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Chapter 1

Introduction

1.1 Discrete-time versus continuous-time

Engineers and Physical scientists have for many years utilized the concept of a system to
facilitate the study of the interaction between forces and matter. A system is a math-
ematical abstraction that is devised to serve as a model for a dynamic phenomenon. It
represents the dynamic phenomenon in terms of mathematical relations among three sets
of variables known as the input, the output, and the state.

The input represents, in the form of a set of time functions or sequences, the external forces
that are acting upon the dynamic phenomenon. In similar form, the output represents the
measures of the directly observable behavior of the phenomenon. Input and output bear a
cause-effect relation to each other; however, depending on the nature of the phenomenon,
this relation may be strong or weak.

A basic characteristic of any dynamic phenomenon is that the behavior at any time is
traceable not only to the presently applied forces but also to those applied in the past. We
may say that a dynamic phenomenon possesses a ”memory” in which the effect of past
applied forces is stored. In formulating a system model, the state of the system represents,
as a vector function of time, the instantaneous content of the ”cells” of this memory.
Knowledge of the state at any time t, plus knowledge of the forces subsequently applied is
sufficient to determine the output (and state) at any time t ≥ t0.

As an example, a set of moving particles can be represented by a system in which the
state describes the instantaneous position and momentum of each particle. Knowledge
of position and momentum, together with knowledge of the external forces acting on the
particles (i.e., the system input) is sufficient to determine the position and momentum at
any future time.

A system is, of course, not limited to modeling only physical dynamic phenomena; the
concept is equally applicable to abstract dynamic phenomena such as those encountered
in economics or other social sciences.

If the time space is continuous, the system is known as a continuous-time system. However,
if the input and state vectors are defined only for discrete instants of time k, where k ranges
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6 CHAPTER 1. INTRODUCTION

over the integers, the time space is discrete and the system is referred to as a discrete-time
system. We shall denote a continuous-time function at time t by f(t). Similarly, a discrete-
time function at time k shall be denoted by f(k). We shall make no distinction between
scalar and vector functions. This will usually become clear from the context. Where no
ambiguity can arise, a function may be represented simply by f .

Figure 1.1: Illustration of discrete-time functions and quantized functions. (a) discrete-
time function, (b) quantized function, (c) quantized, discrete-time function

It is important to distinguish between functions whose argument is discrete (i.e., functions
of a discrete variable) and those that in themselves vary over a discrete set. Functions of
the latter type will be referred to as quantized functions and the systems in which they
appear will be called quantized-data systems. Thus the function illustrated in Fig. 1.1.a
is a discrete-time function and the one shown in Fig.1.1.b is a quantized function. Note
that in Fig. 1.1 f(k) can range only over discrete values (which need not necessarily be
uniformly spaced). A discrete-time function may, of course, be quantized as well; this is
shown in Fig. 1.1.c.
In certain continuous-time systems, some state variables are allowed to change only at
discrete instants of time tk, where k ranges over the integers and where the spacing between
successive instants may be arbitrary or uniform. Such systems are in effect a kind of hybrid
between a continuous- time and a discrete-time system. They are encountered whenever
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a continuous-time function is sampled at discrete instants of time. Although they are
frequently analyzed most easily by treating them as discrete-time systems, they differ from
discrete-time systems in that special consideration may have to be given to the instants of
time at which the sampling occurs. They have been given a special name and are known
as sampled-data systems.
We shall be concerned here primarily with the analysis of discrete-time systems. Our
interest in these systems is motivated by a desire to predict the performance of the physical
devices for which this kind of system is an appropriate model. This is, however, not the only
motive for studying discrete-time systems. A second, nearly as important reason is that
there are many continuous-time systems that are more easily analyzed when a discrete-time
model is fitted to them. A common example of this is the simulation of a continuous-time
system by a digital computer. Further, a considerable body of mathematical theory has
been developed for the analysis of discrete-time systems. Much of this is valuable for
gaining insight into the theory of continuous-time systems as well as discrete-time systems.
We note that a continuous-time function can always be viewed as the limit of a time
sequence whose spacing between successive terms is approaching zero.

1.2 Sampling and Interpolation

Many physical signals, such as electrical voltages produced by a sound or image recording
instrument or a measuring device, are essentially continuous-time signals. Computers and
related devices operate on a discrete-time axis. Continuous-time signals that are to be
processed by such devices therefore first need be converted to discrete-time signals. One
way of doing this is sampling.

Definition 1 Sampling.
Let Tcon = IR be the continuous-time axis, and let Tdis = ZZ be the discrete-time axis.
Let x(t) be a continuous-time signal with t ∈ Tcon. Then, sampling the continuous-time
signal x(t), t ∈ Tcon on the discrete-time axis Tdis with sampling period T , results in the
discrete-time signal x∗(k) defined by

x∗(k) = x(k T ) for all k ∈ Tdis (1.1)

A device that performs the sampling operation is called a sampler.

Example 2 (Sampled real harmonic) Let the continuous-time signal x, given by

x(t) = 1/2[1 − cos(2πt)], t ∈ IR

be sampled on the uniformly spaced discrete-time axis ZZ. This results in the sampled signal
x∗ given by

x∗(k) = 1/2[1 − cos(2πkT )], k ∈ ZZ
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original signal x sampled signal x∗

Figure 1.2: Sampling. Left: a continuous-time signal. Right: its sampled version.

The converse problem of sampling presents itself when a discrete-time device, such as a
computer, produces signals that need drive a physical instrument requiring a continuous-
time signal as input. Suppose that a discrete-time signal x∗ is defined on the discrete-time
axis Tdis and that we wish to construct from x∗ a continuous-time signal x defined on
the continuous-time axis Tcon ⊃ Tdis. There obviously are many ways to do this. We
introduce a particular class of conversions from discrete-time to continuous-time signals,
for which we reserve the term interpolation. This type of conversion has the property that
the continuous-time signal x agrees with the discrete-time signal x∗ at the sampling times.

Definition 3 Interpolation.
Let Tcon = IR be the continuous-time axis, and let Tdis = ZZ be the discrete-time axis. Let
x∗(k) be a discrete-time signal with k ∈ Tdis with sampling period T . Then, any continuous-
time signal x(t), t ∈ IR is called an interpolation of x∗ on Tcon, if

x(k T ) = x∗(k) for all k ∈ Tdis (1.2)

Another way of saying that x is an interpolation of x∗ is the statement that sampling the
continuous-time signal x generated by interpolating the discrete-time signal x∗ on Tdis,
reproduces the discrete-time signal x∗. Clearly, there is no unique interpolation for a given
discrete-time signal x∗. Suppose that x∗ is defined on the uniformly sampled discrete-time
axis ZZ. Then, one possible interpolation method is step interpolation as illustrated in Fig.
1.3(a).

Interpolation is done using an interpolating function. An interpolating function is any
function i: IR → IR such that

i(t) =











1 for t = 0
0 for t = k, where k 6= 0, k ∈ ZZ

arbitrary elsewehere
t ∈ IR
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Figure 1.3: Interpolation. Top: step interpolation. Bottom: linear interpolation.

