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Abstract

We analyzed the performance of a real coded “steady-state” genetic algorithm (SSGA) using a grid-based
methodology in docking five HIV-1 protease-ligand complexes having known three-dimensional structures. All
ligands tested are highly flexible, having more than 10 conformational degrees of freedom. The SSGA was tested for
the rigid and flexible ligand docking cases. The implemented genetic algorithm was able to dock successfully rigid
and flexible ligand molecules, but with a decreasing performance when the number of ligand conformational degrees
of freedom increased. The docked lowest-energy structures have root mean square deviation (RMSD) with respect
to the corresponding experimental crystallographic structure ranging from 0.037 Å to 0.090 Å in the rigid docking, and
0.420 Å to 1.943 Å in the flexible docking. We found that not only the number of ligand conformational degrees of
freedom is an important aspect to the algorithm performance, but also that the more internal dihedral angles are
critical. Furthermore, our results showed that the initial population distribution can be relevant for the algorithm
performance.
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Introduction

With the increasing amount of molecular biological
structures available, docking approaches have been very
important and useful tools in structure-based rational drug
discovery and design (Gane and Dean, 2000). For a pro-
tein/receptor with known three-dimensional structure, the
ligand-protein docking problem basically consists in pre-
dicting the bound conformation of a ligand molecule within
the protein active site. The docking problem is a difficult
optimization problem involving many degrees of freedom,
and the development of efficient docking algorithms and
methodologies would be of enormous benefit in the design
of new drugs (Marrone et al., 1997). One of the major prob-
lems in molecular docking is how to treat the protein and
the ligand flexibility, taking into account hundreds of thou-
sands of degrees of freedom in the two molecules. In the
last few years several docking programs have been devel-
oped (Diller and Verlinde, 1999; McConkey et al., 2002).
Some docking programs treat the receptor and the ligand as

rigid body molecules considering only the ligand
translational and orientational degrees of freedom (Ewing
and Kuntz, 1997). Other docking algorithms also include
the ligand flexibility and account for the ligand
conformational degrees of freedom (Jones et al., 1997;
Rarey et al., 1996). In the two docking classes above, the
protein structure is fixed in the position of the experimental
crystallographic structure. Docking large, highly flexible
ligands is still a challenge for even the most sophisticated
current docking algorithms (Wang et al., 1999), and adding
the receptor flexibility remains a major challenge (Carlson
and McCammon, 2000).

Genetic Algorithms are inspired in Darwin’s theory
of evolution by natural selection and are powerful tools in
difficult search and optimization problems (Holland, 1975;
Goldberg, 1989).

They have been shown to be a promising search algo-
rithm for the ligand-protein docking problems (Morris et

al., 1998). The GA works with a population of individuals
where each individual represents a possible solution for the
problem to be solved and, in ligand-protein docking prob-
lem, it is the position of the ligand with respect to the pro-
tein. Therefore, a ligand conformation is represented by a
chromosome constituted by real valued genes representing
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ligand translational, orientational and conformational de-
grees of freedom. The individuals are evaluated by a fitness
function, that is, the total interaction energy between the
protein and the ligand molecule and the intramolecular
ligand energy. Individuals in the population are selected for
reproduction in accordance with their fitness, and undergo
mutation and crossover reproduction operators, to generate
new individuals. In this paper, a non-generational also re-
ferred to as steady-state GA (Whitley, 1995) is adopted. In
a steady-state GA (SSGA) there is no separation between
consecutive generations of the population. Instead, each
offspring is created and immediately tested for insertion in
the population. In the following, the term generation will be
associated with the creation of a single offspring (candidate
solution) and its evaluation. The variable maxgen will thus
denote the maximum number of objective function evalua-
tions (which is equal to the total number of offspring gener-
ated). A pseudo-code for the steady-state GA used here is
displayed as follows:

Begin
Initialize the population P

Evaluate individuals in P

Sort P according to the fitness value
Repeat
select genetic operator
select individual(s) for reproduction
apply genetic operator
evaluate offspring
select individual x

i to survive
if x

i is better than worst individual in P then
remove worst individual from P

insert x
i in P according to its rank

endif
until stopping criteria are met

End
The SSGA differs from traditional GA basically by

applying only one operator and replacing only one individ-
ual in each generation. In this work, we are interested in
testing the use of a SSGA using a grid-based methodology
in the rigid and flexible ligand docking cases. The algo-
rithm performance is tested in five HIV-1 protease-ligand
complexes with known three-dimensional structures. In all
five tested complexes the receptor structure is assumed to
be rigid. All ligands tested are highly flexible, having more
than 10 conformational degrees of freedom.

