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ABSTRACT

This paper addreses wavelet denoising of audio record-
ings from a practical viewpoint. First, a set of real
high-quality audio signals with distinct characteristics
is artificially corrupted by pseudo-white noise. Then,
the classical wavelet shrinkage denoising method is ap-
plied to them under varied settings, including different
wavelets, numbers of scales, threshold application and
computation methods etc. At last, an adapted version of
the Perceptual Audio Quality Measure (PAQM) is used
as an objective quality index to compare the obtained
results. This way, the work provides some insight on the
performance of wavelet shrinkage applied to corrupted
high-quality signals, the performance of the PAQM in
this application and the relative importance of different
parameters in the final quality determination.

1 INTRODUCTION

The Discrete Wavelet Transform (DWT) [1, 2] has be-
come a popular signal processing tool, especially after
their connection to discrete-time systems through filter
banks. Its applications include signal analysis, coding,
compression, denoising etc.

Wavelet shrinkage [3, 2] is a method to recover a signal
from noisy data, closely linked to signal compression,
that selects a reduced number of DWT coefficients yet
capable of accurately representing the signal.

Denoising audio signals corrupted by broadband noise
is a difficult task, which has led to techniques of differ-
ent degrees of complexity [4, 5]. The problem is even
more challenging when the underlying signal has wide
dynamic and spectral ranges, as its subtleties must be
preserved (common examples are magnetic-tape matri-
ces of hi-fi recordings from the early 60’s). An issue
often associated to wavelet shrinkage is its capability to
preserve details, which suggests it can handle denoising
of high-quality audio at low computational cost.

Assessing the performance of these methods is a criti-
cal point. Several simple standard signals are frequently
used [6], employing objective performance measures like
signal-to-noise ratio (SNR). However, audio processing
algorithms should be ideally evaluated through the typ-
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ically more complex real audio signals. Furthermore,
in spite of their clear mathematical meaning, objective
measures can fail to reflect subjective quality, whereas
reliable human assessment requires a large set of tests
under the same conditions. A good compromise is
reached by objective measures based on Psychoacous-
tics.

This work applies wavelet shrinkage to a set of
real modern audio signals corrupted by broadband
noise, and uses the Perceptual Audio Quality Measure
(PAQM) proposed in [7]—originally meant to evaluate
how much processed signals depart from their original
versions, e.g. after compression—to evaluate the results
of the restoration of each signal for different settings
of the algorithm. Our objective is to set a framework
which, while not claiming to be complete, includes:

e the performance of wavelet shrinkage applied on
corrupted versions of high-fidelity signals;

e the performance of the perceptual measure in this
application;

o the weight of each parameter in the attained overall
quality.

In the following, Section 2 reviews the theoretical
background linked to the work and Section 3 presents
experimental tests. Conclusions are drawn in Section 4.

2 RELATED BACKGROUND

2.1 DWT and Wavelet Shrinkage

Consider the set 9)(t), 1(t), ¢(t) and ¢(t) of analysis
and synthesis mother-wavelets and analysis and synthe-
sis scaling functions, respectively. If the time-domain
f(t) has no detail beyond scale j = .J, its DWT [1] ex-
pansion gives
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where {-};1(t) are j-scaled and k-shifted versions of
{-}(t). When analysis and synthesis functions are the
same, the system is called orthogonal; otherwise, the
general system, as presented above, is called biorthogo-
nal. The family of orthogonal wavelets which achieves
minimum time support (associated to localization ca-
pability) for a given regularity (a property linked to
compactness of representation) is the Daubechies, whose
simplest version is the Haar wavelet [2].

The wavelet shrinkage method [3, 2] consists in DWT-
expanding the signal corrupted by white noise, discard-
ing all coefficients whose magnitude is below a threshold
A and re-synthesizing the signal by Inverse DWT. Two
different thresholding strategies can be adopted [1, 2]:

e Hard thresholding, which preserves the remaining
DWT coeflicients;

e Soft thresholding, which reduces their magnitudes
by A.

There are several ways to calculate the threshold [3, 8],
like:

e Minimax, which makes A proportional to an esti-
mate of the noise standard deviation &;

e Stein’s Unbiased Risk Estimate (SURE), which
chooses A such that the signal estimate mean-
square-error (MSE) is minimized;

e Hybrid—a combination of Minimax and SURE.

