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ABSTRACT
Peak picking algorithms play an important role in audio analysis and synthesis methods based on sinu-
soidal modelling. Peak detection aims at selecting only those peaks corresponding to genuine resonant
components present in the signal, while rejecting noise-induced ones. This paper investigates the perfor-
mance of four threshold-based schemes for peak detection: two-pass split window, low-order autoregres-
sive model, a nonlinear recursive filter and a stochastic spectrum estimator. The results of performance
comparisons measured under a common metric are reported fora set of specific experimental setups.

0 INTRODUCTION

Sinusoidal modelling (SM) represents an audio sig-
nal as a sum of amplitude and frequency (phase) mod-
ulated sinusoids. SM finds use in a variety of audio-
related applications, such as speech and audio synthe-
sis, automatic transcription of music, and audio coding.
First introduced for speech analysis in [1] and for au-
dio signals in [2] SM has been expanded [3] and modi-
fied [4] to suit its different applications.

This paper considers the classic analysis method
proposed in [1, 2]. A key-task to carry out a success-
ful SM analysis is the so-called spectral peak picking.

In this stage an algorithm has to decide whether a cer-
tain spectral peak corresponds to a genuine resonance in
the input signal or is a spurious occurrence. The latter
can happen due to either intrinsic characteristics of the
spectral analysis or additive noise in the input signal.

A common peak picking approach considers an
energy-based selection criterion in the frequency do-
main. For instance, spectral peaks whose energy ex-
ceeds a certain threshold can be segregated as genuine
peak occurrences.

This paper evaluates a selection of methods that
yield frequency dependent threshold curves, within a
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peak detection system. A suitable test environment,
composed by a test signal generator, a configurable
peak detection system, and a performance meter, is cre-
ated. The objective assessment on how well the inves-
tigated methods work can be obtained through perfor-
mance measurements taken over the peak detection sys-
tem.

After this introduction, the paper briefly outlines the
sinusoidal analysis system studied. Then, it describes
the adopted peak picking strategy and its possible pro-
cessing configurations. In the sequel, the paper explains
the structure and setup of the experimental system de-
vised to assess the performance of the tested methods.
Finally, the measured performance indicators are pre-
sented and discussed.

1 SINUSOIDAL MODELLING
Sinusoidal modelling describes an audio signal

x(t) as a sum ofL sinusoids, possibly modulated in
amplitude- and (phase- or) frequency

x(t) =
L

∑

l=1

Al(t) sinΨl(t), (1)

Ψl(t) = Ψl(0)+
∫ t

0
ωl(u)du. (2)

The continuous nature of the amplitudeAl(t) and an-
gular frequencyωl(t) leads to a computationally in-
tractable problem. In order to simplify the analysis,
Eq. (1) is commonly replaced by a discrete model

x[n] =
L

∑

l=1

Al [n] sinΨl [n], (3)

which can be further considered short-time stationary
in amplitude and frequency. That is, for a given partial
l, and assuming thatAl [n] andΨl [n] possess much nar-
rower bandwidth than that of the signal under analysis,
the approximationsAl [n] ≈ Al andΨl [n] ≈ Ωln+Ψl [0],
whereAl andΩl are constant values, hold true during a
time interval ofN samples.

Fig. 1 illustrates the typical processing stages in-
volved in the analysis part of a sinusoidal modelling
system [5].

Decomposition
Time/Frequency Partial

Detection
Peakx[n]

TracksTracking
Partial

Figure 1: The three essential processing stages of a si-
nusoidal analysis system.

The ‘time/ frequency decomposition’ stage per-
forms a discrete-time Short Time Fourier Trans-
form (STFT) [3] on the audio signal, i.e.,

X[k,m] = STFT(x[n,m]) (4)

=
1
N

N−1
∑

n=0

w[n]x[n+mH]e− jk 2π
N n, (5)

wherew[n] is a window function of lengthN, e.g., the
Hamming window,k is the frequency bin index,m de-
notes the analysis frame index, andH represents the
hop size of the analysis frame along time. The output
of the first stage is the magnitude spectrum ofx[n,m],
which is defined byS[k,m] = |X[k,m]|.