If x∗(k), k ∈ ZZ is a discrete-time signal defined on the time axis Tdis, and i an interpolating
function, the continuous-time signal x given by

x(t) =
∑

n∈ZZ

x∗(n) i(t/T − n), t ∈ IR

is an interpolation of x∗. The reason is that by setting t = k T , with k ∈ ZZ, it follows that

x(k T ) =
∑

n∈ZZ

x∗(n) i(kT/T − n) = x∗(k), k ∈ ZZ

Step interpolation is achieved with the step interpolating function

istep(t) =

{

1 for 0 ≤ t < 1
0 otherwise

t ∈ IR

while linear interpolation is obtained with the linear interpolating function

ilin(t) =

{

1 − |t| for |t| < 1
0 otherwise

t ∈ IR

Another interpolation function is the sinc interpolating function

isinc(t) = sinc(π t)

Here, sinc: IR → IR is the function defined by

sinc(t) =







sin(t)

t
for t 6= 0

1 for t = 0
t ∈ IR

Graphs of these interpolating functions are given in Fig. 1.4.
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Figure 1.4: Interpolating functions. Top left: step interpolating function. Top right: linear
interpolating function. Bottom: sinc interpolating function.

Example 4 (Interpolation) Let a sampled signal x∗ with sampling period T be given by

x∗(k) =











cos

(

π k

8

)

for − 4 ≤ k < 4

0 otherwise
k ∈ ZZ

A plot of x∗ is given in Fig. 1.5(a). Interpolation with the step interpolating function results
in the staircase-like continuous-time signal of Fig. 1.5(b). Interpolation with the linear
interpolating function leads to the signal of Fig. 1.5(c), which is obtained by connecting
the sampled values of the original discrete-time signal by straight lines. Interpolation with
the sinc interpolating function, finally, yields the signal of Fig. 1.5(d), which is smooth
within the interval [−4T, 4T ] but shows , “ripple” outside it.

Remark: Are sampling and interpolation inverses of each other?
Interpolation of a discrete-time signal followed by sampling on the original discrete-time
axis results in exact reconstruction of the original discrete-time signal. On the other hand,
sampling a continuous-time signal followed by interpolation generally does not reproduce
the original continuous-time signal. Evidently sampling is an inverse operation to interpo-
lation, but interpolation is not inverse to sampling. Figure 1.6 illustrates this.
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Figure 1.5: Interpolation. (a) A discrete-time signal. (b) Step interpolation (c) Linear
interpolation. (d) Sinc interpolation.

Figure 1.6: Sampling and interpolation. Top: sampling is the inverse of interpolation.
Bottom: interpolation is not the inverse of sampling
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Remark: Analog-to-Digital and digital-to-analog conversion
(a) A/D conversion. Computers and other digital equipment do not only operate on a
discrete-time axis but are also limited to finite signal ranges. Thus, apart from sam-
pling, conversion of real-valued continuous-time signals to input for digital equipment also
involves quantization. The combined process of sampling and quantization is called analog-
to-digital (A/D) conversion.
(b) D/A conversion. The inverse process of converting a quantized discrete-time signal
to a real-valued continuous-time signal is called digital-to -analog (D/A) conversion. De-
vices that perform D/A conversion by step interpolation are known as zero-order hold
circuits. They can function in ”real time” meaning that given the sampled signal up to,
and including, time t, the continuous-time signal up to and including that same time may
be generated. Devices that perform D/A conversion by linear interpolation are known as
first-order hold circuits. They cannot precisely function in real time because two successive
sampled signal values have to be received before it is known how the continuous-time signal
goes. First-order hold circuits therefore introduce a delay, equal to the sampling period T .
Sinc interpolation, finally, cannot be implemented in real time at all because all sampled
signal values need be received before any point of the continuous-time signal (except at
the sampling times) may be computed. Sinc interpolation, however, has great theoretical
importance.

1.3 Discrete-time systems

1.3.1 Difference Equations

In continuous-time the relationships between different model variables are described with
the help of differential equations (see Rowell & Wormley [4]). In discrete-time this can be
done using difference equations. There are two different ways of describing these difference
equations. One is to directly relate inputs u to outputs y in one difference equation. In
principle it looks like this:

g(y(k + n), y(k + n− 1), . . . , y(k), u(k +m), u(k +m− 1), . . . , u(k)) = 0 (1.3)

where g(·, ·, . . . , ·) is an arbitrary, vector-valued, nonlinear function. The other way is to
write the difference equation as a system of first-order difference equations by introducing
a number of internal variables. If we denote these internal variables by

x1(k), . . . , xn(k)

and introduce the vector notation

x(t) =









x1(k)
...

xn(k)









(1.4)
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we can, in principle, write a system of first-order difference equations as

x(k + 1) = f(x(k), u(k)) (1.5)

In (1.5), f(x, u) is a vector function with n components:

f(x, u) =









f1(x, u)
...

fn(x, u)









(1.6)

The functions fi(x, u) are in turn functions of n + m variables, the components of the x
and u vectors. Without vector notation, (1.5) becomes

x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k))
x2(k + 1) = f2(x1(k), . . . , xn(k), u1(k), . . . , um(k))

...
xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k))

(1.7)

The outputs of the model can then be calculated from the internal variables xi(k) and the
inputs ui(k):

y(k) = h(x(k), u(k)) (1.8)

which written in longhand means

y1(k) = h1(x1(k), . . . , xn(k), u1(k), . . . , um(k))
y2(k) = h2(x1(k), . . . , xn(k), u1(k), . . . , um(k))

...
yp(k) = hp(x1(k), . . . , xn(k), u1(k), . . . , um(k))

(1.9)

1.3.2 Discrete-time state-space models

For a dynamic system the output depends on all earlier input values. This leads to the fact
that it is not enough to know u(k) for k ≥ k0 in order to be able to calculate the output
y(k) for k ≥ k0. We need information about the system. By the state of the system at
time k0 we mean an amount of information such that with this state and the knowledge
of u(k), k ≥ k0, we can calculate y(k), k ≥ k0. This definition is well in line with the
everyday meaning of the word “state.” It is also obvious from the definition of state that
this concept will play a major role in the simulation of the model. The state is exactly
the information that has to be stored and updated at the simulation in order to be able
to calculate the output. Consider a general system of first-order difference equations (1.5)
with the output given by (1.8):

x(k + 1) = f(x(k), u(k)) (1.10)

y(k) = h(x(k), u(k)) (1.11)
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For this system the vector x(k0) is a state at time k0. The difference equation (1.10)-(1.11)
with x(k0) = x0 has a unique solution for k ≥ k0. The solution can easily be found using
successive substitution:
Assume that we know x(k) at time k0 and u(k) for k ≥ k0. We can then according to
(1.10) calculate x(k + 1).
From this value we can use u(k + 1) to calculate x(k + 2), again using (1.10). We can
continue and calculate x(k) for all k > k0. The output y(k), k ≥ k0, can then also be
computed according to (1.11).
We have thus established that the variables x1(k), . . . , xn(k) or, in other words, the vector

x(k) =









x1(k)
...

xn(k)









in the internal model description (1.10)-(1.11) is a state for the model. Herein lies the
importance of this model description for simulation. The model (1.10)-(1.11) is therefore
called a state-space model, the vector x(k) the state vector, and its components xi(k) state
variables. The dimension of x(k), that is, n, is called the model order.
State-space models will be our standard model for dynamic discrete-time systems. In
conclusion, we have the following model:
Discrete-time state space models

x(k + 1) = f(x(k), u(k)) k = 0, 1, 2, . . . (1.12)

y(k) = h(x(k), u(k)) (1.13)

u(k): input at time k , an m-dimensional column vector.
y(k): output at time k , a p-dimensional column vector.
x(k): state at time k , an n-dimensional column vector.
The model is said to be n-th order. For a given initial value x(k0) = x0, (1.12)-(1.13)
always has a unique solution.

