
MTCProv: A Practical provenance query framework for many-task

scientific computing

Luiz M. R. Gadelha Jr.1,2, Michael Wilde3,4, Marta Mattoso1, Ian Foster3,4,5

1Computer Engineering Program, COPPE, Federal University of Rio de Janeiro, Brazil
2National Laboratory for Scientific Computing, Brazil

3Mathematics and Computer Science Division, Argonne National Laboratory, USA
4Computation Institute, Argonne National Laboratory and University of Chicago, USA

5Department of Computer Science, University of Chicago, USA

lgadelha@lncc.br, wilde@mcs.anl.gov, marta@cos.ufrj.br, foster@anl.gov

Abstract

Scientific research is increasingly assisted by computer-based experiments. Such experiments are often

composed of a vast number of loosely-coupled computational tasks that are specified and automated as

scientific workflows. This large scale is also characteristic of the data that flows within such “many-

task” computations (MTC). Provenance information can record the behavior of such computational ex-

periments via the lineage of process and data artifacts. However, work to date has focused on data

models, leaving unsolved issues of recording MTC behavior such as task runtimes and failures, or the

impact of environment on performance and accuracy. In this work we contribute with MTCProv, a prove-

nance query framework for many-task scientific computing that captures the runtime execution details

of MTC workflow tasks on parallel and distributed systems, in addition to standard prospective and data

derivation provenance. To help users query provenance data we provide a high level interface that hides

relational query complexities. We evaluate MTCProv using applications in protein science and social

network analysis, and describe how important query patterns such as correlations between provenance,

runtime data, and scientific parameters are simplified and expressed.

1 Introduction

Scientific research is increasingly being assisted by computer-based (or in-silico) experiments that often

manipulate large volumes of data and require high performance computing resources, such as parallel clus-

ters or large distributed computational infrastructure such as grids and clouds. These experiments often

comprise a large set of discrete, loosely-coupled computational tasks that can be specified and automated

as scientific workflows. Their life-cycle [22] is usually given by a design phase, where its component tasks

and data flow are specified; an execution phase, where data sets are transferred, and component tasks are

mapped to the available computational resources and executed; and an analysis phase where scientists ex-

amine their outcome. These phases are typically iterated for experimental refinement. In the analysis phase,

a scientist checks, for instance, which data sets were consumed and produced by each component task, what

were the scientific domain parameters associated with these data sets, what was the runtime behavior of

computational tasks (e.g., which of them failed, and why). All these phases can be supported by provenance

management systems that describe how these scientific computations were specified (prospective prove-

nance) [13], and executed (retrospective provenance) [32, 9]. A provenance database is in the middle of the

experiment life-cycle [22].

Provenance information has many applications [32] such as verifying the results of scientific compu-

tations through re-execution, audit trail of data derivations, attribution [16], and the discovery of research
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practices and protocols [18]. Domain scientists can explore scientific parameters used in their applica-

tions, and computational task variations for the same abstract workflow. Scientific software developers

can examine the behavior of different versions of their applications, and debug them by input and output

analysis. System administrators can analyze performance statistics about application execution on different

computational resources, and quality of service information, such as failure rates per site. To allow for the

exchange of provenance information between diverse systems, the Open Provenance Model (OPM) [25] was

proposed. This standardization work is being continued as the PROV data model [26] by the Provenance

Working Group within the World Wide Web Consortium[1].

The Swift parallel scripting system [37] supports the specification, execution, and analysis of many-

task scientific computations [30]. The Swift language [35] has many characteristics commonly found in

functional programming, such as functional abstraction without side effects, single-assignment variables,

and implicitly parallel evaluation. Data sets are declared as variables of primitive types, mapped types,

which associate a variable with persistent files; and collections (arrays and structures). Calls to application

programs are expressed as application interface functions (i.e., primitive “leaf” functions) that consume and

produce data sets. Compound functions compose sub-functions (including application interface functions),

loops, and conditionals to form more complex data flows. Parallelism is implicit and pervasive in Swift: all

expressions in a Swift script whose data dependencies are met are evaluated in parallel. A foreach loop

processes all elements of an array in parallel.

A “site catalog” points Swift to available computational resources, and an “application catalog” lists the

application programs that implement Swift leaf-functions, and the sites and locations where they can be exe-

cuted. In this way, the specification of a many-task scientific computation in Swift is independent of location

and expresses solely the functional data flow of the many-task computation. Swift automates load balanc-

ing between available computational resources, fault tolerance through execution retries, and replication of

tasks to avoid queue latency on highly congested sites. These necessary features place complex demands

on a provenance collection and query system. Swift is a successor to the Virtual Data System (VDS) [12],

one of the pioneering systems supporting provenance of distributed parallel scientific computations [39, 8].