The ‘peak detection’ stage receivesS[k,m] as in-
put and selects only those peaks that correspond to sta-
tionary sinusoidal components of the signal present in
framem. The amplitude and frequency of the detected
peaks can be finely estimated by a number of dedi-
cated methods [2, 6]. Finally, a ‘partial tracking’ pro-
cedure is responsible for matching peaks across con-
secutive frames, in order to form the so-called partial
tracks. These tracks contain information regarding the
life-cycle of the sinusoidal components present in the
signal under analysis.

Since the computational complexity of the ‘partial
tracking’ algorithm increases with the number of se-
lected peaks, the ‘peak detection’ stage should output
only the most prominent spectral peaks. Another rea-
son for a more judicious selection of spectral peaks is
to avoid the formation of too short-living partial tracks
due to noise-induced peaks. This way, a more precise
model for the sinusoidal components of the signal can
be obtained. Next section describes the peak picking
strategy adopted in this work.

2 PEAK PICKING STRATEGY
Peak picking in audio spectrum can be carried out

by several means, such as via threshold-based tech-
niques [1, 2], analysis-by-synthesis schemes [4], and
model-based analysis [7].

The present research focuses on threshold-based
peak picking approaches. For that purpose, a general
peak picking strategy is employed. It can be divided
into two main parts: a spectral pre-processing stage and
a peak selection algorithm, as depicted in Fig. 2. The
latter will be fixed for all test cases investigated here-
after. On the contrary, the pre-processing stage is the
variable element of the peak detection system: the sys-
tem performance will be assessed w.r.t four different
methods for spectral pre-processing. All these methods,
as well as the peak selection criterion, are described in
the subsequent sections.

Pre−processing
Spectral

Selection
PeakS

′
P

E

S

Figure 2: Block diagram illustrating the strategy
adopted in the peak detection system.

2.1 Spectral Pre-Processing
2.1.1 Motivation

In threshold-based schemes, the usual selection cri-
terion consists of choosing those spectral peaks that ex-
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ceed a pre-defined energy level. While simple, such
criterion is ineffective when dealing with general audio
signals, which typically exhibit a spectral pattern whose
energy decreases with frequency [8]. As a result, gen-
uine low-energy spectral peaks in the high-frequency
range may be discarded as spurious occurrences, as
seen in Fig. 3.
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Figure 3: Inadequacy of applying a constant threshold
to an observed spectrum of a noisy harmonic signal.

The pre-processing stage attempts to overcome the
aforementioned difficulty compensating the observed
spectral tilt. In a perhaps oversimplified manner, the
spectral tilt can be compensated by an estimate of the
colouring profile associated with the additive back-
ground noise that corrupts the signal of interest. Alter-
natively, an equally plain solution resorts to an estimate
of the spectral envelope.

The ensuing sections describe four methods that
have been designed to provide estimates for both the
spectral envelope and the noise spectral profile. Either
way, the desired estimates are referred to asE[k].

2.2 Spectral Tilt Estimators
2.2.1 a) Two-Pass Split Window

The TPSW filtering has been originally proposed
for noise spectrum estimation in sonar systems [9]. The
procedure consists of three stages. In the first stage the
sampled magnitude spectrumS[k] of a given input sig-
nal is filtered through a split window defined as [9]

hsw[n] =















0, |n| < Msw

1, Msw ≤ |n| < Nsw,
(6)

with 0 ≤ Msw < Nsw, beingNsw andMsw positive in-
tegers that control, respectively, the length of the split
window and the gap size.

