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ABSTRACT

Thiswork proposes amodel, originated from the power spectral den-
sity concept, for the sub-band processes obtained by analysis of an
ARMA process by a decimating filter bank. As an example, the
model for an AR process analyzed in octaves by a tree-structured
FIR filter bank is derived in a recursive way, and some interpreta-
tions are given.

1. INTRODUCTION

Multi-rate digital processing [1] is today a well-established topic,
extensively applied in communications, image and audio industry
and other aress, for signal coding, adaptive or statistical processing
etc.

A special class of discrete random processes [2] are those ob-
tained by passing white-noise through alinear digital filte—called
Moving-Average (MA) for an Finite-lmpulse-Response (FIR) filter,
Autoregressive (AR) for an all-polefilter or Autoregressive-Moving-
Average (ARMA) in the general case.

Many applications in speech and audio employ these processes
as models. Thisis particularly true for audio restoration [3], where
ARMA and AR processes play an important role in description of
signals. In this context, model-based processing in sub-bands would
profit from a similar description of the sub-band signals, if it was
possible. Thisisthe motivation behind thiswork.

This work uses polyphase decomposition of systems [1] and
power spectral density of random signals [2] to get a simple model
that describes sub-band signals resulting from the analysis of an
ARMA process by a decimating filter bank. The special case of an
AR process passing through an octave-band filter bank is also de-
tailed, leading to some useful interpretations.

Applications of these results to audio modeling and restoration
will appear in future works [4]. Practical simulations yield good
results.

The paper is organized as follows. Section 2 covers the genera
case of the ARMA processdivided in IV bands, Section 3 derives and
discusses the case of the AR process divided in octaves and Section 4
summarizes the results.

2. GENERAL MODEL: ARMA PROCESSIN N BANDS

The purpose of this Section is to derive a simple low-rate model for
the signals that results from the analysis of an ARMA process in
sub-bands.

First, consider the N-band multi-rate system shown in Fig. 1,
which analyzes the ARMA process s(k) defined by

1

s(k) =Y _a(i)s(k—i)+ Y _ b(j)e(k = j).
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Figure 1: ARMA Process analyzed by an N-band decimating filter
bank.

To obtain the model, we can follow the steps depicted in Fig. 2.
(@) Consider the subsystem corresponding to a given sub-band n.

(b) Represent s(k) explicitly as the adequate IIR filter fed by a
white-noise process e(k). Group this filter and the analysis
filter F,(2) into F, (2).

(c) Obtain a polyphase representation for £, (2).
(d) Place the decimator before the adder.

(e) For each polyphase p, place the decimator before the filter
F.,(2), and represent the respective component of (k) ex-
plicitly ase,(l).

(f) Being o2 the variance of e(k), it is easy to conclude that
ep(l), forp = 0,1,..., N — 1, are mutually uncorrelated
white-noise processes with variances

Ele2()] = B[e*(N + p)] = Ele*(k)] = o2,

Since the signals sy, (1), forp = 0,1,...,N — 1, are col-
ored versions of e, (1), respectively, they are also mutually
uncorrelated. Then, the autocorrelation of s, () can be writ-
ten without cross-terms as

N-1
Rsnsn (A) = Z Rsnpsnp (A)a
p=0



° 5

“©

@

B(2) | sk
A2

e Fn(2) ° 5(l)

Fa(2)

(b)

(d)

&) = Sno(l)
N Nt ST
2]
() ) |

. . - i :_
| O ey-1(l) Sin-1(1)

(e
&) o (1)
U]

Figure 2: Generation of s, (I): from the multi-rate representation to
alow-rate model.

leading to the power spectral density
Ssnsn (Z) = ZI],VZ_OI Ssnpsnp (Z) =

= SN Fap(2) Frup(z )02 = Sapa (—2).

By applying factorization to the expression above,

Sensn(2) & Fu, (2)Eu, (2 10?2,

we can get a representation of 5, (I)—equivalent to s, (I) in
terms of its power spectral density—as an ARMA process
defined by the minimum-phase filter F;,, (=) fed by a white-
noise process with variance o2, denoted as ey, ().

Now, a complete equivalent model would consist of N similar sub-
systemsin paralel. However, thismodel does not express the mutual
correlation between different sub-bands. In the following, we obtain
such a description.