One problem with this model was the use of different data models, relational and semi-structured, to query

provenance information, which makes it difficult to compose them into more complex queries. Another

challenge is to support provenance while keeping the scalability of Swift in thousands of cores [20].

In this work, we are concerned with the problem of managing the provenance information of many-task

scientific computations. Such computations are typified by a large number of tasks, often with data or con-

trol flow dependencies, which pass data via files. The tasks can execute in parallel on many, possible diverse

and distributed nodes (as typified by scientific workflows expressed in Swift). Our main contributions are: a

data model for representing provenance that extends OPM to capture events that are typical of parallel and

distributed systems, such as a computational task invocation possibly having many execution attempts due

to failures or high demand for computational resources; a provenance query interface that allows for visual-

ization of provenance graphs and querying of provenance information using a simplified syntax with respect

to plain SQL, that allows for simple query design by abstracting commonly found provenance query pat-

terns into built-in functions and procedures, and by hiding the underlying database schema through database

views and automated computation of relational joins; and a case study demonstrating the usability of this

query interface and the applications of the provenance information gathered. This provenance data model

and query interface, along with components for extracting provenance information from Swift script runs

and storing it in a relational database, were implemented as a provenance query framework, that we call

MTCProv, for the Swift parallel scripting system.

The remainder of this article is organized as follows. In section 2, we present the data model used

to represent provenance in many-task scientific computations. In section 3, we describe the design and

implementation of MTCProv, in particular how provenance is gathered, stored and queried. In section 4, we

evaluate MTCProv in the context of a protein structure prediction application[5], demonstrating its usability
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and utility. In section 5, we compare our approach with existing approaches for managing provenance of

scientific computations. Finally, in section 6, we make some concluding remarks and describe future work.

2 A Provenance Model for Many-Task Scientific Computations

In this section, we present the MTCProv data model for representing provenance of many-task scientific

computations. This MTC provenance model is a compatible extension of the Open Provenance Model. It

addresses the characteristics of many-task computation, where concurrent component tasks are submitted

to parallel and distributed computational resources. Such resources are subject to failures, and are usu-

ally under high demand for executing tasks and transferring data. Science-level performance information,

which describes the behavior of an experiment from the point of view of the scientific domain, is criti-

cal for the management of such experiments (for instance, by determining how accurate the outcome of a

scientific simulation was, and whether accuracy varies between execution environments). Recording the

resource-level performance of such workloads can also assist scientists in managing the life cycle of their

computational experiments. In designing MTCProv, we interacted with Swift users from multiple scien-

tific domains, including protein science, and earth sciences, and social network analysis, to support them in

designing, executing and analyzing their scientific computations with Swift. From these engagements, we

identified the following requirements for MTCProv:

1. Gather producer-consumer relationships between data sets and processes. These relationships form

the core of provenance information. They enable typical provenance queries to be performed, such as

determining all processes and data sets that were involved in the production of a particular data set.

This in general requires traversing a graph defined by these relationships. Users should be able, for

instance, to check the usage of a given file by different many-task application runs.

2. Gather hierarchical relationships between data sets. Swift supports hierarchical data sets, such as

arrays and structures. For instance, a user can map input files stored in a given directory to an array,

and later process these files in parallel using a foreach construct. Fine-grained recording of data

set usage details should be supported, so that a user can trace, for instance, that an array was passed

to a procedure, and that an individual array member was used by some sub-procedure. This is usually

achieved by recording constructors and accessors of arrays as processes in a provenance trace [25].

3. Gather versioned information of the specifications of many-task scientific computations and of their

component applications. As the specifications of many-task computations (e.g., Swift scripts), and

their component applications (e.g., Swift leaf functions) can evolve over time, scientists can benefit

from keeping track of which version they are using in a given run. In some cases, the scientist also

acts as the developer of a component application, which can result in frequent component application

version updates during a workflow lifecycle.

4. Allow users to enrich their provenance records with annotations. Annotations are usually specified as

key-value pairs that can be used, for instance, to record resource-level and science-level performance,

like input and output scientific parameters, and usage statistics from computational resources. Anno-

tations are useful for extending the provenance data model when required information is not captured

in the standard system data flow. For instance, many scientific applications use textual configuration

files to specify the parameters of a simulation. Yet automated provenance management systems usu-

ally record only the consumption of the configuration file by the scientific application, but preserve

no information about its content (which is what the scientist really needs to know).
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5. Gather runtime information about component application executions. Systems like Swift support

many diverse parallel and distributed environments. Depending on the available applications at each

site and on job scheduling heuristics, a computational task can be executed on a local host, a high

performance computing cluster, or a remote grid or cloud site. Scientists often can benefit from

having access to details about these executions, such as where each job was executed, the amount of

time a job had to wait on a scheduler’s queue, the duration of its actual execution, its memory and

processor consumption, and the volume and rate of file system and/or network IO operations.