1.3.3 Linear discrete-time models

The model (1.12)-(1.13) is said to be linear if f(x, u) and h(x, u) are linear functions of x
and u:

f(x, u) = Ax+Bu (1.14)

h(x, u) = Cx+Du (1.15)

Here the matrices have the following dimensions

A : n× n B : n×m

C : p× n D : p×m
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If these matrices are independent of time the model (1.14)-(1.15) is said to be linear and
time invariant.
The model (1.3) is said to be linear if g(·, ·, . . . , ·) is a linear function in y and u:

g(y(k+n), y(k+n−1), . . . , y(k), u(k+m), u(k+m−1), . . . , u(k))

= a0 y(k+n)+an−1 y(k+n−1)+. . .+a0 y(k)

−bm u(k+m)−bm−1 u(k+m−1)−. . .−b0 u(k) = 0

or

a0 y(k+n)+an−1 y(k+n−1)+. . .+a0 y(k) = bm u(k+m)+bm−1 u(k+m−1)+. . .+b0 u(k) (1.16)

Example 5 (Savings account)
Suppose that y(k) represents the balance of a savings account at the beginning of day k ,
and u(k) the amount deposited during day k. If interest is computed and added daily at a
rate of α · 100%, the balance at the beginning of day k + 1 is given by

y(k + 1) = (1 + α)y(k) + u(k), k = 0, 1, 2, · · · (1.17)

This describes the savings account as a discrete-time system on the time axis ZZ+. If the
interest rate α does not change with time, the system is time-invariant; otherwise, it is
time-varying.

Example 6 (First-order exponential smoother)
In signal processing sometimes a procedure called exponential smoothing is used to remove
unwanted fluctuations from observed time series, such as the Dow Jones index, the daily
temperature, or measurements of a human’s blood pressure. Let u(k), k ∈ ZZ be a discrete-
time signal, then, as we observe the successive values of the signal u we may form from
these values another signal y, k ∈ ZZ, which is a smoothed version of the signal u, according
to

y(k + 1) = a y(k) + (1 − a) u(k + 1) (1.18)

Here, a is a constant such that 0 < a < 1. At each time k + 1, the output y(k + 1) is
formed as a weighted average of the new input u(k+1) at time k+1 and the output y(k) at
preceding time instant k. The closer the constant a is to 1, the more the preceding output
value is weighted and the “smoother” the output is. Figure 1.7 illustrates the smoothing
effect.
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Figure 1.7: Exponential smoothing (a = 0.8)



Chapter 2

Operational methods for
discrete-time linear systems

In this chapter we will consider operational methods for discrete-time linear systems. For
the continuous-time case see Rowell & Wormley [4].

2.1 Discrete-time linear system operators

Consider a discrete-time signal f(k), for k ∈ ZZ. All linear time-invariant systems may be
represented by an interconnection of the following primitive operators:

1. The constant scaling operator: The scaling operator multiplies the input function
by a constant factor. It is denoted by the value of the constant, either numerically
or symbolically, for example 2.0{}, or α{}.

2. The forward shift operator: The shift operator, designated Z{}, shifts the input
signal in one step ahead in time:

y(k) = Z{f(k)} = f(k + 1)

3. The backward shift operator: The shift operator, designated Z−1{}, shifts the in-
put signal in one step back in time:

y(k) = Z−1{f(k)} = f(k − 1)

4. The difference operator: The difference operator, written ∆{}, generates the incre-
ment of the input f(k):

y(k) = ∆{f(k)} = f(k) − f(k − 1)

17
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5. The summation operator: The summation operator, written ∆−1{}, generates the
summation of the input f(k):

y(k) = ∆−1{f(k)} =
k
∑

m=0

f(m)

where it is assumed that at time k < 0, the output y(k) = 0. If an initial condition
y(−1) is specified,

y(k) = ∆−1{f(k)} + y(−1)

and a separate summing block is included at the output of the summation block to
account for the initial condition.

6. The identity operator: The identity operator leaves the value f(k) unchanged, that
is:

y(k) = I{f(k)} = f(k)

7. The null operator: The null operator N{} identically produces an output of zero for
any input, that is,

y(k) = N{f(k)} = 0

Remark 1: Note that by substituting f(k − 1) = Z−1{f(k)} we find that

∆{} = I{} − Z−1{}

Remark 2: The discrete-time operators Z, Z−1, ∆, ∆−1, I and N are linear operators.
Therefore all properties for linear operators will also hold for these discrete-time operators.

Block diagram of a discrete-time system

The block diagram of the state-space description of a linear discrete-time system is equiv-
alent to the one for continuous-time systems if we substitute the backward shift block Z−1

for the integral block. (In the book of Rowell & Wormley [4] it is the block S−1 as in Fig.
2.1.) We obtain the block diagram of figure 2.1.
The block diagram of general second-order discrete-time state system

[

x1(k + 1)
x2(k + 1)

]

=

[

a11 a12

a21 a22

] [

x1(k)
x2(k)

]

+

[

b1
b2

]

u(k)

y(k) =
[

c1 c2
]

[

x1(k)
x2(k)

]

+ d u(k)

is shown in figure 2.2.
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Figure 2.1: Vector block diagram for a linear discrete-time system described by state space
system dynamics

Figure 2.2: Block diagram for a state equation-based second-order discrete-time system
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Input-output linear discrete-time system models

For systems that have only one input and one output, it is frequently convenient to work
with the classical system input-output description in Eq. (1.16) consisting of a single n-th
order difference equation relating the output to the system input:

an y(k + n) + an−1 y(k + n− 1) + . . .+ a0 y(k)

= bm u(k +m) + bm−1 u(k +m− 1) + . . .+ b0 u(k) (2.1)

The constant coefficients ai and bi are defined by the system parameters and for causal
systems there holds: m ≤ n.

Equation (2.1) may be written in operational form using polynomial operators as:

[

an Z
n + an−1 Z

n−1 + . . .+ a0

]

{y} =
[

bm Z
m + bm−1 Z

m−1 + . . .+ b0
]

{u} (2.2)

If the inverse operator
[

an Z
n + an−1 Z

n−1 + . . . + a0

]−1

exists, it may be applied to each
side to produce an explicit operational expression for the output variable:

y(k) =
bm Z

m + bm−1 Z
m−1 + . . .+ b0

an Zn + an−1 Zn−1 + . . .+ a0

{u(k)} (2.3)

The operational description of the system dynamics has been reduced to the form of a
single linear operator, the dynamic transfer operator H{},

y(k) = H{u(k)} (2.4)

where

H{} =
bm Z

m + bm−1 Z
m−1 + . . .+ b0

an Zn + an−1 Zn−1 + . . .+ a0

{} (2.5)

In (1.14)-(1.15), the state space description was given for a linear discrete-time system:

x(k + 1) = Ax(k) +Bu(k) (2.6)

y(k) = Cx(k) +Du(k) (2.7)