The output of the first stagẽS[k] is then modified
according to the following criterion

Ŝ[k] =















S[k], if S[k] ≤ αS̃[k]

S̃[k], if S[k] > αS̃[k],
(7)

whereα ≥ 1 is a parameter related to the ability to reject
peaks in the observed spectrum.

In final stage, the modified spectrum̂S[k], which
is supposed to be free of prominent peaks, is filtered
through a conventional moving average filter, with the
same length as that of the split window. The output
of this third stage corresponds to the desired estimate,

Etpsw[k]. Note that the FIR filters used in first and third
stages are normalized for unity DC gain.

In the TPSW procedure,S[k] is considered within
the range between from 0 toπ. In order to avoid bound-
ary effects during the filtering, it is extended by about
20% of its original size. For that, part of the spectrum
at both extremities ofS[k] is mirrored. Moreover, fil-
tering delays are compensated in order to guarantee the
synchronism between input and output. This is accom-
plished by taking only the central part of the correla-
tion from the filtering results. In the end, the extensions
appended toS[k] are discarded in order to restore its
original size.

When it comes to the choice of the split-window pa-
rameters, the smoothness of the estimate increases with
Nsw. The value ofMsw should be set appropriately cho-
sen as to yield the window gap as large as the band-
width of a typical peak present inS[k]. The value ofα
is related to the peak rejection capability. It should be
chosen small enough to guarantee that the component
αS̃[k] is below the average magnitude of the peaks and
large enough to place the componentαS̃[k] above the
noise floor. Typically, choosing 2≤ α ≤ 8 provides
satisfactory results.

2.2.2 b) Low-Order AR Estimation

Autoregressive (AR) models are widely used in au-
dio signal processing, such as vocal tract estimation in
speech processing [10, 11].

Here, the idea is to take the spectralenvelopees-
timate of a given audio signal for the desired spectral
tilt curve. Thus, the procedure consists of fitting a low-
order AR model to the time-domain signalx[n] asso-
ciated withS[k]. The desired envelopeEar[k] is the
magnitude spectrum of the estimated AR model.

In mathematical terms, a relaxed assumption is that
s[k] is governed by the following AR model

x[n] =
q

∑

u=1

a[u]x[n− u] + r[n], (8)

whereq is the (insufficient) model order,a[u] are the
model coefficients, andr[n] is the modeling error.

The model parameters can be estimated via any
standard AR estimator, such as the Yule-Walker
and Burg methods. Once the modelA(z) =
[

1−
∑q

u=1 auz−u
]−1

is available, the desired spectral en-
velope is obtained byEar[k] = |A(ejωk)|, whereωk =
2πk
N , with N being the length of DFT buffer used in the

spectral analysis.

2.2.3 c) Nonlinear Recursive Smoothing Filter

In [12] a nonlinear recursive smoothing filter
(NRSF) is proposed for estimating the spectral profile
of coloured noise in audio spectra. The filter, devised
under the assumption that the power spectrum density
of the noise component would vary slowly over fre-
quency, works by limiting in modulus the first deriva-
tive (or slew rate) of the spectrum samples, with respect
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NUNES ET AL. EVALUATION OF PEAK-DETECTION ALGORITHMS

to frequency. The nonlinear recursive filter that imple-
ments the solution is given by

Enrsf[k] = Enrsf[k− 1]βsign(S[k]−Enrsf[k−1]), (9)

whereS[k] is the observed magnitude spectrum of the
signal under test;Enrsf[k] is the desired spectrum esti-
mate; sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0;
andβ is a constant slightly larger than unity.

The parameterβ can be expressed asβ = 1+ λ. In
theory,λ should be chosen as to exceed the maximum
slew rate associated with the power density spectrum of
the noise component. In practice, as can be seen from
Eq. (9), the value ofλ controls the forgetting factor of
the filter. Thus, the largerλ, the higher the variance of
Enrsf[k] becomes. Choosingλ = 0.05 provides a suffi-
ciently smoothEnrsf[k] [12].