6. Provide a usable and useful query interface for provenance information. While the relational model is

ideal for many aspects to store provenance relationships, it is often cumbersome to write SQL queries

that require joining the many relations required to implement the OPM. For provenance to become

a standard part of the e-Science methodology, it must be easy for scientists to formulate queries and

interpret their outputs. Queries can often be of exploratory nature [33], where provenance information

is analyzed in many steps that refine previous query outputs. Improving usability is usually achievable

through the specification of a provenance query language, or by making available a set of stored

procedures that abstract common provenance queries. In this work we propose a query interface

which both extends and simplifies standard SQL by automating join specifications and abstracting

common provenance query patterns into built-in functions.

Some of these requirements have been previously identified by Miles et al. [24]. However few works to

date emphasize usability and applications of provenance represented by requirements 4 through 6, which

are the main objectives of this work. As a first step toward meeting these requirements, we propose a data

model for the provenance of many-task scientific computations. A UML diagram of this provenance model is

presented in Figure 1. We simplify the UML notation to abbreviate the information that each annotated entity

set (script run, function call, and variable) has one annotation entity set per data type. We define entities that

correspond to the OPM notions of artifact, process, and artifact usage (either being consumed or produced

by a process). These are augmented with entities used to represent many-task scientific computations, and

to allow for entity annotations. Such annotations, which can be added post-execution, represent information

about provenance entities such as object version tags and scientific parameters.

ScriptRun refers to the execution (successful or unsuccessful) of an entire many-task scientific com-

putation, which in Swift is specified as the execution of a complete parallel script from start to finish.

FunctionCall records calls to Swift functions. These calls take as input data sets, such as values stored

primitive variables or files referenced by mapped variables; perform some computation specified in the

respective function declaration; and produce data sets as output. In Swift, function calls can represent invo-

cations of external applications, built-in functions, and operators; each function call is associated with the

script run that invoked it. ApplicationFunctionCall represents an invocation of one component application

of a many-task scientific computation. In Swift, it is generated by an invocation to an external application.

External applications are listed in an application catalog along with the computational resources on which

they can be executed. ApplicationExecution represents execution attempts of an external application. Each

application function call triggers one or more execution attempts, where one (or, in the case of retries or

replication, several) particular computational resource(s) will be selected to actually execute the application.

RuntimeSnapshot contains information associated with an application execution, such as resource consump-

tion. Variable represents data sets that were assigned to variables in a Swift script. Variable types can be

atomic or composite. Atomic types are primitive types, such as integers and strings, recorded in the relation

Primitive, or mapped types, recorded in the relation Mapped. Mapped types are used for declaring and

accessing data that is stored in files. Composite types are given by structures and arrays. Containment rela-

tionships define a hierarchy where each variable may have child variables (when it is a structure or an array),

or a parent variable (when it is a member of a collection). A variable may have as attributes a value, when
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ScriptRun

 scriptRunId: string  PK

 scriptFileName: string

 logFilename: string

 swiftVersion: string

 cogVersion: string

 finalState: string

 startTime: timestamp

 duration: integer

 scriptHash: string

 applicationCatalogHash: string

 siteCatalogHash: string

FunctionCall

 functionCallId: string  PK

 type: string

 name: string

Variable

 variableId: string  PK
produces

1

*

consumes1 *

ApplicationExecution

 applicationExecutionId: string  PK

 startTime: timestamp

 duration: integer

 finalState: string

 site: string

RuntimeSnapshot

 timestamp: timestamp  PK

 cpuUsage: float

 maxPhysMem: integer

 maxVirtMem: integer

 ioRead: integer

 ioWrite: integer

1 *

ApplicationFunctionCall

 startTime: timestamp

 duration: integer

 finalState: string

 app_catalog_name: string

1 *

Mapped

 fileName: string

Primitive

 value: value

contains

 container

 containee

ConsumesProperty

 parameter : string

ProducesProperty

 parameter : string

ScriptRunAnnotation

 key : string  PK

 value : value

FunctionCallAnnotation

 key : string  PK

 value : value

VariableAnnotation

 key : string  PK

 value : value

1

*

1*

1

*

Script

 hashValue: string  PK

 sourceCode: text

* 1

ApplicationCatalog

 hashValue: string  PK

 catalogEntries: text

SiteCatalog

 hashValue: string  PK

 catalogEntries: text

*1

*1

1

*

Figure 1: UML diagram of Swift’s provenance database.

it is a primitive variable; or a filename, when it is a mapped file. An 〈Entity set name〉Annotation is a key-

value pair associated with either a variable, function call, or script run. These annotations are used to store

context-specific information about the entities of the provenance data model. Examples include scientific-

domain parameters, object versions, and user identities. Annotations can also be used to associate a set of

runs of a script related to a particular event or study, which we refer to as a campaign. The produces and

consumes relationships between FunctionCall and Variable define a lineage graph that can be traversed to

determine ancestors or descendants of a particular entity. Process dependency and data dependency graphs

are derived with transitive queries over these relationships.

