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ABSTRACT

This work proposes a model, originated from the power spectral den-
sity concept, for the sub-band processes obtained by analysis of an
ARMA process by a decimating filter bank. As an example, the
model for an AR process analyzed in octaves by a tree-structured
FIR filter bank is derived in a recursive way, and some interpreta-
tions are given.

1. INTRODUCTION

Multi-rate digital processing [1] is today a well-established topic,
extensively applied in communications, image and audio industry
and other areas, for signal coding, adaptive or statistical processing
etc.

A special class of discrete random processes [2] are those ob-
tained by passing white-noise through a linear digital filter—called
Moving-Average (MA) for an Finite-Impulse-Response (FIR) filter,
Autoregressive (AR) for an all-pole filter or Autoregressive-Moving-
Average (ARMA) in the general case.

Many applications in speech and audio employ these processes
as models. This is particularly true for audio restoration [3], where
ARMA and AR processes play an important role in description of
signals. In this context, model-based processing in sub-bands would
profit from a similar description of the sub-band signals, if it was
possible. This is the motivation behind this work.

This work uses polyphase decomposition of systems [1] and
power spectral density of random signals [2] to get a simple model
that describes sub-band signals resulting from the analysis of an
ARMA process by a decimating filter bank. The special case of an
AR process passing through an octave-band filter bank is also de-
tailed, leading to some useful interpretations.

Applications of these results to audio modeling and restoration
will appear in future works [4]. Practical simulations yield good
results.

The paper is organized as follows. Section 2 covers the general
case of the ARMA process divided in� bands, Section 3 derives and
discusses the case of the AR process divided in octaves and Section 4
summarizes the results.

2. GENERAL MODEL: ARMA PROCESS IN � BANDS

The purpose of this Section is to derive a simple low-rate model for
the signals that results from the analysis of an ARMA process in
sub-bands.

First, consider the � -band multi-rate system shown in Fig. 1,
which analyzes the ARMA process ���� defined by
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Figure 1: ARMA Process analyzed by an � -band decimating filter
bank.

To obtain the model, we can follow the steps depicted in Fig. 2.

(a) Consider the subsystem corresponding to a given sub-band 
.

(b) Represent ���� explicitly as the adequate IIR filter fed by a
white-noise process ����. Group this filter and the analysis
filter ����� into ������.

(c) Obtain a polyphase representation for ������.

(d) Place the decimator before the adder.

(e) For each polyphase 
, place the decimator before the filter
�������, and represent the respective component of ���� ex-
plicitly as �����.

(f) Being ��� the variance of ����, it is easy to conclude that
�����, for 
 � �� �� 	 	 	 � � � �, are mutually uncorrelated
white-noise processes with variances
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Since the signals ������, for 
 � �� �� 	 	 	 � � � �, are col-
ored versions of �����, respectively, they are also mutually
uncorrelated. Then, the autocorrelation of ����� can be writ-
ten without cross-terms as
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Figure 2: Generation of �����: from the multi-rate representation to
a low-rate model.

leading to the power spectral density
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By applying factorization to the expression above,
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we can get a representation of ������—equivalent to ����� in
terms of its power spectral density—as an ARMA process
defined by the minimum-phase filter ��
���� fed by a white-
noise process with variance ��� , denoted as �
����.

Now, a complete equivalent model would consist of � similar sub-
systems in parallel. However, this model does not express the mutual
correlation between different sub-bands. In the following, we obtain
such a description.

Consider 2 distinct sub-bands 
� and 
�, each one described as
in Fig. 2(e). The cross-correlation between their signals is given by

�������
�
� �

�	��

���
����������������
�	

�
�	��

���
��� ����� � ������� ����� � ������
�	�

resulting in the cross-power spectral density
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3. MODEL FOR AN AR PROCESS IN OCTAVES

In this section, we apply the results from Section 2 to a usual sit-
uation in audio applications: an AR process split in octaves. This
special case leads to some useful interpretations.

3.1. Model derivation

Start from the order-� autoregressive process
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where ���� is white-noise with variance ��� .
Consider the binary-tree structured FIR filter bank depicted in

Fig. 3, used to analyze ���� in octaves.
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Figure 3: Analysis of an AR process by an octave-band decimating
filter bank.

In each stage, the analysis filters are the high-pass ����� and
the low-pass �����, both of order �. After � stages, there will be
�� � sub-bands, from ������ to �
��
� besides ��
 ��
�.