The matrix transfer operator for this system can be computed by:

H{} =
C adj(Z I − A)B + det[Z I −A]D

det[Z I −A]
(2.8)
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2.2 Transformation of discrete-time systems

State realization of a polynomial difference system

The polynomial difference system (2.3), described by

[

bm Z
m + bm−1 Z

m−1 + . . .+ b0
]

y(k) =
[

an Z
n + an−1 Z

n−1 + . . .+ a0

]

u(k)

has a state realization

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

such that

A =

























0 1 · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...
0 0 · · · 1 0
0 0 · · · 0 1

−a0/an −a1/an · · · −an−2/an −an−1/an

























B =























0
0
...
0
0

1/an























C =
[

b0−a0bn/an b1−a1bn/an · · · bn−2−an−2bn/an bn−1−an−1bn/an
]

D = bn/an

Polynomial realization of a state system

The state difference system (2.6)-(2.7), described by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

has a polynomial realization

[

det[Z I − A]] y(k) =
[

C adj(ZI − A)B + det[ZI − A]D] u(k) (2.9)

and a transfer operator

H = C (ZI −A)−1B + D (2.10)

=
C adj(ZI − A)B + det[ZI − A]D

det[Z I −A]
(2.11)
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Example 7 (Polynomial to state-space)
Consider the difference system

16 y(k + 3) − 20 y(k + 2) + 8 y(k + 1) − y(k) = 5 u(k + 2) − 7 u(k + 1) + 2 u(k)

the state space realization is given by






x1(k + 1)
x2(k + 1)
x3(k + 1)





 =







0 1 0
0 0 1

1/16 −8/16 20/16













x1(k + 1)
x2(k + 1)
x3(k + 1)





+







0
0

1/16





u(k)

y(k) =
[

2 −7 5
]







x1(k)
x2(k)
x3(k)







Example 8 (State-space to polynomial)
Consider the state system

[

x1(k + 1)
x2(k + 1)

]

=

[

−0.5 1.5
−1 2

] [

x1(k)
x2(k)

]

+

[

2
0

]

u(k)

y(k) =
[

1 1
]

[

x1(k)
x2(k)

]

+ 2 u(k)

The determinant of [Z I −A] is

det[Z I −A] = Z2 − 1.5Z + 0.5

and the adjoint of [Z I −A] is

adj

[

Z + 0.5 −1.5
1 Z − 2

]

=

[

Z − 2 1.5
−1 Z + 0.5

]

Further we compute

C adj(ZI −A)B + det[ZI −A]D =

=
[

1 1
]

[

Z − 2 1.5
−1 Z + 0.5

][

2
0

]

+ (Z2 − 1.5Z + 0.5) 2

= (2Z − 6) + (2Z2 − 3Z + 1)

= 2Z2 − Z − 5

So the related difference equation is given by equation (2.9):

(Z2 − 1.5Z + 0.5) y(k) = (2Z2 − Z − 5) u(k)

or

y(k + 2) − 1.5 y(k + 1) + 0.5 y(k) = 2 u(k + 2) − u(k + 1) − 5 u(k)



Chapter 3

System Properties and Solution
techniques

In this chapter we discuss system properties and solution techniques for discrete-time
systems. (For the continuous case, see Rowell & Wormley [4], chapter 8).

3.1 Singularity input functions

In Rowell & Wormley [4], chapter 8, some singularity input functions for continuous-time
systems were defined. In this section we redefine some of the functions for discrete-time:

The Unit Step Function: The discrete-time unit step function us(k), k ∈ ZZ is defined
as:

us(k) =

{

0 for k < 0
1 for k ≥ 0

(3.1)

The Unit Impulse Function: The discrete-time unit Impulse function δ(k), k ∈ ZZ is
defined as:

δ(k) =

{

1 for k = 0
0 for k 6= 0

(3.2)

Note that for discrete-time the definition of a function δT (k) is not appropriate.
The discrete-time impulse function (or discrete-time Dirac delta function) has the
property that

∞
∑

m=−∞

δ(m) = 1

23
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The unit ramp function: The discrete-time unit ramp function ur(k), k ∈ ZZ is defined
to be a linearly increasing function of time with a unity increment:

ur(k) =

{

0 for k ≤ 0
k for k > 0

(3.3)

Note that

∆{ur(k + 1)} = ur(k + 1) − ur(k) = us(k) (3.4)

and

∆{us(k)} = us(k) − us(k − 1) = δ(k) (3.5)

and also in the reverse direction:

∆−1{δ(k)} =
k
∑

m=0

δ(k) = us(k) (3.6)

and

∆−1{us(k)} =
k
∑

m=0

us(k) = ur(k + 1) (3.7)

3.2 Classical solution of linear difference equations

In this section we briefly review the classical method for solving a linear nth-order ordinary
difference equation with constant coefficients, given by

y(k + n) + an−1 y(k + n− 1) + . . .+ a0 y(k)

= bm u(k +m) + bm−1 u(k +m− 1) + . . .+ b0 u(k) (3.8)

where in general m ≤ n. We define the forcing function

f(k) = bm u(k +m) + bm−1 u(k +m− 1) + . . .+ b0 u(k) (3.9)

which is known, because u(k) is known for all k ∈ ZZ. Eq. (3.8) now becomes

y(k + n) + an−1 y(k + n− 1) + . . .+ a0 y(k) = f(k) (3.10)

The task is to find a unique function y(k) for k ≥ k0 that satisfies the difference equation
(3.8) given the forcing function f(k) and a set of initial conditions y(k0), y(k0+1), . . . , y(k0+
n− 1).
The general solution to Eq. (3.8) may be derived as the sum of two solution components

y(k) = yh(k) + yp(k) (3.11)

where yh is the solution of the homogeneous equation (so for f(k) = 0) and yp(k) is a par-
ticular solution that satisfies (3.10) for the specific f(k) (but arbitrary initial conditions).



3.2. CLASSICAL SOLUTION OF LINEAR DIFFERENCE EQUATIONS 25

3.2.1 Homogeneous solution of the difference equation

The homogeneous difference equation (an 6= 0) is given by

an y(k + n) + an−1 y(k + n− 1) + . . .+ a0 y(k) = 0 (3.12)

The standard method of solving difference equations assumes there exists a solution of the
form y(k) = C λk, where λ and C are both constants. Substitution in the homogeneous
equation gives:

C
(

anλ
n + an−1λ

n−1 + . . .+ a0

)

λk = 0 (3.13)

For any nontrivial solution, C is nonzero and λk is never zero, we require that

anλ
n + an−1λ

n−1 + . . .+ a0 = 0 (3.14)

For an nth-order system with an 6= 0, there are n (complex) roots of the characteristic
polynomial and n possible solution terms Ci λ

k
i (i = 1, . . . , n), each with its associated

constant. The homogeneous solution will be the sum of all such terms:

yh(k) = C1 λ
k
1 + C2 λ

k
2 + . . .+ Cn λ

k
n (3.15)

=
n
∑

i=1

Ci λ
k
i (3.16)

The n coefficients Ci are arbitrary constants and must be found from the n initial condi-
tions.