The provenance model presented here is a significant refinement of a previous one used by Swift in the

Third Provenance Challenge [15], which was shown to be similar to OPM. This similarity is retained in the

current version of the model, which adds support for annotations and runtime information on component

application executions. FunctionCall corresponds to OPM processes, and Variable corresponds to OPM

artifacts as immutable data objects. The OPM entity agent controls OPM processes, e.g. starting or termi-

nating them. While we do not explicitly define an entity type for such agents, this information can be stored

in the annotation tables of the FunctionCall or ScriptRun entities. To record which users controlled each

script or function call execution, one can gather the associated POSIX userids, when executions are local, or

the distinguished name of network security credentials, when executions cross security domains, and store

them as annotations for the respective entity. This is equivalent to establishing an OPM wasControlledBy

relationship. The dependency relationships, used and wasGeneratedBy, as defined in OPM, correspond to

our consumes and produces relationships, respectively. Our data model has additional entity sets to capture

behavior that is specific to parallel and distributed systems, to distinguish, for instance, between application

invocations and execution attempts. We currently do not directly support the OPM concept of account,

which can describe the same computation using different levels of abstraction. However, one could use

annotations to associate one or more such accounts with an execution entity. Based on the mapping to OPM

described here, MTCProv provides tools for exporting the provenance database into OPM provenance graph
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interchange format, which provides interoperability with other OPM-compatible provenance systems.

3 Design and Implementation of MTCProv

In this section, we describe the design and implementation of the MTCProv provenance query framework.

It consists of a set of tools used for extracting provenance information from Swift log files, and a query

interface. While its log extractor is specific to Swift, the remainder of the system, including the query in-

terface, is applicable to any parallel functional data flow execution model. The MTCProv system design is

influenced by our survey of provenance queries in many-task computing [17], where a set of query patterns

was identified. The multiple-step relationships (R∗) pattern is implemented by queries that follow the transi-

tive closure of basic provenance relationships, such as data containment hierarchies, and data derivation and

consumption. The run correlation (RCr) pattern is implemented by queries for correlating attributes from

multiple script runs, such as annotation values or the values of function call parameters.

3.1 Provenance Gathering and Storage

Swift can be configured to add both prospective and retrospective provenance information to the log file

it creates to track the behavior of each script run. The provenance extraction mechanism processes these

log files, filters the entries that contain provenance data, and exports this information to a relational SQL

database. Each application execution is launched by a wrapper script that sets up the execution environ-

ment. These scripts can be configured to gather runtime information, such as memory consumption and

processor load. Additionally, one can define a script that generates annotations in the form of key-value

pairs, to be executed immediately before the actual application. These annotations can be exported to the

provenance database and associated with the respective application execution. MTCProv processes the data

logged by each wrapper to extract both the runtime information and the annotations, storing them in the

provenance database. Additional annotations can be generated per script run using ad-hoc annotator scripts,

as we demonstrate in our case study in section 4. In addition to retrospective provenance, MTCProv keeps

prospective provenance by recording the Swift script source code, the application catalog, and the site cata-

log used in each script run. Figure 2(left) describes the components and information flow of MTCProv.
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Figure 2: Left: MTCProv components and flow; Right: Impact of gathering provenance.
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Provenance information is frequently stored in a relational database. RDBMS’s are well known for their

reliability, performance and consistency properties. Some shortcomings of the relational data model for

managing provenance are mentioned by Zhao et al. [38], such as its use of fixed schemas, and weak support

for recursive queries. Despite using a fixed schema, our data model allows for key-value annotations, which

gives it some flexibility to store information not explicitly defined in the schema. The SQL:1999 standard,

which is supported by many relational database management systems, has native constructs for performing

recursive queries. Ordonez [29] proposed recursive query optimizations that can enable transitive closure

computation in linear time complexity on binary trees, and quadratic time complexity on sparse graphs.

Relationship transitive closures, which are required by recursive R∗ pattern queries, are well supported by

graph-based data models, however as we present in our case study in section 4, many interesting queries

require aggregation of entity attributes. Aggregate queries on a graph can support grouping node or edge

attributes that are along a path [10]. However, some provenance queries require the grouping of node

attributes that are sparsely spread across a graph. These require potentially costly graph traversals, whereas

in the relational data model, well-supported aggregate operations can implement such operations efficiently.