Methods

In the implemented SSGA the individual chromo-
some has three genes representing the ligand translation,
four genes representing the ligand orientation and the other
genes representing the ligand conformation. The
translational genes are the X, Y, Z reference atom coordi-
nates (usually the closest atom to the ligand center of mass),
the orientational genes are a quaternion (Maillot, 1990)
constituted by a unit vector and one orientational angle. The

conformational genes are the ligand dihedral angles (one
gene to each dihedral angle). The ligand-protein energy
function used is the GROMOS96 (van Gunsteren and
Berendsen, 1987; Smith et al., 1995) classical force field
implemented in the THOR (Pascutti et al., 1999) program
of molecular mechanics/dynamics. The force field parame-
ters are adjusted to reproduce experimental results (e.g.,
structural and thermodynamic properties) or higher level
ab initio quantum calculations (Brooks III et al., 1988). The
GROMOS force field is given by:
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where rij is the distance between the atoms i and j; Aij and Bij

are the Lennard-Jones parameters; qi and qj are atomic
charges and D is a sigmoidal distance-dependent dielectric
constant (Arora and Jayaram, 1997).

The first term of the equation corresponds to van der
Waals interaction and electrostatic interaction between the
protein and the ligand molecule, and the last two terms cor-
respond to the ligand internal energy interaction, which
also have one term for van der Waals interaction and one
term for electrostatic interaction. The ligand-protein dock-
ing problem involves millions of energy evaluations, and
the computational cost of each energy evaluation increases
with the number of the atoms of the complex ligand-protein
which has thousands of atoms. To reduce the computational
cost, we implemented a grid-based methodology where the
protein active site is embedded in a 3D rectangular grid and
on each point of the grid the electrostatic interaction energy
and the van der Waals terms for each ligand atom type are
pre-computed and stored, taking into account all the protein
atoms. In this way the protein contribution at a given point
is obtained by tri-linear interpolation in each grid cell. A
random initial population of individuals is generated inside
the grid. For translational genes, random values between
the maximum and minimum grid sizes are generated. For
flexible docking, we also generated the initial population
using a Cauchy distribution. The individual translational
genes are generated by adding a random perturbation
(drawn from a Cauchy distribution) to the grid center coor-
dinates. In this way individuals are generated with higher
probability near the grid center, while still permitting that
individuals be generated far from the center. The Cauchy
distribution is given by:
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where α and β are Cauchy distribution parameters. In this
work we used α = 0 and β = 0.75. For genes corresponding
to angles (dihedrals and/or orientationals), random values
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ranging from 0° to 360° are generated. Finally, for the
genes corresponding to the orientational unit vector, ran-
dom values between -1 and 1 are used. The individuals are
evaluated, and then are selected to suffer recombination or
mutation. A rank-based selection scheme (Whitley, 1995)
was used. A new individual is inserted in the population if
its fitness is better than the fitness of the worst individual in
the population. The algorithm evolves until the maximum
number of the energy evaluations is reached. The reproduc-
tion operators used are classical two-point crossover and
non-uniform mutation operators (Michalewicz, 1992). The
non-uniform mutation operator, when applied to an indi-
vidual i at generation ngen, mutates a randomly chosen
variable ci according to the following:
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where ai and bi are respectively the lower and upper bounds
for the variable ci, τ is randomly chosen as 0 or 1, r is ran-
domly chosen in [0,1] and the parameter b set to 5. In the

flexible docking, initially one randomly decides if a
conformational gene will be mutated or not. Then a gene in
the chosen group (conformational or not) is randomly se-
lected for mutation. In this way, the seven translational/
orientational genes have the same probability of being mu-
tated as the conformational ones.

Results

We tested the algorithm with five HIV-1 protease-
ligand complexes where the structures were obtained from
the Protein Data Bank (PDB ID 1bve, 1hsg, 1ohr, 1hxw,
1hxb). The ligands tested are shown in Figure 1. The lig-
ands tested have conformational degrees of freedom rang-
ing from 12 to 20 dihedral angles. The DMP323 ligand in
the HIV-1 protease active site is shown in Figure 2. The
grid was centered in the protein active site and we used a
grid dimension of 23 Å in each direction and a grid spacing
of 0.25 Å. The algorithm success is measured by the RMSD
(root mean square deviation) between the crystallographic
conformation (from the corresponding PDB file) and the
conformation found by the algorithm. A structure with a
RMSD less than 2 Å is classified as docked and it is consid-
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Figure 1 - HIV-1 protease ligands: (a) DMP323, (b) Saquinavir, (c) Indinavir, (d) Nelfinavir and (e) Ritonavir. The ligands’ dihedral angles are shown by
curved arrows. The right arrows show the ligands’ reference atom. The more internal dihedral angles are the neighbors’ angles to the reference atom.



ered a very good result. A structure with a RMSD less than
3 Å is classified as partially docked. The success rate is the
number of conformations found with RMSD less than 2 Å
in 10 runs.