If the characteristic polynomial has repeated roots, that is λi = λj for i 6= j, there are not
n linearly independent terms in the general homogeneous response (3.16). In general if a
root λ of multiplicity m occurs, the m components in the general solution are

C1 λ
k , C2 k λ

k , . . . , Cm k
m−1 λm

If one or more roots are equal to zero (λi = 0), the solution C λk = 0 has no meaning.
In that case we add a term C δ(k − k0) to the general solution. If the root λ = 0 has
multiplicity m, the m components in the general solution are

C1 δ(k − k0) , C2 δ(k − k0 − 1) , . . . , Cm δ(k − k0 −m+ 1)

3.2.2 Particular solution of the difference equation

Also for discrete-time systems, the method of undetermined coefficients can be used (see
[4], page 255-257), where we use table 3.1 to find the particular solutions for some specific
forcing functions.
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Terms in u(k) Assumed form for yp(k) Test value

α β1 0

α kn , (n = 1, 2, 3, . . .) βn k
n + βn−1 k

n−1 + . . .+ β1 k + β0 0

α λk β λk λ

α cos(ωk) β1 cos(ωk) + β2 sin(ωk) jω

α sin(ωk) β1 cos(ωk) + β2 sin(ωk) jω

Figure 3.1: Definition of Particular yp(k) using the method of undetermined coefficients

Example 9 (Solution of a difference equation)
Consider the system described by the difference equation

2 y(k + 3) + y(k + 2) = 7 u(k + 1) − u(k)

Find the system response to a ramp input u(k) = k and initial conditions given by y(0) = 2,
y(1) = −1 and y(2) = 2.

Solution:
homogeneous solution: The characteristic equation is:

2 λ3 + λ2 = 0

which has a root λ1 = −0.5 and a double root λ2,3 = 0. The general solution of the
homogeneous equation is therefore

yh(k) = C1 (−0.5)k + C2 δ(k) + C3 δ(k − 1)

particular solution: From table 3.1 we find that for u(k) = k, the particular solution is
selected:

yp = β1 k + β0

Testing gives:

2 (β1 (k + 3) + β0) + (β1 (k + 2) + β0) = 7 (k + 1) − k = 6 k + 7

We find β1 = 2 and β0 = −3 and so the particular solution is

yp(k) = 2 k − 3

complete solution: The complete solution will have the form:

y(k) = yh(k) + yp(k) = C1 (−0.5)k + C2 δ(k) + C3 δ(k − 1) + 2 k − 3
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Now the initial conditions are evaluated in k = 0, k = 1 and k = 2.

y(0) = C1 (−0.5)0 + C2 δ(0) + C3 δ(0 − 1) + 2 0 − 3

= C1 + C2 − 3 = 2

y(1) = C1 (−0.5)1 + C2 δ(1) + C3 δ(1 − 1) + 2 1 − 3

= −C1 0.5 + C3 − 1 = −1

y(2) = C1 (−0.5)2 + C2 δ(2) + C3 δ(2 − 1) + 2 2 − 3

= C1 0.25 + 1 = 2

We find a solution for C1 = 4, C2 = 1, C3 = 2 and so the final solution becomes:

y(k) = 4 (−0.5)k + δ(k) + 2 δ(k − 1) + 2 k − 3

3.3 Discrete-time Convolution

In this section we derive the computational form of the discrete-time system H{u(k)},
defined in [4], chapter 7, and section 2.1 of these lecture notes, that is based on a system’s
response to an impulse input. We assume that the system is initially at rest, that is, all
initial conditions are zero at time t = 0, and examine the discrete-time domain forced
response y(k), k ∈ ZZ to a discrete-time waveform u(k).
To start with, we assume that the system response to δ(k) is a known function and is
designated h(k) as shown in figure 3.2.

-

6

s s s

s

s s s s

δ(k − n)

n k
-

6

s s s

s

s

s

s

s

y(k)

n k

Figure 3.2: System response to a delayed unit pulse

Then if the system is linear and time-invariant, the response to a delayed unit pulse,
occurring at time n is simply a delayed version of the pulse response:

u(k) = δ(k − n) gives y(k) = h(k − n) (3.17)

Multiplication with a constant α gives:

u(k) = α δ(k − n) gives y(k) = αh(k − n) (3.18)
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The input signal u(k) may be considered to be the sum of non-overlapping delayed pulses
pn(k):

u(k) =
∞
∑

n=−∞

pn(k) (3.19)

where

pn(k) =

{

u(k) for k = n
0 for k 6= n

(3.20)

Each component pn(k) may be written in terms of a delayed unit pulse δ(k), that is

pn(k) = u(n)δ(k − n)

From equation (3.18) it follows that for a delayed version of the pulse response, multiplied
by a constant u(n) we obtain the output y(k) = u(n) h(k − n).
For an input

u(k) =
∞
∑

n=−∞

pn(k)

we can use the principle of superposition and the output can be written as a sum of all
responses to pn(k), so:

y(k) =
∞
∑

n=−∞

u(n) h(k − n) (3.21)

This sum is denoted as the convolution sum for discrete-time systems.
For physical systems, the pulse response h(k) is zero for time k < 0, and future components
of the input do not contribute to the sum. So the convolution sum becomes:

y(k) =
k
∑

n=−∞

u(n) h(k − n) (3.22)

The convolution operation is often denoted by the symbol ∗ :

y(k) = u(k) ∗ h(k) =
k
∑

n=−∞

u(n) h(k − n) (3.23)

Example 10 (Discrete-time convolution)
The first-order exponential smoother of example 6 is described by the difference equation

y(k + 1) = a y(k) + (1 − a) u(k + 1)

By repeated substitution it easily follows that if y(k) = 0 for k < n0, the output of the
system is given by

y(k) = (1 − a)
k
∑

n=n0

ak−n u(n) k ≥ n0
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assuming that the input u(k) is such that the sum converges, and let n0 approach to −∞.
Then the response of the system takes the form

y(k) = (1 − a)
k
∑

n=−∞

ak−n u(n) k ∈ ZZ

Define the function h such that

h(k) =

{

0 for k < 0
(1 − a)ak for k ≥ 0

= (1 − a)ak us(k)

we see that on the infinite time axis the system may be represented as the convolution sum

y(k) =
∞
∑

n=−∞

h(k − n) u(k)
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Chapter 4

Solution of discrete-time linear state
equations

In this chapter we will discuss the general solution of discrete-time linear state equations.
(For the continuous-time case, see Rowell & Wormley [4], chapter 10).

4.1 State variable responses of discrete-time linear

systems

In this chapter we examine the responses of linear time-invariant discrete-time models in
the standard state equation form

x(k + 1) = Ax(k) +Bu(k) (4.1)

y(k) = Cx(k) +Du(k) (4.2)

The solution proceeds in two steps: First the state-variable response x(k) is determined
by solving the set of first-order state equations Eq. (4.1), and then the state response is
substituted into the algebraic output equations, Eq. (4.2) in order to compute y(k).

4.1.1 Homogeneous State responses

The state variable response of a system described by Eq. (4.1) with zero input and an
arbitrary set of initial conditions x(0) is the solution of the set of n homogeneous first-
order difference equations

x(k + 1) = Ax(k) (4.3)

We can find the solution by successive substitution. Note that x(1) = Ax(0) and x(2) =
Ax(1), so by substitution we obtain x(2) = A2 x(0). Proceeding in this way we derive:

x(k) = Ak x(0) (4.4)

31
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The solution is often written as:

x(k) = Φ(k) x(0) (4.5)

where Φ(k) = Ak is defined to be the state transition matrix.