2.2 PAQM

This measure [7] takes into account some perceptual is-
sues, two of which have to be defined:

e the Critical Band around a tone is the bandwidth
that contributes for masking the tone;

e Masking is the property a sound has to inhibit the
perception of another one, near to the former in
time or frequency.

The implied computation of the perceived sound rep-
resentation is performed along successive frames of the
sampled signal. For each frame:

1. the signal energy spectrum is divided in contiguous
critical bands;

2. masking effects are modeled and applied to each
band;

3. the perceived sound intensity is obtained for each
band by an adequate energy compression.

Based on that representation calculated for both the
original signal and a corrupted version of it, the PAQM
gives an overall index of dissimilarity: PAQM = 0 means
that both signals would be perceived as identical.

In our application, this index is calculated between
the original and the noisy version of one signal, as an
initial measurement of perceptual noise effects. After
that, new indexes are calculated between the original
and the restored version of the signal for different sets
of parameters (see Fig. 1). Lower PAQM (i.e. closer
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Figure 1: PAQM used to compare the quality of restora-
tion results.

similarity) indicates better performance.

3 TESTS

3.1 Signals and Strategy

Tests employed a set of high-quality music signals, five
of them purely instrumental (I1 to I5) and the sixth an
unaccompanied singing voice (V). Their choice intended
to cover some common scenarios in real audio:

e 11 has rich spectral content and reduced power vari-
ations;

e 12 spectrum concentrates on low and high frequen-
cies and exhibits reduced power variations;

e I3 can be considered stationary for long time inter-
vals;

e 14 can be considered stationary only for short time
intervals;

e I5 has rich spectral content and exhibits extreme
power variation;



Table 1: PAQM of the corrupted signals.
| Signal | SNR =30dB | SNR =40dB |

I1, 0.5236 0.1462
12, 0.2944 0.0610
I3; 0.2541 0.0335
14, 0.2249 0.0330
I5¢ 0.2317 0.1247
Ve 0.1845 0.0471

Table 2: PAQM of de-noised versions of signals with
diferent SNR values (J = 2, soft, SURE, Daubechies
32).

| Signal | SNR =30dB | SNR =40dB |

I14 0.2118 0.0766
124 0.1205 0.0373
134 0.0955 0.0247
144 0.1076 0.0197
154 0.2014 0.1170
Va 0.1439 0.0401

e V aims to explore the processing effects on partic-
ular voice characteristics like intelligibility.

Pseudo-white noise sequences were used to obtain ad-
ditively corrupted versions (indexed {-}.) of each signal
with different values of mean SNR, on which tests were
performed. Their original PAQM values are shown in
Table 1. Perceptually, those signals with SNR = 30 dB
could be considered strongly contaminated.

For each corrupted signal, restoration was accom-
plished for several versions of the algorithm, combining
different values of number of scales, threshold compu-
tation and application methods, wavelet families and
wavelet time supports. Each restored signal was com-
pared to its uncorrupted version by the PAQM.

3.2 Results and Discussion

From the extensive set of simulations performed, a group
of selected PAQM values related to the de-noised sig-
nals (indexed {-}4) are presented in the following for
easier confrontation. First, Table 2 shows the results of
restoration of each signal referred in Table 1, employ-
ing the basic settings J = 2, soft thresholding, SURE
calculation method and wavelet Daubechies 32. Then,
each parameter is individually varied, while the others
are maintained fixed. The corresponding results, rela-
tive to the signals with SNR = 30 dB, are summarised
in Tables 3 to 6:

e Table 3 shows the results for J = 2 (3 scales) and
7 (8 scales);

e Table 4 compares soft and hard thresholding;

Table 3: PAQM of de-noised signals obtained for dif-
ferent numbers of scales (SNR = 30 dB, soft, SURE,
Daubechies 32).

|Signal| J=2 | J=1 |
I14 0.2118 0.2123
124 0.1205 0.1205
134 0.0955 0.0955
I44 0.1076 0.1076
154 0.2014 0.2018
Va 0.1439 0.1432

Table 4: PAQM of de-noised signals obtained by soft
and hard thresholding (SNR = 30 dB, J = 2, SURE,
Daubechies 32).