In rigid docking tests, we fixed the ligand dihedral an-
gles in the position of the crystallographic structure for all
ligands, and only translational and orientational move-
ments are applied to the molecule. The individual chromo-
some has only the translational and orientational genes, and
the last two terms are not evaluated for the energy function.
We use a population of 500 individuals, 200,000 energy
evaluations, and probability of 0.3 for two-point crossover

and 0.7 for non-uniform mutation. The results are shown in
Table 1.

In flexible docking tests, all terms of the energy are
considered. We use a population of 1,000 individuals,
1,000,000 energy evaluations, and probability of 0.3 for
two-point crossover and 0.7 for non-uniform mutation. We
first tested flexible docking for DMP323 ligand with 10 and
then with 14 dihedral angles (Table 2). The results for
DMP323 flexible docking with and without the Cauchy
distribution are shown in Table 2. For all other ligands, we
used the same parameters together with the Cauchy distri-
bution. The results are shown in Table 3. We also fixed two
(three for the Ritonavir ligand) more internal dihedral an-
gles (Figure 1). The results are shown in Table 4.

Discussion

In the rigid docking analyses, satisfactory results
were found. For all ligands tested the mean RMSD ranged
from 0.046 Å to 0.099 Å. This is considered a very good re-
sult in docking problems. The SSGA was able to find the
corresponding crystallographic conformation in all 10 runs
for all ligands tested, with a success rate of 100%.

In the DMP323 flexible docking analyses, we can see
that the inclusion of only four additional dihedral angles
(Table 2) can interfere directly in the algorithm perfor-
mance, decreasing the success rate from 100% to 30%, and
increasing the mean RMSD from 0.373 Å to 6.812 Å. How-
ever, with the use of the Cauchy distribution in the initial
population the success rate returned to 100% and with a
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Table 1 - Rigid docking results.

Ligands DMP323 Nelfinavir Ritonavir Indinavir Saquinavir

Lowest rmsd 0.038 0.066 0.090 0.037 0.058

Mean rmsd3 0.046 (0.012) 0.068 (0.002) 0.099 (0.004) 0.053 (0.009) 0.077 (0.011)

Energy of lowest rmsd -58.37 -82.18 -100.18 -87.08 -86.78

Mean energy3 -58.36 (0.028) -82.17 (0.005) -100.20 (0.011) -87.08 (0.002) -86.78 (0.027)

Success ratio4 (%) 100 100 100 100 100

1Energy (kcal/mol) and rmsd (Å); 2The parameters used were 10 runs, 500 individuals, 200,000 energy evaluations, two-point crossover (prob. = 0.3) and
non-uniform mutation (prob. = 0.7); 3Mean in 10 runs; 4Percent of conformations found by the algorithm with rmsd < 2 Å. Standard deviations are given
in parentheses.

Table 2 - DMP323 flexible docking results.

Initial population distribution without Cauchy with Cauchy

Dihedral angles considered 10 14 14

Lowest rmsd 0.290 0.619 0.420

Energy of lowest rmsd -31.77 -32.91 -33.08

Mean rmsd3 0.373 (0.117) 6.812 (4.072) 0.596 (0.268)

Mean energy3 -31.72 (0.111) 16.71 (81.974) -32.77 (0.907)

Success ratio4 (%) 100 30 100

1Energy (kcal/mol) and rmsd (Å); 210 runs, 1,000 individuals, 1.0 x 106 energy evaluations, two-point crossover (prob. = 0.3) and non-uniform mutation
(prob. = 0.7); 3Mean in 10 runs; 4Percent of conformations found by the algorithm with rmsd < 2 Å. Standard deviations are given in parentheses.