When dealing with recursive schemes, filter initial-
ization should be considered carefully. An improper
initialization can bias the initial samples ofEnrsf[k] and
thus degrade the overall performance of the algorithm.
One possible solution is to extendS[k] at the bound-
aries, as described earlier in Section 2.1.2.a, and ini-
tialize the recursion withEnrsf[k − 1] = 0. Of course,
the spectrum extension should be long enough for the
influence of a wrong initialization be mitigated. Af-
terwards, the estimated values ofEnrsf[k] outside the
original range ofS[k] are discarded. Alternatively,
Enrsf[k − 1] can be set as the median value among the
first C samples ofS[k]. In both cases, the original fre-
quency range ofS[k] is from 0 toπ.

2.2.4 d) Stochastic Spectrum Estimation

The stochastic spectrum estimator (SSE) is another
non-linear stochastic spectrum estimator that has been
introduced by [13].

AssumingS[k] as defined before, the SSE method
consists of the four steps described below:

1. PassS[k] through a three-tap moving average fil-
ter, in order to obtain aS1[k] possibly free of null
magnitude samples;

2. ComputeR[k] = 1
S1[k] ;

3. ObtainR1[k] as a smoothed out version ofR[k], by
computing a cyclic convolution betweenR[k] and
anNsse-tap moving average FIR filter;

4. Compute the desired estimate asEsse[k] = 1
R1[k] .

As with the TPSW method, the smoothness of
Esse[k] increases with the value ofNsse. Moreover, all
FIR filters used in the procedure are normalized to force
the DC gain equal to 0 dB. Differently from the TPSW
filtering, in the SSE schemeS[k] should be considered
within the whole range between 0 and 2π, in order to
make effective the use of the cyclic convolution. It
should be noticed, however, that one could employS[k]
within the range between 0 andπ, provided that this
S[k] is sufficiently extended at both extremities via the
mirroring scheme mentioned in Section 2.1.2a.

2.2.5 Performance Comparison

In order to illustrate the qualitative performance of
the previously described methods, they are tried over a
test-signal, under the processing setups detailed below.

• Input signal: 2048 samples of a noisy harmonic
signal with fundamental frequency equal to 1 kHz,
sampled at 44.1 kHz, and windowed by a 2048-
sample Hann window;
• S[k]: magnitude of a 2048-point DFT applied to

the input signal;
• TPSW filtering:Nsw = 51, Msw = 8, andα = 4;
• AR method:q = 10;
• SSE method:Nsse= 101;
• NLRF method:β = 1.01.

The attained results are summarized in Fig. 4. It can
be observed that all methods succeed in catching the
overall shape of the spectrum. It is also worth noticing
that, with exception ofEar[k], the remaining spectral
envelopes follow closely the local average of the noise
floor. The suspendedEar[k] is nothing to worry about,
since those estimates will not be used directly as vari-
able magnitude thresholds for the reference spectrum.
Rather, they will serve to compensate the spectral tilt of
the reference spectrum, before proceeding to the peak
detection stage.
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Figure 4: Qualitative performance comparison among
the methods under evaluation.

2.3 Peak Selection Criterion
As depicted in Fig. 2, peak selection is performed

overS′[k], which is a tilt-compensated version ofS[k].
Note that the compensation is carried out in the log-
arithmic scale. Fig. 5 compares an originalS[k] and
its tilt-compensated versionS′[k], in an example where
Esse[k] was used. Now, it is clear that a constant magni-
tude threshold can be employed to discriminate genuine
from spurious spectral peaks.

As regards the adopted peak selection criterion, as-
sume first the setk ∈ {2, 3, . . . , (N/2− 1)} of S′[k] bin
indices. For all elements ofk, collect in a sub-setPm

the indiceskpeak that satisfy simultaneously the follow-
ing conditions:
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Figure 5: Comparison between the original (top) and
tilt-compensated spectra (bottom).

