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ABSTRACT

Auto-regressive modeling of measured data is commonly used in
numerous signal processing applications. When aiming for high
accuracy Burg’s method has been found to give a suitable model. It
has been shown that when the signal energy is non-uniformly dis-
tributed in frequency range, the use of a modified frequency scale
is advantageous. This is often the case with audio signals. In this
paper we introduce a frequency-warped version of Burg’s method
for calculating the auto-regressive filter parameters. A bilinear fre-
quency mapping can be embedded in Burg’s method by replacing
the unit-delays of the lattice structure used in Burg’s method with
first-order allpass filters. The benefits of the frequency-warped
Burg’s method are demonstrated by comparing its signal model-
ing performance against those of the conventional Burg’s method
and the warped Yule-Walker method.

1. INTRODUCTION

An auto-regressive (AR) model [1] is defined by equation

yn = −
p∑

m=1

amyn−m + en (1)

where yn are the signal samples, p is the model order, am are
the model coefficients, and en is the residual. The model coef-
ficients am are calculated by minimizing the total energy of the
residual E =

∑
n e2

n. There exist several methods for estimat-
ing the AR parameters. The least squares method (also known as
the covariance method) and the Yule-Walker method (also known
as the autocorrelation method) are the mostly used approaches for
historical reasons [2]. Burg’s method is considered preferable for
applications which require models of high accuracy, e.g., signal
extrapolation [3] and detection [2].

There is a long tradition in performing signal analysis and pro-
cessing on a warped frequency scale. For example, a non-uniform
resolution Fourier transform technique that uses first-order allpass
filters has been presented in [4]. Moreover, signal modeling and
linear prediction on a warped scale have been proposed in [5] as a
way of approximating the frequency resolution of the human audi-
tory system. See [6] for a comprehensive historical background.

Significant benefit is gained from frequency warping in AR
modeling when the energy distribution of the signal is concentrated
on the lower or higher frequency range. Previously, a frequency-
warped version of the Yule-Walker method has been employed
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successfully in several audio-related applications [6]. Other ap-
plications of frequency warping include analysis, synthesis, and
de-noising of audio signals [7].

In this paper we show that frequency-warping can be com-
bined with Burg’s method in a straightforward way and introduce
the warped Burg’s algorithm. We apply the warped Burg’s algo-
rithm to signal modeling and show that while using the same num-
ber of model coefficients significant enhancements are obtained in
modeling accuracy in a perceptual sense.

The rest of the paper is organized as follows. In Section 2, we
present the conventional Burg’s algorithm. In Section 3, the prin-
ciple of frequency warping is discussed. In Section 4, the warped
Burg’s algorithm is derived and in Section 5, it is applied to signal
modeling. Conclusions are drawn in Section 6.

2. BURG’S ALGORITHM

From Eq. (1) it is easily seen that the residual en can be calculated
from the signal yn by

en = yn +

p∑
m=1

amyn−m =

p∑
m=0

amyn−m (2)

where a0 = 1. If the signal frame consists of N samples y0,
y1, . . . , yN−1, the residual samples ep, ep+1, . . . , eN−1 can be
regarded as the output of a finite impulse response (FIR) prediction
error filter. This FIR filter can be implemented through the lattice
structure shown in Fig. 1. The equations of the lattice filter are

f (l)
n = f (l−1)

n + klb
(l−1)
n−1

b(l)
n = b

(l−1)
n−1 + klf

(l−1)
n

n = l, l + 1, . . . , N − 1 (3)

where f
(l)
n and b

(l)
n are the forward and backward prediction errors

and kl are the reflection coefficients of the stage l. The initial
values for the residuals are f

(0)
n = b

(0)
n = yn. Burg’s algorithm

calculates the reflection coefficients kl so that they minimize the
sum of the forward and backward residual errors [8]. This implies
an assumption that the same AR coefficients can predict the signal
forward and backward. The sum of residual energies in stage l is

El =

N−1∑
n=l

(
f (l)

n

)2

+
(
b(l)
n

)2

. (4)
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Figure 1: Prediction-error filter with a lattice filter structure.
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Figure 2: Lattice form of the warped prediction-error filter. The unit delays in Fig. 1 have been replaced by first-order allpass filters.