To keep track of file usage across script runs, we record its hash function value as an alternative identi-

fier. This enables traversing the provenance graphs of different script runs by detecting file reuse. Persistent

unique identifiers for files could be provided by a data curation system with support for object version-

ing. However, due to the heterogeneity of parallel and distributed environments, one cannot assume the

availability of such systems.

Figure 2(right) shows the impact of gathering provenance in Swift. It is based on runs of a sample it-

erative script using a different number of iterations on each run. The workflow specified in the script has

a structure that is commonly found in many Swift applications. In this case, the log file size tends to grow

about 55% in size when provenance gathering is enabled, but once they are exported to the provenance

database they are no longer needed by MTCProv. The database size scales linearly with the number of

iterations in the script. The initial set up of the database, which contains information such as integrity con-

straints, indices, and schema, take some space in addition to the data. As the database grows, it tends to

consume less space than the log file. For instance, a 10,000 iteration run of the sample script produces a

55MB log file, while the total size of a provenance database containing only this run is 42MB. In addition,

successful relational parallel database techniques can partition the provenance database and obtain high per-

formance query processing. The average total time to complete a script run shows a negligible impact when

provenance gathering is enabled. In a few cases the script was executed faster with provenance gathering

enabled, which indicates that other factors, such as the task execution scheduling heuristics used by Swift

and operating system noise, have a higher impact in the total execution time.

3.2 Query Interface

During the Third Provenance Challenge [15], we observed that expressing provenance queries in SQL is of-

ten cumbersome. For example, such queries require extensive use of complex relational joins, for instance,

which are beyond the level of complexity that most domain scientists are willing, or have the time, to master

and write. Such usability barriers are increasingly being seen as a critical issue in database management

systems. Jagadish et al. [19] propose that ease of use should be a requirement as important as function-

ality and performance. They observe that, even though general-purpose query languages such as SQL and

XQuery allow for the design of powerful queries, they require detailed knowledge of the database schema

and rather complex programming to express queries in terms of such schemas. Since databases are often

normalized, data is spread through different relations requiring even more extensive use of database join op-

erations when designing queries. Some of the approaches used to improve usability are forms-based query

interfaces, visual query builders, and schema summarization [36].

In this section, we describe our structured provenance query language, SQPL for short, a component of
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MTCProv. It was designed to meet the requirements listed in section 2 and to allow for easier formation

of provenance queries for the patterns identified in [17] than can be accomplished with general purpose

query languages, such as SQL. SPQL supports exploratory queries [33], where the user seeks information

through a sequence of queries that progressively refine previous outputs, instead of having to compose

many subqueries into a single complex query, as it is often the case with SQL. Even though our current

implementation uses a relational database as the underlying data model for storing provenance information,

it should not be dependent on it, we plan to evaluate alternative underlying data models such as graph

databases, Datalog, and distributed column-oriented stores. Therefore, in the current implementation, every

SPQL query is translated into a SQL query that is processed by the underlying relational database. While

the syntax of SPQL is by design similar to SQL, it does not require detailed knowledge of the underlying

database schema for designing queries, but rather only of the entities in a simpler, higher-level abstract

provenance schema, and their respective attributes.

The basic building block of a SPQL query consists of a selection query with the following format:

select (distinct) selectClause

(where whereClause

(group by groupByClause

(order by orderByClause)))

This syntax is very similar to a selection query in SQL, with a critical usability benefit: hide the complexity

of designing extensive join expressions. One does not need to provide all tables of the from clause. Instead,

only the entity name is given and the translator reconstructs the underlying entity that was broken apart to

produce the normalized schema. As in the relational data model, every query or built-in function results in a

table, to preserve the power of SQL in querying results of another query. Selection queries can be composed

using the usual set operations: union, intersect, and difference. A select clause is a list with elements of the

form 〈entity set name〉(.〈attribute name〉) or 〈built-in function name〉(.〈return attribute name〉). If attribute

names are omitted, the query returns all the existing attributes of the entity set. SPQL supports the same

aggregation, grouping, set operation and ordering constructs provided by SQL.

To simplify the schema that the user needs to understand to design queries, we used database views to

define the higher-level schema presentation shown in Figure 3. This abstract, OPM-compliant provenance

schema is a simplified view of the physical database schema detailed in section 2. It groups information

related to a provenance entity set in a single relation. The annotation entity set shown is the union of the

annotation entity sets of the underlying database, presented in Figure 1. To avoid defining one annotation

table per data type, we use dynamic expression evaluation in the SPQL to SQL translator to determine the

required type-specific annotation table of the underlying provenance database.