1. S′[k] > S′[k− 1];
2. S′[k] > S′[k+ 1];
3. S′[k] > dµ;

In condition 3,d is an empirically chosen multiplier
andµ is an estimate of the standard deviation of the
noise observed inS′[k]. The selected indiceskpeakcon-
tain the desired bin indices associated with the detected
peaks inS′[k].

The first two conditions above define which sam-
ples ofS′[k] could be qualified as peaks, regardless of
being genuine or spurious. The third condition sets the
value of the discrimination threshold, which sets the
minimum energy a peak should possess to be qualified
as a genuine peak.

The value ofµ can be obtained by any estimator ro-
bust enough to provide reliable estimates for the stan-
dard deviation of data series, despite the presence of
outliers. It was found experimentally that, when deal-
ing with spectra which are densely populated by gen-
uine peaks (outliers here), the median operator tends
to over-estimate the standard deviation of the noise.
Fortunately, with exception of the AR-based technique,
the very spectrum pre-processing methods presented in
Section 2.1.2 are competitive alternatives to aid the es-
timation of the noise standard deviation.

Among the available options for computingµ, the
SSE method was found to be the least affected by the
presence of genuine peaks. This is justified not only
by the SSE’s own formulation, but also experimentally.
Thus, the adopted solution was to estimateµ as

µ = mean(̄Esse[k]), (10)

whereĒsse[k] is the curve output by the SSE method to
any tilt-compensated spectrumS′[k].

As for the value ofd, one assumes that the pre-
processing was successful in ‘whitening’ the noise
component, which can be considered Gaussian. More-
over,µ is believed to be a reliable estimate for the stan-
dard deviation of the noise, as observed in the frequency
domain. In such case, setting 2≤ d ≤ 5, assures a confi-
dence interval greater than 95% that the spurious peaks
will fall below the adopted threshold.

In reality, for a given signal-to-noise ratio (SNR),
the larger the number of genuine peaks present in the
signal, the less they tend to stand out from the noise
floor, due to energy sharing among peaks. This favors
the occurrence of detection errors and requires a more
careful selection ofd. On the contrary, placing the se-
lection threshold is easier when dealing with a few gen-
uine spectral peaks, even for low SNRs.

The aforementioned condition motivates the follow-
ing strategy to set the value ofd.

1. Calibrated in order to assure a satisfactory detec-
tion performance considering a scenario with SNR
as low as 10 dB and a spectrum densely populated
with genuine peaks;

2. Attribute the previously found value ofd to dmin;
3. Computeρ = 1 ⊓

(

max (S′[k])−µ
10

)0.5
, wherea ⊓ b

stands for ‘maximum betweena andb’;

4. Maked = ρdmin.

Although adequate for cases with many spectral
peaks, the value ofdmin tends to be too low forS′[k]
bearing few peaks of interest. As a consequence, the
occurrence of false detections is favored.

In the computationρ, the quantity (max (S′[k]) −
µ) can interpreted as the available room in magnitude
between the spectral maxima and the average level of
the noise floor. Thus, if this room is larger than 10 dB,
the multiplierρ > 1 contributes to raise the threshold
by about half the magnitude room excess. Otherwise,
ρ = 0 andd = dmin. The former situation is likely
to happen when there are few genuine peaks inS′[k],
avoiding the occurrence of false alarms.

3 SIMULATION SETUP

This section describes the experimental setup used
to evaluate how well the peak detection system per-
forms. As depicted in Fig. 6, the test setup consists
of a signal generator, whose outputx[n] is fed to a
STFT analyser, which in its turn provides the magni-
tude spectrumS[k] to the peak detection system (see
Fig. 2). Moreover, a performance meter assesses the
peak detection results in quantitative terms, by count-
ing how many of the selected peaks are in fact correctly
detected, according to a reference indicator.