Figure 2 - The DMP323 ligand in the HIV-1 protease active site.



mean RMSD of 0.596 Å, with only 1,000,000 energy eval-
uations. This is a very good result considering that all 14 di-
hedral angles are being considered, and that current
docking programs use about 1,500,000 energy evaluations
even in ligands with less conformational degrees of free-
dom (Morris et al., 1998). For all ligands tested the SSGA
was able to find the corresponding crystallographic struc-
ture with RMSD less than 2 Å at least once in 10 runs. We
obtained a mean RMSD ranging from 3.585 Å to 5.755 Å
and a success rate ranging from 10% to 30% in finding
docked structures, and 10% to 60% in finding partially
docked structures (Table 3). When we fixed two (three for
the Ritonavir ligand) more internal dihedral angles (Figure
1) we found better results (Table 4). We obtained a mean
RMSD ranging from 1.449 Å to 3.733 Å and a success rate
ranging from 20% to 90% in docked structures, and 50% to
90% in partially docked structures, with 10 to 17 ligand di-
hedral angles. The superior performance of DMP323, when
compared to the others ligands, may be due to a minor de-
pendence among its dihedral angles and to the fact that its
correct conformation is placed in the center of the protein
active site; that is, privileged by using a Cauchy distribution
to generate the initial population. The other ligands have a
more “open” geometry with larger arms and consequently

there is a major dependence among the dihedral angles. In
this sense we observed (see Table 4) that the more internal
dihedral angles are critical. This seems to be due to the fact
that small variations in internal dihedral angles may cause
larger motions in the molecule than variations in the other
more external dihedral angles.

The results obtained show the difficulty in dealing
with highly flexible ligands, i.e., containing many
conformational degrees of freedom. Moreover, the en-
closed active site of the HIV-1 protease is a considerable
challenge for a docking program (Gehlhaar et al., 1995).
The EPDOCK program had a success rate of 34% in find-
ing the corresponding crystallographic structure of the
AG-1343 HIV-1 protease ligand, with nine conformational
degrees of freedom (Gehlhaar et al., 1995). Current dock-
ing programs present a decreasing performance with the in-
creasing number of conformational degrees of freedom
considered (McConkey et al., 2002). The implemented
SSGA demonstrated a good performance in docking rigid
ligand molecules to molecular targets in a few minutes (us-
ing a Pentium III 800 MHZ), and may be used for screening
compounds in large databases. The flexible docking meth-
odology needs to be improved. This may be done by de-
signing new problem-specific operators that take into
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Table 3 - Flexible docking results using the Cauchy distribution.

Ligands DMP323 Nelfinavir Ritonavir Indinavir Saquinavir

Dihedral angles 14 12 20 14 15

Lowest rmsd 0.420 0.267 1.848 1.943 0.147

Energy of lowest rmsd -33.08 -57.23 -78.09 2.61 -65.77

Mean rmsd3 0.596 (0.268) 4.185 (3.260) 4.237 (2.620) 5.755 (3.110) 3.585 (1.391)

Mean energy3 -32.77 (0.907) -26.24 (21.648) -41.43 (21.293) 36.60 (41.370) -19.51 (22.493)

Success ratio4 (%) 100 30 10 10 10

Success ratio (partially
docked structures)5 (%)

100 50 10 10 60

1Energy (kcal/mol) and rmsd (Å); 210 runs, 1,000 individuals, 1.0 x 106 energy evaluations, two-point crossover (prob. = 0.3) and non-uniform mutation
(prob. = 0.7); 3Mean in 10 runs; 4Percent of conformations found by the algorithm with rmsd < 2 Å; 5Percent of conformations found by the algorithm with
rmsd < 3 Å. Standard deviations are given in parentheses.

Table 4 - Flexible docking results using the Cauchy distribution without the more internal dihedral angles.

Ligands DMP323 Nelfinavir Ritonavir Indinavir Saquinavir

Dihedral angles considered 14 10 17 12 13

Lowest rmsd 0.420 0.056 0.924 0.659 0.341

Energy of lowest rmsd -33.08 -58.05 -101.46 -60.50 -64.11

Mean rmsd3 0.596 (0.268) 1.449 (1.752) 3.733 (2.309) 3.118 (1.036) 3.106 (1.419)

Mean energy3 -32.77 (0.907) -53.48 (11.012) -70.49 (15.008) -17.22 (26.407) -25.63 (17.992)

Success ratio4 (%) 100 90 30 20 20

Success ratio (partially
docked structures)5 (%)

100 90 60 60 50

1Energy (kcal/mol) and rmsd (Å); 210 runs, 1,000 individuals, 1.0 x 106 energy evaluations, two-point crossover (prob. = 0.3) and non-uniform mutation
(prob. = 0.7); 3Mean in 10 runs; 4Percent of conformations found by the algorithm with rmsd < 2 Å; 5Percent of conformations found by the algorithm with
rmsd < 3 Å. Standard deviations are given in parentheses.



account critical factors of the problem such as the motion of
more internal dihedral angles. The use of a Cauchy distribu-
tion in the initial population improved the algorithm perfor-
mance in all cases, but only obtained a very good result
with the DMP323 ligand. With the other ligands the im-
provement was not very significant, requiring the develop-
ment of better docking strategies (Magalhães et al., 2004).
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