[ Signal | Soft [ Hard |
Iy | 02118 | 0.4395
2 | 0.205 | 0.2322
I3a | 0.0955 | 0.1847
Mg | 0.1076 | 0.1811
Tog | 0.2014 | 0.2075
Va | 01439 | 0.1633

Table 5: PAQM of de-noised signals obtained through
different threshold calculation methods (SNR = 30 dB,
J = 2, soft, Daubechies 32).

[ Signal | Minimax | SURE | Hybrid |
Ty | 0.6546 | 02118 | 0.2118
24 | 06592 | 01205 | 0.1205
134 | 04699 | 0.0955 | 0.0955
44 | 03741 | 0.1076 | 0.1076
Tha | 04256 | 0.2014 | 0.2014
Va | 05309 | 0.1439 | 0.1439

e Table 5 compares Minimax, SURE and Hybrid
threshold calculation methods;

e Table 6 presents the results for wavelets Haar,
Daubechies 16, 32 and 64 and Biorthogonal 3.1 and
3.7 1]

A first glance at Table 1 highlights the incoherence
between SNR and perceptual evaluation, since different
signals with the same SNR are judged quite differently
according to PAQM.

Subjective evaluation of results showed that wavelet
shrinkage not always attains good performance on noisy
versions of high-quality signals, especially those with
very low SNR. This fact is confirmed in Table 2, where
final PAQM is worse for signals with lower original SNR.



Table 6: PAQM of de-noised signals obtained for diferent wavelet families and time supports (SNR = 30 dB, J = 2,

soft, SURE).
. Daubechies Biorthogonal
Signal | Haar 6 | 32 | o 31 | 37
I14 0.4920 0.2371 0.2118 0.1972 0.1250 0.0955
124 0.2742 0.1242 0.1205 0.1279 0.1854 0.1514
134 0.2133 0.1009 0.0955 0.1021 0.1862 0.1303
T44 0.1932 0.1138 0.1076 0.1064 0.1618 0.1309
I54 0.2173 0.2023 0.2014 0.2004 0.2564 0.2223
Va 0.1556 0.1449 0.1439 0.1432 0.3715 0.3133

A common perceptual effect is the original homoge-
neous high-amplitude noise changing into a disturbingly
varying, yet low-amplitude, residual.

Voice and signals with large power variations were dif-
ficult to deal with, whereas spectrum shape and station-
arity did not seem to be critical factors. Accordingly, a
comparison between Tables 2 and 1 indicates that sig-
nals I1 to I4 were much more improved than I5 and I6.

The PAQM algorithm emulated quite well subjective
opinion, considering that it measures the difference be-
tween the signal under test and its original version, and
not directly the lack of quality of the former.

Increasing the number of scales had little effect on
performance, after J = 2 (see Table 3).

As expected, soft thresholding led to better results
than hard thresholding (see Table 4).

Minimax is known as a better method for low SNR.
The fact that SURE calculation method was the best
choice and led to the same PAQM values as the Hybrid
method (see Table 5) means that 30 dB is being consid-
ered a ‘high’ SNR, in this context. Even in additional
tests performed on a version of 11, with SNR = 20 dB
(which in this application is considered too low an SNR
value), the Minimax and Hybrid methods were fairly
efficient, but not as much as SURE.

Among the wavelet families, Daubechies achieved the
best performance, with no need for long time supports
(which can be loosely related to more selective frequency
separation), and a Biorthogonal wavelet similar in form
to Daubechies gave similar results (see Table 6). It be-
came evident that the wavelet shape plays a fundamen-
tal role in the processing quality.

4 CONCLUSIONS

This work investigated, through a large number of simu-
lations, aspects of wavelet shrinkage applied in denoising
of high-quality real audio signals and its performance
evaluation through a perceptual measure. Limitations
of the restoration method under some circumstances,
such as large power variations and voice, were high-
lighted. Testing of the involved parameters showed the
importance of choosing an appropriate wavelet family

in the final quality determination, besides some clearly
recommended options (like soft thresholding and SURE
threshold calculation). Therefore, searching the best
wavelet bases for audio is a natural concern. We also
showed that PAQM can be a reliable, yet indirect, per-
formance test for audio restauration techniques, replac-

ing human assessment, since reference signals are avail-
able.
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