Minimizing El with respect to the reflection coefficient kl yields

∂El

∂kl
= 2

N−1∑
n=l

{(
f (l−1)

n + klb
(l−1)
n−1

)
b
(l−1)
n−1

+
(
b
(l−1)
n−1 + klf

(l−1)
n

)
f (l−1)

n

}
= 0,

(5)

from which the reflection coefficients can be solved, i.e.,

kl =
−2

∑N−1
n=l f

(l−1)
n b

(l−1)
n−1∑N−1

n=l

(
f

(l−1)
n

)2

+
(
b
(l−1)
n−1

)2 . (6)

The AR coefficients am can be obtained from the reflection
coefficients kl via the Levinson-Durbin algorithm. The recursion
is initialized with a

(0)
0 = 1 and

a(l)
m = a(l−1)

m + kla
(l−1)
l−m m = 1, 2, . . . , l − 1 (7)

a
(l)
l = kl (8)

is repeated for l = 1, 2, . . . , p. At the end of the iterations, a
(p)
m

gives the desired prediction error filter coefficients am of Eq. (2).
Equation (6) ensures that |kl| < 1 and therefore Burg’s method is
guaranteed to provide a stable model.

3. FREQUENCY WARPING

The time-domain representation of a signal relates to its spectrum
via the Fourier transform. The frequency-resolution of the result-
ing spectrum is uniform along the frequency axis. Signal analy-
sis on non-uniform frequency-resolutions or on frequency-warped
scales can be achieved by means of a frequency mapping operator.

In this paper, frequency warping is restricted to a conformal bi-
linear mapping. This basically means that the unit-delays, z−1, of

the employed filter structures are replaced with first-order allpass
filters, D(z). These allpass filters can be regarded as frequency-
dependent delay elements and are defined by

z̃−1 = D(z) =
z−1 − λ

1 − λz−1
. (9)

Conversely to the linear phase response of an ordinary unit-
delay, the phase response of D(z) can be made non-linear by ad-
justing the warping factor parameter λ. Indeed, the mapping from
the uniform to the warped frequency scale is governed by the phase
response of D(z), which is given by [5]

ω̃ = arctan

{
(1 − λ2) sin(ω)

(1 + λ2) cos(ω) − 2λ

}
, (10)

where ω = 2πf/fs and fs is the sampling frequency. Figure 3
shows the attained mapping for several values of λ. For positive
values of λ, the resolution at low frequencies is increased. On the
contrary, negative values of λ yield a higher resolution at high fre-
quencies. Suitable values of λ can be chosen depending on the
application. For instance, in [9] it is shown that an approxima-
tion of the frequency resolution of the human auditory system is
attained by setting λ = 0.723.

Warped linear predictive coding can be carried out similarly to
standard methods. For instance, the coefficients ãm of a warped
prediction filter can be estimated via the warped autocorrelation
normal equations. In these equations, the conventional autocorre-
lation function rk = E{yny∗

n−k} is replaced with

r̃k = E{δ̃0[yn] δ̃k[y∗
n]}, (11)

where E is the expectation operator and δ̃k[·] is a generalized shift
operator defined by [6]

δ̃k[yn] = dn ∗ dn ∗ · · · ∗ dn︸ ︷︷ ︸
k fold convolutions

∗yn, (12)
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Figure 3: Phase response of D(z) for several values of λ.

with dn being the impulse response of the allpass filter. Yet, the
equation system can be solved efficiently via the Levinson-Durbin
algorithm. Finally, the prediction error filter is given by A(z) =∑p

m=1 ãmD(z)m. See [6] for more detailed information.

4. WARPED BURG’S ALGORITHM

The warped Burg’s method is based on warping the lattice filter
depicted in Fig. 1. This is done by replacing the delay elements
with warping allpass filters. The warped prediction error filter is
shown in Fig. 2. To calculate the warped prediction error in stage
l we need the allpass filtered backward residual

b̃(l)
n = b

(l−1)
n−1 − λ

[
b(l−1)
n − b̃

(l)
n−1

]
n = l, l + 1, . . . , N − 1,

(13)

where λ is the warping factor. Because this is a recursive filter
the initial condition (i.e. the value of b̃

(l)
l−1) has to be set. Using

b̃
(l)
l−1 = 0 is the most obvious choice.

Warping also changes the lattice equations of Eq. (3) to

f
(l)
n = f

(l−1)
n + k̃lb̃

(l)
n

b
(l)
n = b̃

(l)
n + k̃lf

(l−1)
n .

n = l, l + 1, . . . , N − 1 (14)

The resulting equation for the reflection coefficient is

k̃l =
−2

∑N−1
n=l f

(l−1)
n b̃

(l)
n∑N−1

n=l

(
f

(l−1)
n

)2

+
(
b̃
(l)
n

)2 . (15)

From Eq. (13) it can be seen that parameter value λ = 0 reduces
the algorithm to ordinary Burg’s method.

5. EXPERIMENTS

Modeling signals with all-pole infinite impulse resonse (IIR) filter
is a powerful application of AR modeling. One example of this
is linear predictive coding (LPC) which is usually used to model
only the spectral envelope of the signal. In this section the model-
ing performance of different methods is compared with emphasis
on high perceptual accuracy. The target is to obtain a model that
extracts the strongest signal frequencies. This is an important is-
sue, e.g., in model-based signal extrapolation.