STFT
Detection

Peak
Generator
Test Signal

Evaluation
Performance

x[n] S[m, k] P [m]

fi

κ, γ, ζ

Figure 6: Setup devised to assess the performance of
the peak detection system.
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3.1 3.1 Test Signal Generation
The test signal, sampled at 44.1 kHz, is composed

of two components: one deterministic and another
stochastic. The former consists of a sum of harmonic
signals with fundamental frequenciesf0,i . For eachf0,i ,
which is chosen randomly between 200 Hz and 1 kHz,
with uniform probability, harmonics are generated up
to the Nyquist frequency. Moreover, the amplitude of
the harmonics can be either constant or decaying over
frequency.

As for the zero-mean additive stochastic compo-
nent, it can be either white or pink noise. In mathe-
matical terms the test signal is defined as

x[n] =
I

∑

i=0

Ji
∑

j=1

ai j cos

(

2π j f0,in

Fs

)

+ ση[n]. (11)

The double summation in Eq. (11) represents the
deterministic part of the signal, whereFs is the sam-
pling frequency,I is the number of fundamental fre-
quencies in the mixture, andJi =

⌊

Fs
2 f0,i

⌋

, with ⌊.⌋ denot-
ing ‘the greatest integer less than or equal to’, defines
the number of harmonics associated with a givenf0,i .
The amplitude of the harmonicsai j is set either to unity
or decreases with frequency according toai j =

1
j f0,i

.

The second part of Eq. (11) represents the noise
component, beingη[n] with 0 ≤ n ≤ (N − 1), one re-
alization of a stochastic process having constant or 1/ f
power spectrum density, andσ a variable that controls
the noise power in order to force a desired SNR.

3.2 Peak Detection Setup
The computation ofS[k,m] and S′[k,m] is identi-

cal to the procedures and parameters described as in
Section 2.1.3. Those processing parameters were em-
pirically tuned across the different methods as to render
fair the comparisons among their performance.

As regards the peak selection algorithm, the main
parameter to be set is the multiplierdmin of the noise
standard deviation. It was found thatdmin = 2 is a suit-
able choice. The length of the second SSE filter was set
to Nsse= 150.

3.3 Performance Evaluation
Peak detection performance is assessed basically by

means of counting the number of correctly detected
peaks and that of false alarms. Here, the main issue
to consider is the observedpresenceof a given peak,
regardless of whether it was detected with precisely es-
timated magnitude and frequency. In any case, it is nec-
essary to define the conditions upon which a peak can
be considered correctly detected.

On the measurement side, the peak observation do-
main isS[k,m]. Thus, the frequency of any observed
peak can only lie in one of the available frequency bins,
i.e.,kFs/N, for 0 ≤ k < N/2. On the reference side, the
frequencies of the peaks in the test signal can be set in

a frequency grid as fine as desirable. In order to ensure
a meaningful peak detection performance assessment,
the reference domain should be made compatible to the
measurement domain. The following sections examine
the issue in more detail.

3.3.1 3.3.1 Reference Domain Alignment

First, let the setΦ contain all the frequenciesφi as-
sociated with the deterministic part of the input signal.
The primary goal is to foresee which bins in the ob-
servation domain would be more strongly activated by
those frequenciesφi . Thus, each elementφi is quan-
tized to the nearest frequency bin, i.e.,φ̄i = kiFs/N, for
ki = round(φiN/Fs), whereN is the length of the STFT
analysis buffer andFs the sampling frequency.

Gathering all non-repeated occurrences ofki in a set
K , one can define a preliminary reference vector, whose
elements are defined as

r[k] =















1, if k ∈ K

0, otherwise
, for 0 ≤ k <

N
2
. (12)

Note, however, thatr[k] = 1 may not necessarily
coincide with observed peaks of any kind inS[k,m].
This is because the position of an observed local maxi-
mum inS[k,m], due to a givenφi , is influenced not only
by the corrupting noise, but also by the presence of the
otherφi .

