7]

EVALUATION OF PEAK-DETECTION ALGORITHMS

“PARSHL: An
AnalysigSynthesis Program for Non-Harmonic
Sounds Based on a Sinusoidal Representa-
tion,” in Proc. Int. Computer Music Conference
Champaign-Urbana, 1987.

X. Serra, “Musical Sound Modeling with Sinu-
soids plus Noise,” irMusical Signal Processing
C. Roads, S. Pope, A. Picialli, and G. De Poli,
Eds. Swets & Zeitlinger, 1997.

E. B. George and M. J. T. Smith, “Analysis-by-
SynthesigOverlap-Add Sinusoidal Modeling Ap-
plied to the Analysis and Synthesis of Musical
Tones,” J. Audio Eng. Soc¢.vol. 40, no. 6, pp.
497-516, June 1992.

X. Serraand J. O. Smith, “Spectral modeling syn-
thesis: A sound analygsynthesis system based
on a deterministic plus stochastic decomposition,”
Computer Music Journalol. 14, no. 4, pp. 12—
24, 1990.

F. Keiler and S. Marchand, “Survey of extraction
of sinusoids in stationary sounds,” Rroc. 5th
Conf. Digital Audio Hfects Hamburg, Germany,
2002, pp. 51-58.

M. H. Hayes, Statistical Signal Processing and
Modeling chapter 6, John Wiley & Sons, Inc.,
1996.

pensation on the performance of a threshold-based pedg] J. M. Grey and J. W. Gordon, “Perceptudliests
detection system. For this, four spectral tilt estimators
were examined. Moreover, an experimental environ-
ment, composed of a test signal generator, the config-

uation block, was designed.

The test results clearly favors the use of spectral tilt
compensation within a peak detection system. How-
ever, none of the methods stand out as contributing

to an overall superior peak detection performance.

Noj

part, the achieved well-balanced performance among
the methods can be attributed to the sensible choice of
the processing parameters, as well as to the proposed

heuristics used to set the threshold level.
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