Figures 4–7 present a comparison among the ordinary Burg’s
method, its warped version, and the warped Yule-Walker method.

100 200 500 1k 2k 5k 10k

−60

−40

−20

0

20

BURG’S METHOD

A
m

pl
itu

de
 [d

B
]

frequency [Hz]

100 200 500 1k 2k 5k 10k

−60

−40

−20

0

20

WARPED YULE−WALKER METHOD

A
m

pl
itu

de
 [d

B
]

frequency [Hz]

100 200 500 1k 2k 5k 10k

−60

−40

−20

0

20

WARPED BURG’S METHOD

A
m

pl
itu

de
 [d

B
]

frequency [Hz]

Figure 4: Comparison among the magnitude responses of the all-
pole filters obtained using Burg’s method, the warped Yule-Walker
method, and the warped Burg’s method. The employed setup was
p = 50 and λ = 0.723. The thinner curves relate to the signal
whereas the thicker (shifted upwards for clarity) to the models.

The comparison is made using the same model order p = 50 in all
three methods and warping factor λ = 0.723 in both of the warped
methods to provide frequency-warping close to the auditory fre-
quency scale [9]. Figure 4 shows the magnitude spectrum of a tar-
get signal (2048 samples of a guitar tone sampled at 44.1 kHz) and
those of the modeled signals, which were obtained using different
methods. Figures 5 and 6 compare the same models in the z-plane
by showing the pole locations of the models. In the frequency do-
main, the ordinary Burg’s method models the signal with equal
emphasis on all the frequencies. In the example, the target sig-
nal has most of its energy concentrated in the lower quarter of the
(linear) frequency range but the actual model has its poles equally
concentrated across the whole frequency range. Burg’s method
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Figure 5: The poles of the AR-models obtained using Burg’s
method and the warped Burg’s method. The employed setup was
p = 50 and λ = 0.723.
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Figure 6: The poles of the AR-models obtained using the warped
Burg’s method and the warped Yule-Walker method. The em-
ployed setup was p = 50 and λ = 0.723.

”wastes” its poles by modeling the high frequency noise peaks.
By using positive warping factor λ, the emphasis of the modeling
procedure is shifted to lower frequencies, thus resulting in a more
accurate model in a perceptual sense with the same model order. If
the same accuracy in lower frequency region were to be achieved
with the ordinary Burg’s method the model order should be about
three times higher. For equal comparison in terms of computa-
tional cost the order should be only about 33 % higher to compen-
sate for the more expensive modeling. The warped Yule-Walker
method captures the most significant spectral components of the
signal but the model obtained is still less accurate than the one
given by the warped Burg’s method. The warped Burg’s method
places the poles closer to the unit circle and this makes the peaks
more pronounced in the frequency response of the all-pole filters.

Figure 7 compares the spectra of the residuals obtained with
different methods. In the lower frequencies, the ordinary Burg’s
method models only the spectral envelope of the signal. As a re-
sult the ratio of the height of the spectral peaks to the background is
preserved in the residual. The warped Yule-Walker method mod-
els also some of the strongest spectral peaks and in the residual
the peaks rise lower above the background. The residual obtained
with the warped Burg’s method has a more flat spectrum in a log-
arithmic scale than the ones obtained with the other methods.

6. CONCLUSIONS

In this paper we have presented the warped Burg’s algorithm for
calculating the AR model parameters. The warping is achieved
by replacing the delay elements of the lattice filter by first-order
allpass warping elements.

We have demonstrated the improving effect of warping in mod-
eling of audio signals whose energy distribution is concentrated in
the lower part of the spectral range. The improved AR modeling of
the warped Burg’s method is compared to the conventional Burg’s
method and the warped Yule-Walker method. It can be concluded
that, for a given model order, the warped Burg’s method yields
more accurate models from the perceptual point of view.
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and J. Huopaniemi, “Frequency-Warped Signal Processing for
Audio Applications,” J. Audio Eng. Soc., vol. 48, no. 11, Nov.
2000.

[7] G. Evangelista and S. Cavaliere, “Discrete Frequency Warped
Wavelets: Theory and Applications,” IEEE Trans. Signal Pro-
cessing, vol. 46, no. 4, pp. 874–885, Apr. 1998.

[8] J. P. Burg, “A New Analysis Technique for Time Series Data,”
NATO Advanced Study Institute on Signal Processing with
Emphasis on Underwater Acoustics, Enschede, The Nether-
lands, Aug. 1968, reprinted in Modern Spectrum Analysis,
D. G. Childers, ed., IEEE Press, New York, 1978.

[9] J. O. Smith and J. S. Abel, “Bark and ERB Bilinear Trans-
forms,” IEEE Trans. Speech Audio Processing, vol. 7, no. 6,
pp. 697–708, Nov. 1999.