Example 11 (First-order exponential smoother)
In example 6, the first-order exponential smoother was presented. The state difference
representation and output equations are

x(k + 1) = a x(k) + a(1 − a) u(k)

y(k) = x(k) + (1 − a) u(k), k ∈ ZZ

The homogeneous state difference equation is given by

x(k + 1) = ax(k)

It follows that the 1 × 1 state transition matrix is given by

Φ(k) = AA · · ·A = a · a · · · a = ak, k > 0, k ∈ ZZ.

Example 12 (Second-order exponential smoother)
Consider now the second-order smoother described by the difference equation

y(k + 2) − a1y(k + 1) − a0y(k) = b2u(k + 2) + b1u(k + 1), k ∈ ZZ

Since the order of the system is N = 2, the dimension of the state is also 2. According to
the transformation formulae in section 2.2, the system may be represented in state form as

x(k + 1) =

[

a1 1
a0 0

]

x(k) +

[

b1 + a1b2
a0b2

]

u(k),

y(k) =
[

1 0
]

+ b2u(k), k ∈ ZZ

The homogeneous state difference equation is

x(k + 1) =

[

a1 1
a0 0

]

x(k) = Ax(k) (4.6)

Then the 2 × 2 state transition matrix is given by

Φ(k) = A · A · · · A = Ak

For instance, let us take numerical values a0 = 0, and a1 = 1

2
, then

A =

[

1

2
1

0 0

]

; (4.7)
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and it can be seen that

Φ(k) =

[

(1

2
)k 2(1

2
)k

0 0

]

; k ≥ 0, k ∈ ZZ (4.8)

Consider homogeneous system (4.6) with system matrix (4.7) and initial condition

x(0) =

[

16
4

]

Then for k = 3 we find:

x(3) = Φ(3) x(0) = Φ(k) =

[

(1

2
)3 2(1

2
)3

0 0

] [

16
4

]

=

[

1/8 1/4
0 0

][

16
4

]

=

[

3
0

]

(4.9)

4.1.2 The forced response of discrete-time linear systems

The solution of the inhomogeneous discrete-time state equation

x(k + 1) = Ax(k) +Bu(k) (4.10)

(4.11)

follows easily by induction

x(k + 2) = Ax(k + 1) +Bu(k + 1)

= A
(

Ax(k) +Bu(k)
)

+Bu(k + 1)

= A2x(k) + ABu(k) +Bu(k + 1)

Proceeding in this way we derive

x(k) = Ak x(0) +
k−1
∑

m=0

Ak−m−1B u(m) (4.12)

for k ≥ 1. For k ≤ 0, the summation does not contribute to the solution, and we therefore
multiply this term by us(k − 1), which is zero for k ≤ 0. We obtain:

x(k) = Ak x(0) +
k−1
∑

m=0

Ak−m−1B u(m) us(k − 1) (4.13)

Example 13 (Second-order exponential smoother)
Consider again the second order exponential smoother of example 12. Since

A(k) =

[

a1 1
a0 0

]

; B(k) =

[

b1 + a1b2
a0b2

]

yields

x(k) = Ak x(0) +
k−1
∑

m=0

Ak−m−1B u(m) us(k − 1)
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Let us adopt the numerical values a0 = 0, a1 = 1

2
, b1 = 1 and b2 = 0 resulting in A as in

(4.7) and B, C, and D as follows

B =

[

1
0

]

; C =
[

1 0
]

; D = 0 (4.14)

With (4.8) we may express the forced response of this system as

x(k) =

[

(1

2
)k 2(1

2
)k

0 0

]

x(0) +
k−1
∑

m=0

[

(1

2
)k−m−1

0

]

u(m) us(k − 1)

4.1.3 The system output response of discrete-time linear systems

The output response of a discrete-time linear system is easily derived by substitution of
(4.13) in (4.2):

y(k) = Cx(k) +Du(k)

= C

(

Ak x(0) +
k−1
∑

m=0

Ak−m−1B u(m) us(k − 1)

)

+Du(k)

= CAk x(0) +
k−1
∑

m=0

CAk−m−1B u(m) us(k − 1) +Du(k)

So the forced output response is given by

y(k) = CAk x(0) +
k−1
∑

m=0

CAk−m−1B u(m) us(k − 1) +Du(k)

Example 14 (Second-order exponential smoother)
Based on example 13, we may obtain for the second-order exponential smoother the follow-
ing output response

y(k) = (
1

2
)kx1(0) +

k−1
∑

m=0

(
1

2
)k−m−1 u(m) us(k − 1)

= (
1

2
)kx1(0) +

k−1
∑

m=0

(
1

2
)m u(k −m− 1) us(k − 1)

4.1.4 The discrete-time transition matrix

The discrete-time transition matrix Φ(k) has the following properties:

1. Φ(0) = I.

2. Φ(−k) = Φ−1(k).
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3. Φ(k1)Φ(k2) = Φ(k1 + k2), and so

x(k2) = Φ(k2)x(0) = Φ(k2)Φ(−k1)x(k1) = Φ(k2 − k1)x(k1)

or

x(k2) = Φ(k2 − k1)x(k1)

4. If A is a diagonal matrix, then Ak is also a diagonal matrix and each element is the
k-th power of the corresponding diagonal element of the A matrix, that is, akii.

4.1.5 System Eigenvalues and Eigenvectors

Let A be the system matrix of system (4.1)-(4.2). The values λi satisfying the equation

λimi = Ami for mi 6= 0 (4.15)

are known as the eigenvalues, or characteristic values, of A. The corresponding column
vectors m are defined as eigenvectors, or characteristic vectors. Equation (4.15) can be
rewritten as:

(λiI − A)mi = 0 (4.16)

The condition for a non-trivial solution of such a set of linear equations is that

det(λiI − A) = 0 (4.17)

which is defined as the characteristic polynomial of the A matrix. Eq. (4.17) may be
written as

λn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0 (4.18)

or, in factored form in terms of its roots λ1, . . . , λn,

(λ− λ1)(λ− λ2) · · · (λ− λn) = 0 (4.19)

Define

M =
[

m1 m2 · · · mn

]

and

Λ =















λ1 0 · · · 0

0 λ2

...
...

. . .

0 · · · λn














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then

Λk =















λk1 0 · · · 0

0 λk2
...

...
. . .

0 · · · λkn















and

Φ(k) = Ak = (M ΛM−1)k = M ΛkM−1

4.1.6 Stability of discrete-time linear systems

For asymptotic stability, the homogeneous response of the state vector x(k) returns to the
origin for arbitrary initial conditions x(0) at time k → ∞, or

lim
k→∞

x(k) = lim
k→∞

Φ(k) x(0) = lim
k→∞

M ΛkM−1 x(0) = 0

for any x(0). All the elements are a linear combination of the modal components λki ,
therefore, the stability of a system response depends on all components decaying to zero
with time. If |λ| > 1, the component will grow exponentially with time and the sum is
by definition unstable. The requirements for system stability may therefore be summarized:

A linear discrete-time system described by the state equation x(k + 1) = Ax(k) + b u(k) is
asymptotically stable if and only if all eigenvalues have magnitude smaller than one.