Consider 2 distinct sub-bands ;. and 2, each one described as
in Fig. 2(e). The cross-correlation between their signalsis given by

Rypyony (8) = 207 Blsuap()snap(l + )]

p=0

= 3N Bl(farp  €0) (D (frap * )T + A)),

resulting in the cross-power spectral density

'55"13"2 (Z) = lz Fnlp(z)ﬁn2p(z_l)] U?-

3. MODEL FOR AN AR PROCESSIN OCTAVES

In this section, we apply the results from Section 2 to a usua sit-
uation in audio applications: an AR process split in octaves. This
special case leads to some useful interpretations.

3.1. Modd derivation

Start from the order-I autoregressive process

1

s(k) = a(i)s(k — i) + e(k),

i=1

where e(k) iswhite-noise with variance o2.
Consider the binary-tree structured FIR filter bank depicted in
Fig. 3, used to analyze s(k) in octaves.

e(k)o—

A2

Figure 3: Analysis of an AR process by an octave-band decimating
filter bank.

In each stage, the analysis filters are the high-pass Fy (z) and
the low-pass F(z), both of order Q. After m stages, there will be
m + 1 sub-bands, from s; (k1) t0 s, (ki) besides 5, (k).



Now, we obtain the polyphase representation for each sub-band. These expressions, along with the transformations shown in Fig. 5,

Concerning the first stage, we have describe the polyphase model that leads to s» (k2) and $2(k2). Note
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These expressions, along with the transformations shown in Fig. 4,
describe the polyphase model that leads to s: (k1) and 51 (k1). Note
that the generation of s, (k1) has been omitted from the figure for
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Figure4: Generation of 3; (k1 )—polyphase representation.
Starting with $1 (k1 ), we proceed to the second stage, 2221((22))
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and i i After a general m-th stage, one can obtain the polyphase repre-
Fr(z)2u&) — py () Bu@ M) 2 sentation of the system that generates signals s,, (k. ) and 3,,, (k. ),

A1(z) A1(==2) — shown in Fig. 6.

ilzlé(;) 2 321“225(;?23“2). Referring to the general sub-band signal s,»,, the same reasoning
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Figure 6: Generation of sy, (k) and 5., (k. )—polyphase repre-
sentation.

applied in Section 2 leads to the power spectral density

om _y 1
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In conclusion, asillustrated in Fig. 7, we described 5, (km )—
equivalent to s,, (k) in terms of its power spectral density—as an
ARMA process defined by the minimum-phase filter
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fed by awhite-noise process, denoted asey,,, (k.. ), with variance o2.
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Figure7: Model for the signal in sub-band m.

Completing the model, the cross-power spectral density between
same rate sub-bands can also be written as

(32 B (2) Bupz™)
Am(2)Am(z71)

2
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3.2. Comments

We can draw some conclusions and speculations after the model fil-
ters of individual sub-bands.

First, it is possible to deduce that the numerator and denomina-
tor orders of M, (z) are
Onum(m +1) = f%], m>1
Onum(1) = [%H]
spectively, except for possible canceled terms.
Furthermore, the location of the model filter poles after each
stage can be exactly predicted. From stage m to stage m + 1, the
denominator of the model filter transfer function is calculated by

Am1(28) = A (2) A (—2).

and Ogen(m) = I, re-

If we suppose, e.g.,

Am(z) =1—2rcos0z™" +r’z72,

it can be shown that
Ami1(2) =1 —2r" cos(20)z™" + (r°)%27>.

This can be generaized to any number of poles and means that each
stage squares the value of the model filter poles; so, each complex
natural mode has its frequency doubled and its associated selectivity
reduced.

Mapping the model filter zeros is a more difficult task, asit re-
sults from successive compositions of modified versions of the orig-
inal model denominator A(z) with the analysis filters. What can
be said is that the increasing selectivity resulting from the succes-
sive filtering stages should gradually “eliminate” the effect of some
modes; another way to visualize this fact is consider that there are
zeros canceling poles in the model transfer function. As a conse-
guence, one expects the model orders to be reduced along the stages.
Thisis an interesting issue, because it allows the use of lower-order
approximate models for sub-bands. Simulations have confirmed this
expectations [4].

4. SUMMARY

A low-rate model for the sub-band signals that result from passing
an ARMA process through a multi-rate system was proposed. The
model, equivalent in terms of the power spectral density, consists of
one ARMA process per sub-band. After examination of the corre-
spondent results for an AR process analyzed by an octave-band filter
bank, some useful interpretations were drawn, which suggest the use
of reduced-order sub-band models. Future works will present appli-
cations of these resultsin audio processing.
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