The key-point here is to build a reference mask that
corresponds to peak occurrences truly observable in the
measurement domain. It is then evident that frequency
quantization alone is an insufficient criterion to align
the reference and measurement domains.

A more adequate domain alignment can be created
by means of an auxiliary binary vector, the elements of
which are defined as

c[k] =















1, if k ∈ Om

0, otherwise
, for 0 ≤ k <

N
2
, (13)

whereOm is a set with cardinality|Om| containing all
bin indices associated withobservedpeaks inS[k,m],
either genuine or spurious. Then, the aligned reference
vector is obtained by

ra[k] = r0[k] ⊕ r−1[k] ⊕ r+1[k], (14)

with r0[k] = r[k] ∧ c[k], r−1[k] = r[k − 1] ∧ c[k], and
r+1[k] = r[k + 1] ∧ c[k], for 1 ≤ k < (N/2− 1), where
the symbols∧ and⊕ stand for the boolean operations
‘AND’ and ‘XOR’, respectively.

The parts ofra[k] can be interpreted as follows:

• r0[k] nullifies r[k] if c[k] = 0, i.e., when active bins
in the reference are not observed peaks;

• r−1[k] moves an active bin inr[k] to the adjacent
one on the left side ifc[k] = 0 butc[k− 1] = 1;

• r+1[k] moves an active bin inr[k] to the adjacent
one on the right side ifc[k] = 0 butc[k+ 1] = 1.
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Table 1: Performance indicators obtained fromTest 1.

SNR (dB)
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

TPSW 85.6 98.9 99.3 99.5 99.6 17.5 4.6 0.5 0.3 0.2 0.68 0.94 0.99 0.99 0.99
AR 88.9 99.7 99.8 99.8 99.8 22.5 13.4 1.4 0.2 0.1 0.66 0.86 0.98 1.00 1.00

NRSF 83.3 97.1 99.2 99.3 99.2 15.0 1.7 0.7 0.4 0.29 0.68 0.95 0.99 0.99 0.99
SSE 85.6 97.9 99.2 99.3 99.3 18.1 2.5 0.7 0.5 0.3 0.68 0.95 0.99 0.99 0.99

No method 38.3 63.0 84.9 93.6 98.5 6.3 2.3 0.9 0.4 0.2 0.32 0.61 0.84 0.93 0.98

Metric γ ζ κ

Table 2: Performance indicators obtained fromTest 2.

number off0,i (I )
3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

TPSW 97.2 91.6 85.7 78.0 71.0 3.0 3.5 3.6 3.8 4.0 0.94 0.88 0.82 0.74 0.67
AR 98.3 92.5 86.4 78.4 71.4 4.5 4.3 3.9 3.7 3.5 0.94 0.88 0.83 0.75 0.68

NRSF 91.4 84.6 79.4 72.5 66.4 2.1 3.6 4.5 5.3 5.8 0.89 0.81 0.75 0.67 0.61
SSE 94.3 88.5 82.9 75.5 69.0 2.0 2.9 3.3 3.8 4.1 0.92 0.86 0.80 0.72 0.65

No method 48.4 38.2 33.1 25.6 24.0 2.2 2.8 3.3 3.9 4.5 0.46 0.35 0.30 0.25 0.21

Metric γ ζ κ

In practice, the indicesk for which ra[k] = 1 in-
dicate the reference spectral locations against which to
confront those of the detected peaks inS[k,m]. Once
ra[k] is obtained, the percentage of correctly detected
peaks can be computed as

γ =
G
Q
, (15)

whereQ =
∑

N
2

k=0 ra[k] is the count of all peaks in the

reference vector andG =
∑

N
2

k=0 g[k] is the count of all
correctly detected peaks, with

g[k] =















ra[k], if k ∈ Pm

0, otherwise
, (16)

wherePm is a set of cardinality|Pm| containing the in-
dices of all detected peaks fromS′[k,m].