Three other separate conditions should be considered:

1. If one or more eigenvalues, or pair of conjugate eigenvalues, has a magnitude larger
than one, there is at least one corresponding modal component that increases expo-
nentially without bound from any initial condition, violating the definition of stabil-
ity.

2. Any pair of conjugate eigenvalues that have magnitude equal to one, λi,i+1 = e±jω,
generates an undamped oscillatory component in the state response. The magni-
tude of the homogeneous system response neither decays nor grows but continues to
oscillate for all time at a frequency ω. Such a system is defined to be marginally
stable.

3. An eigenvalue λ = 1 generates a model exponent λk = 1k = 1 that is a constant.
The system response neither decays or grows, and again the system is defined to be
marginally stable.
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Example 15 (Second-order exponential smoother)
Consider the second-order exponential smoother of example 12. With the numerical values
a0 = 0, a1 = 1

2
, b1 = 1 and b2 = 0, the system matrices are given by 4.7 and 4.14. The

characteristic polynomial of the matrix A is

det(λI −A) = det

[

λ− 1

2
−1

0 λ

]

= λ(λ−
1

2
) (4.20)

As a result, the eigenvalues of A are λ1 = 0 and λ2 = 1

2
. Thus since all its eigenvalues are

less than one, this discrete-time system is stable.

4.1.7 Transformation of state variables

Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k) (4.21)

y(k) = Cx(k) +Du(k) (4.22)

and let consider the eigenvalue decomposition of the A matrix

A = M ΛM−1

Then this system can be transformed to the diagonal form

x′(k + 1) = A′x′(k) +B′u(k) (4.23)

y(k) = C ′x′(k) +D′u(k) (4.24)

by choosing

x′(k) = M−1x(k)

A′ = M−1AM = Λ

B′ = M−1B

C ′ = CM

D′ = D

Example 16 (Second-order exponential smoother)
Consider the second-order exponential smoother of example 12 and example 15. It can be
found that the corresponding eigenvectors are

v1 =

[

1
−1

2

]

; v2 =

[

1
0

]

; (4.25)

It follows that the modal transformation matrix V , its inverse V −1 and the diagonal matrix
Λ are

V =

[

1 1
−1

2
0

]

; V −1 =

[

0 −2
1 2

]

; Λ =

[

0 0
0 1

2

]

; (4.26)
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Thus, after modal transformation the system is represented as in Eqs. (4.23) and (4.24)
where

A′ = V −1AV = Λ =

[

0 0
0 1

2

]

;

B′ = V −1B =

[

0
1

]

; C ′ = CV =
[

1 1
]

;

4.2 The response of linear DT systems to the impulse

response

Let

u(k) = δ(k)

where δ(k) is the impulse response, defined in Eq. (3.2).
Following Eq. (4.15) we find

y(k) = CAk x(0) +
k−1
∑

m=0

CAk−m−1B δ(m) us(k − 1) +Dδ(k) (4.27)

Note that the term
k−1
∑

m=0

CAk−m−1B δ(m) us(k − 1)

only gives a contribution for m = 0, so:

k−1
∑

m=0

CAk−m−1B δ(m) us(k − 1) = CAk−1B us(k − 1)

Eq. (4.27) now becomes

y(k) = CAk x(0) + CAk−1B us(k − 1) +Dδ(k) (4.28)

which is the impulse response of a linear DT system.

Remark:
Note that a state transformation does not influence the input-output behaviour of the
system. We therefore may use the diagonal form of the state space description of the
system. The impulse response becomes:

y(k) = C ′A′k x(0) + C ′A′k−1B′ us(k − 1) +D′δ(k)

= CMΛk x(0) + CMΛk−1M−1B us(k − 1) +Dδ(k)

which can easily be computed.
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Example 17 (Second-order exponential smoother)
Consider again the second order exponential smoother of example 12 and example 15. The
state transition matrix of the transformed system is

Φ′(k) = Λk =

[

0 0
0 (1

2
)k

]

; k ≥ k0 (4.29)

It follows for the impulse response of the transformed system, which is also the impulse
response of the untransformed system,

h(k) = C ′Λk−1B′us(k − 1) +Dδ(k)

=
[

1 1
]

[

∆(k − 1) 0
0 (1

2
)k−1

] [

0
1

]

= (
1

2
)k−1us(k − 1).
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Chapter 5

The Discrete-time transfer function

In this chapter we will discuss the transfer function of discrete-time linear state equations.
(For the continuous-time case, see Rowell & Wormley [4], chapter 12).

5.1 Introduction

The concept of the transfer function is developed here in terms of the particular solution
component of the total system response when the system is excited by a given exponential
input waveform of the form

u(k) = U(z)zk (5.1)

where z = ρ ej ψ is a complex variable with magnitude ρ and phase ψ and the amplitude
U(z) is in general complex. Then the input

u(k) = U(z) ρk ej ψ k = U(z) ρk ( cosψk + j sinψk ) (5.2)

is itself complex and represent a broad class of input functions of engineering interest
including growing and decaying real exponential waveforms as well as growing and decaying
sinusoidal waveforms.

5.2 single-input single-output systems

Consider a system, described by a single-input single-output differential equation

an y(k + n) + an−1 y(k + n− 1) + . . .+ a0 y(k)

= bm u(k +m) + bm−1 u(k +m− 1) + . . .+ b0 u(k) (5.3)

where m ≤ n and all coefficients are real constants. For an exponential input signal of the
form

u(k) = U(z)zk (5.4)

41
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we may assume that the particular solution yp(k) is also exponential in form, that is,

yp(k) = Y (z)zk (5.5)

where y(z) is a complex amplitude to be determined. Substitution of (5.4), (5.5) in (5.3)
gives

an Y (z)zk+n + an−1 Y (z)zk+n−1 + . . .+ a0 Y (z)zk

= bm U(z)zk+m + bm−1 U(z)zk+m−1 + . . .+ b0 U(z)zk (5.6)

or
(

an z
n + an−1 z

n−1 + . . .+ a0) Y (z)zk

= (bm z
m + bm−1 z

m−1 + . . .+ b0)U(z)zk (5.7)

The transfer function H(z) is defined to be the ration of the response amplitude Y (z) to
the input amplitude U(z) and is

H(z) =
Y (z)

U(z)
=
bm z

m + bm−1 z
m−1 + . . .+ b0

an zn + an−1 zn−1 + . . .+ a0

(5.8)

The transfer function Eq. (5.8) is an algebraic rational function of the variable z.