Now, we obtain the polyphase representation for each sub-band.
Concerning the first stage, we have
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These expressions, along with the transformations shown in Fig. 4,
describe the polyphase model that leads to ������ and �������. Note
that the generation of ������ has been omitted from the figure for
reasons of space.
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ŝ1 k1
(    )

s1 k1
(    )

ks (  )e k(  ) ��

s1 k1
(    )^z(  )F

Lz(  )A
e k(  )

1
2

^

^

^

-1z

z2(    )1A

z2(    )

z2(    )

z2(    )
s (k )11e k(  ) ����

B11

B10

1A
2+

10 1e k(    )

1e k(    )11

z(  )

z(  )A1

B̂10e k(  )

-1

z(  )B̂11

z(  )A1
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Figure 4: Generation of �������—polyphase representation.

Starting with �������, we proceed to the second stage,
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These expressions, along with the transformations shown in Fig. 5,
describe the polyphase model that leads to ������ and �������. Note
that the generation of ������ has been omitted from the figure for
reasons of space.
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ŝ1 k1
(    )

z(  )F
L

z(  )F
H

-1z

�����
�
�
� +

+

10 1e k(    )

1e k(    )11

z(  )FL

z(  )FLe k(  )

z(  )B̂11

z(  )B̂10

z(  )A1

z(  )A1

-1

(    )k2s2
^

��
��
��
�� 2

2

2

2

z

++

+

e k(  ) 2

2

-1

-1

z2(    )B20
^

z2(    )A2

z2(    )B22
^

z2(    )A2

z2(    )B21
^

z2(    )A2

z2(    )B23
^

z2(    )A2

-1

2

2 s2(    )k2
^

��
��
��
��

����

��

z

z

z

(    )k2

z(  )A2

(    )k2

(    )k2

(    )k2 z(  )B23
^

e k(  )

-1

-1

-1

z(  )B22
^

z(  )A2

z(  )B21
^

z(  )A2

z(  )B20
^

z(  )A2
s2 (    )k2
^

��
��
��
��

��
��
��
��

��
��
��
��

4

4

4

4

e20

e21

e22

e23

z

z

z

+

Figure 5: Generation of �������—polyphase representation.

After a general �-th stage, one can obtain the polyphase repre-
sentation of the system that generates signals �
��
� and ��
��
�,
shown in Fig. 6.

Referring to the general sub-band signal �
, the same reasoning
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Figure 6: Generation of �
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� and ��
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�—polyphase repre-
sentation.

applied in Section 2 leads to the power spectral density
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In conclusion, as illustrated in Fig. 7, we described ��
��
�—
equivalent to �
��
� in terms of its power spectral density—as an
ARMA process defined by the minimum-phase filter
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fed by a white-noise process, denoted as �
���
�, with variance ��� .
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Figure 7: Model for the signal in sub-band �.

Completing the model, the cross-power spectral density between
same rate sub-bands can also be written as
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3.2. Comments

We can draw some conclusions and speculations after the model fil-
ters of individual sub-bands.

First, it is possible to deduce that the numerator and denomina-
tor orders of �
��� are�
�num��� �� � ��num�
���

�
�� � � �

�num��� � ����
�
�

and �den��� � � , re-

spectively, except for possible canceled terms.
Furthermore, the location of the model filter poles after each

stage can be exactly predicted. From stage � to stage � � �, the
denominator of the model filter transfer function is calculated by

�
����
�� � �
����
����	

If we suppose, e.g.,
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it can be shown that
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This can be generalized to any number of poles and means that each
stage squares the value of the model filter poles; so, each complex
natural mode has its frequency doubled and its associated selectivity
reduced.

Mapping the model filter zeros is a more difficult task, as it re-
sults from successive compositions of modified versions of the orig-
inal model denominator ���� with the analysis filters. What can
be said is that the increasing selectivity resulting from the succes-
sive filtering stages should gradually “eliminate” the effect of some
modes; another way to visualize this fact is consider that there are
zeros canceling poles in the model transfer function. As a conse-
quence, one expects the model orders to be reduced along the stages.
This is an interesting issue, because it allows the use of lower-order
approximate models for sub-bands. Simulations have confirmed this
expectations [4].

4. SUMMARY

A low-rate model for the sub-band signals that result from passing
an ARMA process through a multi-rate system was proposed. The
model, equivalent in terms of the power spectral density, consists of
one ARMA process per sub-band. After examination of the corre-
spondent results for an AR process analyzed by an octave-band filter
bank, some useful interpretations were drawn, which suggest the use
of reduced-order sub-band models. Future works will present appli-
cations of these results in audio processing.
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