Most of the query patterns identified in [17] are relatively straightforward to express in a relational query

language such as SQL, except for the R∗ and RCr patterns, which require either recursion or extensive use

of relational joins. To abstract queries that match these patterns, we included in SPQL the following built-in

functions to make these common provenance queries easier to express:

• ancestors(object id) returns a table with a single column containing the identifiers of variables

and function calls that precede a particular node in a provenance graph stored in the database.

• data dependencies(variable id), related to the previous built-in function, returns the identifiers

of variables upon which variable id depends.

• function call dependencies(function call id) returns the identifiers of function calls upon

which function call id depends.

• compare run(list of 〈function parameter=string | annotation key=string〉) shows how

process parameters or annotation values vary across the script runs stored in the database.
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Figure 3: Higher-level schema that summarizes the underlying provenance database schema.

The underlying SQL implementation of the ancestor built-in function, below, uses recursive Common

Query Expressions, which are supported in the SQL:1999 standard. It uses the prov graph database view,

which is derived from the produces and consumes tables, resulting in a table containing the edges of the

provenance graph.

CREATE FUNCTION ancestors(varchar) RETURNS SETOF varchar AS $$

WITH RECURSIVE anc(ancestor,descendant) AS

(

SELECT parent AS ancestor, child AS descendant

FROM prov_graph

WHERE child=$1

UNION

SELECT prov_graph.parent AS ancestor,

anc.descendant AS descendant

FROM anc, prov_graph

WHERE anc.ancestor=prov_graph.child

)

SELECT ancestor FROM anc $$ ;

To further simplify query specification, SPQL uses a generic mechanism for computing the from clauses

and the join expressions of the where clause for the target SQL query. The SPQL to SQL query translator

first scans all the entities present in the SPQL query. A shortest path containing all these entities is computed

in the graph defined by the schema of the provenance database. All the entities present in this shortest path

are listed in the from clause of the target SQL query. The join expressions of the where clause of the

target query are computed using the edges of the shortest path, where each edge derives an expression that

equates the attributes involved in the foreign key constraint of the entities that define the edge. While this

automated join computation facilitates query design, it does somewhat reduce the expressivity of SPQL, as

one is not able to perform other types of joins, such as self-joins, explicitly. However, many such queries

can be expressed using subqueries, which are supported by SPQL. While some of the expressive power of

SQL is thus lost, we show in the sections that follow that SPQL is able to express, with far less effort and

complexity, most important and useful queries that provenance query patterns require. As a quick taste, this

SPQL query returns the identifiers of the script runs that either produced or consumed the file nr:

select compare_run(parameter=’proteinId’).run_id where file.name=’nr’;

This SPQL query is translated by MTCProv to the following SQL query:

select compare_run1.run_id

from select run_id, j1.value AS proteinId
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from compare_run_by_param(’proteinId’) as compare_run1,

run, proc, ds_use, ds, file

where compare_run1.run_id=run.id and ds_use.proc_id=proc.id and

ds_use.ds_id=ds.id and ds.id=file.id and

run.id=proc.run_id and file.name=’nr’;

Further queries are illustrated by example in the next section. We note here that the SPQL query interface

also lets the user submit standard SQL statements to query the database.

4 Case Study: Protein structure prediction workflow

We show here how MTCProv is used by scientists to assess and analyze their computational experiments.

The workflows were executed on Beagle, a 186-node cluster with 17,856 processing cores; and PADS, a

48-node cluster with 384 processing cores. These machines are located at the Computation Institute, a joint

institute of the University of Chicago and Argonne National Laboratory.

Open Protein Simulator (OOPS) [5] is a protein modeling application used for predicting the local

structure of loops, and large insertion or chain ends in crystal structures and template-based models. It is

used in conjunction with pre-processing and post-processing applications in a high-level workflow that is

described in Figure 4, where the doLoopRound workflow activity is a compound procedure. Annotations

are gathered by an application-specific script executed after an OOPS run, and stored in the provenance

database.

Suppose a scientist runs an application script several times, in what we call a campaign, between April

4, 2010 and August 8, 2010 for a protein modeling competition. After completing the runs, he/she wants to

know which ones were recorded in the database for the period. The following query lists runs of the OOPS

application script (psim.loops) that were executed for the period. This is a simple query for the identifier,

start time, and duration attributes of the run entity. The SPQL query is given by:

select script_run

where script_run.start_time between ’2010-04-04’ and ’2010-08-08’ and

script_run.filename=’psim.loops.swift’;

id | start_time | ...

-----------------------------------+----------------------------+--------

psim.loops-20100619-0339-b95ull7d | 2010-06-19 03:39:15.18-05 | ...

psim.loops-20100618-0402-qhm9ugg4 | 2010-06-18 04:02:21.234-05 | ...