The percentage of false alarms can be computed as

ζ =
|Pm| −G
|Om| − Q

, (17)

where|Pm| − G is the count of all incorrectly detected
peaks and|Om| − Q is the count of all observable peaks
in S′[k,m] that should have remained undetected.

In addition, one can define the meter

κ = γ − ζ, (18)

which aggregates the two previous measures into a sin-
gle performance indicator. Ideally,−1 ≤ κ ≤ 1 and a
perfect detection is achieved whenκ = 1. A value of
κ close to 1 indicates the occurrence of more correctly
detected than false alarms. On the contrary, a value of
κ close to−1 indicates a larger count of false alarms in
comparison to that of correctly detected peaks.

4 RESULTS

All four methods discussed previously were tested
with the same test signals, in order to investigate their
behaviour under identical conditions. Moreover, the re-
sults when no spectral tilt compensation is applied are
also calculated and displayed as ‘no method’. The sim-
ulation setup and its processing parameters are the same
as those described in the previous section.

Each test signal was designed to accommodate 10
analysis frames. For each test, 500 realizations were
generated. The reported results correspond then to
the average performance indicators measured for each
frame and for each signal. For convenience the values
of γ andζ are displayed in %.

Test 1 aims at assessing peak detection performance
under different SNRs. The chosen test signal consists of
a single f0,i (I = 1), with ai j =

1
j f0,i

, immersed in pink
noise. The SNR is set from 0 to 20 dB in steps of 5 dB.
The attained results are seen in Table 1.

The values ofγ show that most of the genuine peaks
are correctly classified even in low SNR conditions. As
expected, the lower the SNR, the higher the values ofζ,
showing a tendency to misclassify spurious peaks. All
methods yielded similar values ofκ, evidencing that all
perform equally well, under the tested conditions. By
contrast, the systematic lower values ofκ when spectral
tilt compensation is not applied demonstrate the effec-
tiveness of its use.

Test 2 measures peak detection performance w.r.t.
the number of harmonic signals present in the mixture.
Setup: test signals containing 3≤ I ≤ 7 fundamental
frequencies, withai j =

1
j f0,i

, immersed in pink noise,
and SNR= 10dB. Table 2 summarizes the results.
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It can be observed thatγ tends to decrease with
the increase ofI . As for ζ, with exception of the AR
method, it tends to increase withI . Among the tested
methods, the NRSF method achieves the lowest perfor-
mance whereas the AR scores are the highest, revealing
some robustness to the increase ofI .

Test 3 strains the methods by replacing pink with
white Gaussian noise. This time,I = 3, ai j =

1
j f0,i

, and
SNR = 10 dB. The results are organized in Table 3.
As one could anticipate, the performance of all meth-
ods decreases. The AR method showed a highγ value,
sinceEar[k] tends to decay with frequency, favoring the
detection of more genuine peaks immersed in noise. A
side-effect is an also high grade forζ that reduces the
value ofκ. Overall, according toκ, the TPSW method
achieves the highest performance.

Table 3: Performance indicators obtained fromTest 3.

Method
TPSW AR NRSF SSE No method

γ 64.2 76.9 44.1 41.6 38.9
ζ 11.0 31.5 2.1 2.1 0.2
κ 0.53 0.46 0.42 0.39 0.39

5 CONCLUSION

This work investigated the effect spectral tilt com-
pensation on the performance of a threshold-based peak
detection system. For this, four spectral tilt estimators
were examined. Moreover, an experimental environ-
ment, composed of a test signal generator, the config-
urable peak detection system, and a performance eval-
uation block, was designed.

The test results clearly favors the use of spectral tilt
compensation within a peak detection system. How-
ever, none of the methods stand out as contributing
to an overall superior peak detection performance. In
part, the achieved well-balanced performance among
the methods can be attributed to the sensible choice of
the processing parameters, as well as to the proposed
heuristics used to set the threshold level.
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