Example 18 (Transfer function of discrete-time system)
Consider a discrete-time system described by the third order difference equation

100 y(k + 3) − 180 y(k + 2) + 121 y(k + 1) − 41 y(k)

= 100 u(k + 3) − 10 u(k + 2) + 48 u(k + 1) − 34 u(k)

The transfer function is now given by

H(z) =
100 z3 − 10 z2 + 48 z − 34

100 z3 − 180 z2 + 121 z − 41
(5.9)

5.3 relationship to the transfer function

The use of Z{} as the difference operator in chapter 2 and z as the exponent in the expo-
nential input function creates a similarity in appearance. When consideration is considered
to linear time-invariant systems, these two system representations are frequently used in-
terchangeably. The similarity results directly from the difference operator relationship for
an exponential waveform

Zn{U(z)zk} ≡ U(z) zk+n (5.10)



5.4. SYSTEM POLES AND ZEROS 43

5.4 System poles and zeros

It is often convenient to factor the polynomials in the numerator and denominator of Eq.
(5.8) and to write the transfer function in terms of those factors:

H(z) =
N(z)

D(z)
= K

(z − w1)(z − w2) . . . (z − wm)

(z − p1)(z − p2) . . . (z − pn)
(5.11)

where the numerator and denominator polynomials, N(z) and D(z), have real coefficients
defined by the systems’s difference equation and K = bm/an. As written in Eq. (5.11), the
wi’s are the roots of the equation

N(z) = 0

and are defined to be the system zeros, and the pi’s are the roots of the equation

D(z) = 0

and are defined to be the system poles. Note that

lim
z→wi

H(z) = 0 and lim
z→pi

H(z) = ∞

Example 19 (Second-order exponential smoother) Consider difference equation of
the second-order exponential smoother as given in example 12.

y(k + 2) − a1y(k + 1) − a0y(k) = b2u(k + 2) + b1(k + 1), k ∈ ZZ

The corresponding transfer function is found using Eq. (5.8):

H(z) =
Y (z)

U(z)
=

b2 z
2 + b1 z

z2 + a1 z + a0

The zeros are given by the roots of

N(z) = b2 z
2 + b1 z = 0

so for b2 6= 0 we find

w1 = 0 w2 = −b1/b2

and for b2 = 0 we only have one zero w1 = 0. The poles are given by the roots of

D(z) = z2 + a1 z + a0 = 0

so we find

p1 = −a1/2 +
√

a2
1/4 − a0 p2 = −a1/2 −

√

a2
1/4 − a0

For the setting a0 = 0.64, a1 = −1.6, b1 = −0.5 and b2 = 1 we find:

w1 = 0 , w2 = 0.5 , p1 = p2 = 0.8
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Figure 5.1: Pole-zero plot of a third order discrete-time system

Example 20 (Poles and zeros of third-order system)

Consider the third-order system in example 18, with transfer function

H(z) =
100 z3 − 10 z2 + 48 z − 34

100 z3 − 180 z2 + 121 z − 41
(5.12)

The poles of the system are finding the roots of the equation

D(z) = 100 z3 − 180 z2 + 121 z − 41 = 100(z − 1)(z − 0.4 − j 0.5)(z − 0.4 + j 0.5) = 0

We find that the poles are equal to p1 = 1, p2 = 0.4 + j 0.5 and p3 = 0.4− j 0.5. The zeros
of the system are finding the roots of the equation

N(z) = 100 z3 − 10 z2 + 48 z − 34 = 100(z − 0.5)(z + 0.2 − j 0.8)(z + 0.2 + j 0.8) = 0

We find that the zeros are equal to p1 = 0.5, p2 = −0.2 + j 0.8 and p3 = −0.2 − j 0.8.

The pole-zero plot of this system is given in Fig. 5.1

5.4.1 System poles and the homogeneous response

Also in the discrete-time case there holds

The transfer function poles are the roots of the characteristic equation
and also the eigenvalues of the system A matrix (as discussed in the
previous chapter).
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So let the transfer function denominator polynomial be given by

D(z) = an z
n + an−1 z

n−1 + . . .+ a0

and let the roots of D(z) = 0 be given by pi, i = 1, . . . , n. Then the homogeneous response
of the system is given by

yh(k) =
n
∑

i=1

Ci p
k
i

The location of the poles in the z-plane therefore determines the n components in the
homogeneous response as follows:

1. A real pole inside the unit circle (|p| < 1) defines an exponentially decaying compo-
nent C pk in the homogeneous response. The rate is determined by the pole location;
poles further away from the origin corresponds to components that decay rapidly;
poles close to the origin correspond to slowly decaying components. Negative real
poles alternate in sign.

2. A pole in pi = 1 defines a component that is constant in amplitude and defined by
the initial conditions.

3. A real pole outside the unit circle (|p| > 1) corresponds to an exponentially increas-
ing component C pk in the homogeneous response, thus defining the system to be
unstable.

4. A complex conjugate pole pair p = ρ e±j ψ inside the unit circle combine to generate
a response component that is decaying sinusoid of the form Aρk sin(ψ k + φ) where
A and φ are determined by the initial conditions. The rate of decaying is specified
by ρ; The frequency of oscillation is determined by ψ.

5. A complex conjugate pole pair on the unit circle p = e±j ψ generates an oscillatory
component of the form A sin(ψ k + φ) where A and φ are determined by the initial
conditions.

6. A complex pole pair outside the unit circle generates a exponentially increasing os-
cillatory component.

5.4.2 System stability

A n-th order linear discrete-time system is asymptotically stable only if all components
in the homogeneous response from a finite set of initial conditions decay to zero as time
increases, or

lim
k→∞

n
∑

i=1

Cip
k
i = 0

where pi are the system poles. If any poles has magnitude larger than one, there is a
component in the output without bound, causing the system to be unstable.
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Figure 5.2: The specification of the form of components of the homogeneous response from
the system pole locations on the pole-zero plot
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In order for a linear discrete-time system to be stable, all its poles must
have a magnitude strictly smaller than one, that is they must all lie inside
the unit circle. An “unstable” pole, lying outside the unit circle, gen-
erates a component in the system homogeneous response that increases
without bound from any finite initial conditions. A system having one
or more poles lying on the unit circle has nondecaying oscillatory com-
ponents in the homogeneous response and is defined to be marginally
stable.

5.4.3 State space formulated systems

Consider the n-th order linear system describe by the set of n state equations and one
output equation:

x(k + 1) = Ax(k) +Bu(k) (5.13)

y(k) = Cx(k) +Du(k) (5.14)

The transfer function is given by

H(z) =
Y (z)

U(z)

= [C (z I − A)−1B +D]

=
C adj(z I −A)−1B +D det(z I −A)

det(z I − A)

Example 21 (Transfer function of a third-order system)
Consider the third-order system in example 18. The state-space representation is found
using the results of section 2.2:

A =







0 1 0
0 0 1

0.41 −1.21 1.8





 B =







0
0

0.01







C =
[

7 −73 170
]

D = 1

We compute the adjoint of (z I −A):

adj(z I −A) =







z2 − 1.8 z + 1.21 0.41 0.41 z
z − 1.8 z2 − 1.8 z −1.21 z + 0.41

1 z z2







and the determinant of (z I − A):

det(z I − A) = z3 − 1.8 z2 + 1.21 z − 0.41

and so:

H(z) =
C adj(z I − A)−1B +D det(z I −A)

det(z I − A)

=
z3 − 0.1 z2 + 0.48 z − 0.34

z3 − 1.80 z2 + 1.21 z − 0.41



48 CHAPTER 5. THE DISCRETE-TIME TRANSFER FUNCTION



Bibliography

[1] H. Freeman. Discrete-time systems. John Wiley & Sons, New York, USA, 1965.

[2] H. Kwakernaak and R. Sivan. Modern Signals and Systems. Prentice Hall, New Jersey,
USA, 1991.

[3] C. Phillips and J.M. Parr. Signals, Systems, and Tranforms. Prentice Hall, New Jersey,
USA, 1999.

[4] D. Rowell and D.N. Wormley. System Dynamics, an introduction. Prentice Hall, New
Jersey, USA, 1997.

49