... | ... | ...

One can annotate these runs with the key-value pair (“campaign”, “casp2010”), so that the next queries

can the answered with respect to this campaign only. Next, one can list how many times each protein was

modeled by each of these runs. This identification of protein modeled is present in the modelIn (see figure

4) data set. Therefore one way to answer this query is to check the values of the variables that are used as

parameter “proteinId”:

select compare_run(function_parameter=’proteinId’, annotation_key=’campaign’).proteinId,

count(*)

where compare_run.campaign=’casp2010’

group by compare_run.proteinId;

proteinId | count

-----------+-------

T0588end | 2

T0601 | 1

... | ...

For the next queries, that illustrate the use of runtime execution information, we display their output

graphically in figure 4. Even though the computational cost of loopModel is highly dependent on the content
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Figure 4: Left: Protein structure prediction workflow; Right: plots of query outputs.

of the FASTA sequence given as input, the following query comparing the FASTA sequence length with the

duration of the loopModel task shows an example of the type of queries enabled by MTCProv:

select compare_run(annotation_key=’fasta_sequence_length’),

avg(function_call.duration)

where function_call.name=’LoopModel’

group by compare_run.fasta_sequence_length;

Suppose one wants to analyze why an application execution failed by exploring, for instance, its com-

putational resource consumption. In SPQL this can be obtained with the following queries:

select application_execution.id

where application_execution.final_state=’FAILED’;

id

--------------------------------------------------

execute:psim-loops-20100618-0402-qhm9ugg:0-1-0-0

select runtime_info

where application_execution.id=’execute:psim-loops-20100618-0402-qhm9ugg:0-1-0-0’;

Also in figure 4, one can see a plot, derived from the provenance database, of how many jobs were

waiting and how many were executing during a script run. In addition to runtime and domain-specific infor-

mation, it is possible to design queries that explore lineage information, such as determining all processes

and data sets that led to a data set:

select ancestors(’dataset:20100618-0402-ia0bqb73:72000045’);

ancestor

--------------------------------------------------

execute:psim.loops-20100618-0402-qhm9ugg4:451006

dataset:20100618-0402-ia0bqb73:72000039

...

These recursive queries can be combined with runtime and domain-specific information to determine,

for instance, the range of specific scientific parameters, or the total amount of CPU time used by application
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executions that preceded a particular dataset in a lineage graph, which can give an estimate of how long

would it take to generate it without parallelism. In plain SQL, which can use the same provenance built-in

functions, this query can be expresses as:

select sum(application_execution.walltime)

from function_call_dependencies(’psim.loops-20100618-0402-qhm9ugg4:451006’) as predecessors,

application_execution

where predecessors.function_call_id=application_execution.function_call_id;

sum

------------------------

690449.134001970343328

In this example, the preceding application executions belong to a same script run. However, this is not

always the case, since a file generated by a script run might be used by another one, causing the transitive

closure to traverse multiple provenance graphs.

5 Related Work

One example of the importance of tracking resource consumption is the Technology Audit and Insertion

Service (TAIS) [14] [2], an effort to develop adequate tools for monitoring and auditing of high perfor-

mance computing systems, which is one of the main components of XSEDE [3], a large-scale distributed

computational infrastructure. Capturing runtime performance information of parallel and distributed scien-

tific workflows can be useful in planning task execution. Askalon [34] provides a performance monitoring

service for scientific workflows that are executed in grid computing environments. A performance predictor

service uses information gathered by the performance monitor to support better scheduling of computational

tasks. Ogasawara et al. [28] describe components that can be included in specifications of MTC workflows

to control the parallelization of activities, along with support for gathering provenance data about the exe-

cution of these activities. It enables reuse of the parallelization strategies recorded. ParaTrac [11] gathers

resource consumption information about data-intensive scientific workflows, enabling detailed performance

analysis to be performed, such as the amount of data flowing between component tasks. PDB [21] collects

timing data about task execution in streaming workflows, where data flows occur in memory buffers instead

of disk-based I/O, and also uses this information for execution planning. Our approach extends the function-

ality of these systems by gathering, in addition to performance information, lineage data and annotations

about the scientific domain, and by allowing the design of queries exploring these different aspects.

Domain-specific languages for querying provenance have been an active area of research. The Vis-

trails [13] workflow management system supports exploratory computational scientific experiments, keep-

ing track of how workflow specifications evolve and derivation relationships between data and processes.

This provenance model also allows its entities to be annotated by the user, as key-value pairs. vtPQL [31]

is a domain-specific language for querying provenance information in Vistrails. It can query workflow

specification, evolution, and derivation relationships between data and processes. The query system is aug-

mented by useful constructs in the context of provenance and workflows, such as functions for provenance

graph traversal. Anand et al. [6] advocate the representation of provenance information as fine-grained

relationships over nested collections of data. They present a Query Language for Provenance (QLP) that

is independent of the underlying data model used for storage and workflow management system and closed

under query composition. It provides constructs for accessing specific versions of structures produced by

a workflow run. QLP operators for querying lineage act as filters over lineage relations, returning a subset

of them. Lineage queries can be combined with queries over data structures. QLP supports constraining

the structure of lineage paths using regular expressions. Path Query Language (PQL) [27] is used to query

provenance gathered from different layers, such as the workflow layer or the operating system layer. It is
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derived from the Lorel query language for semistructured data[4] and extends it to allow bi-directional graph

traversal and queries using regular expressions on graph edges to define paths. Chebotko et al. [7] describe

RDFProv, a provenance management system that is based on semantic web techniques and relational stor-

age. It manages provenance ontologies using an inference engine; provenance data is represented as RDF

triples, and SPARQL is used for querying.

The main semantic contribution of MTCProv relative to the existing approaches is its support for captur-

ing, storing and querying events that are typical of high-performance parallel and distributed computations.

These events include re-executions for fault-tolerance, redundant submission of tasks for improving exe-

cution throughput, and resource consumption in terms of filesystem input and output operations, memory

usage, and processor load. Another contribution of MTCProv, not found in related work, is showing its

scalability in MTC with more than 1000 cores. Our work is most distinguished in terms of its contribution

to the utility and usability of provenance query capabilities: SPQL supports queries for patterns that are

of high value to scientists but which are difficult to perform with existing querying approaches (such as

correlating scientific parameter settings with the resource consumption behavior of various workflow runs).

SPQL enables users with only a modest high level facility in SQL to use relational SQL query techniques

on a powerful, OPM-compliant provenance database schema.

6 Concluding Remarks

In this work, we presented MTCProv, a provenance management system for many-task scientific computing

that captures runtime execution details of workflow tasks on parallel and distributed systems, in addition to

standard prospective and data derivation provenance. It allows this provenance information to be enriched

with domain specific annotations. We have also described the use of SPQL for querying provenance, which

abstracts frequent query patterns with built-in functions and automatically defines complex relational join

expressions. Case studies in real, large-scale parallel distributed workflows, in use today on active investi-

gations, demonstrated how useful queries were made possible by MTCProv, such as correlations between

scientific parameters and computational resource consumption. As observed in this work, the impact of

gathering provenance is low in terms of total script execution time, making it suitable for rather fine-grained

tracking of highly parallel distributed workflows. The storage space requirements for a script run are a

constant proportion of the total log file size.

In future work, we plan to continue to enhance the SPQL query model, adding more built-in functions as

well as continuing to perfect the ability to seamlessly integrate standard SQL into SPQL queries. We plan to

enable online provenance recording, which allows for provenance analysis during the execution of a Swift

script. This could facilitate adaptive script execution by dynamically changing the mapping of tasks to com-

putational resources. Our current implementation gathers workflow-level provenance about function calls

and variables defined in Swift. This could be augmented by gathering additional lower level information

about data transfers and job management strategies. These lower level provenance records could be linked

to the respective workflow-level ones through a layering scheme analogous to the one presented in [27].

Finally, we plan to explore different underlying schemas and possible data models for storing provenance.

For instance, column-oriented data stores and tools like Dremel [23] could enable distributed and highly

scalable management of provenance data generated from a large set of high performance computing sites.
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[6] M. Anand, S. Bowers, T. McPhillips, and B. Ludäscher. Exploring scientific workflow provenance using hybrid

queries over nested data and lineage graphs. In Scientific and Statistical Database Management, volume 5566 of

Lecture Notes in Computer Science, pages 237–254. Springer, 2009.

[7] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi. RDFProv: a relational RDF store for querying and managing

scientific workflow provenance. Data & Knowledge Engineering, 69(8):836–865, 2010.

[8] B. Clifford, I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Tracking provenance in a virtual data grid. Concurrency

and Computation: Practice and Experience, 20(5):575, 2008.

[9] S. da Cruz, M. Campos, and M. Mattoso. Towards a taxonomy of provenance in scientific workflow management

systems. In Proc. IEEE Congress on Services, Part I, (SERVICES I 2009), pages 259–266, 2009.

[10] A. Dries and S. Nijssen. Analyzing graph databases by aggregate queries. In Proc. Workshop on Mining and

Learning with Graphs (MLG 2010), pages 37–45, 2010.

[11] N. Dun, K. Taura, and A. Yonezawa. ParaTrac: a fine-grained profiler for data-intensive workflows. In Proceed-

ings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10, pages

37–48. ACM, 2010.
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