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Abstract. The use of asymptotic limits to model heterogeneous plates can be troublesome, since

it requires a priori knowledge on the ratio between characteristic lengths of heterogeneities and

thickness. Moreover, it also relies on some assumption on the inclusions, like periodicity.

We propose and analyze here hierarchical modeling techniques, and show that such approach

not only avoids such pitfalls, but it is actually simpler to obtain, and it provably converges to

the correct asymptotic limits. Its derivation does not requires any restrictive assumptions on the

heterogeneities.

1. Introduction

Three-dimensional plate models involve dimension reduction techniques. The aim is the gen-

eration of approximate two-dimensional models from three-dimensional problems, and classical

techniques consider, a priori, mechanical or geometrical hypothesis. Dimension reduction model-

ing is important in the study of three-dimensional plates since two-dimensional models are simpler

than three-dimensional ones, in particular from the numerical point of view. It is necessary how-

ever to establish in what sense the two-dimensional approximation for the three-dimensional model

is satisfactory.

There are different dimension reduction techniques, remarking that combinations of them are

sometimes used [2, 4, 8, 9, 11, 16, 18–20]. See also [1, 3] for an interesting investigation of a similar

question, related to effective boundary conditions. A classical approach is to employ geometrical

and physical considerations to derive models. An alternative is to use asymptotic techniques, which

are often used not only to justify models, but also to obtain them. The third way, which we explore

here, is to use hierarchical models, based on careful choices of variational formulations.

We consider here an elliptic problem, for simplicity the Poisson equation, posed in a heteroge-

neous plate. The presence of two small parameters (the thickness and the inclusions) brings an

extra difficulty to the modeling problem. For instance, depending on the relationship between

these two parameters the problem has distinct asymptotic limits. This situation was carefully

investigated by Caillerie [8], under a periodicity assumption, and he showed that the vanishing

thickness limit and homogenization do not commute, leading to different plate models. It seems

clear that this is not a reasonable way to obtain a good model that is convergent for all regimes.
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Seeking to overcome such limitations, this work explores hierarchical modeling as a dimensional

reduction technique, obtaining a unique two-dimensional model that asymptotically converges to

the exact, three-dimension solution, regardless of relative sizes of the thickness and heterogeneities.

In this work, we consider the Poisson equation in a heterogeneous plate of thickness 2δ. Let

P δ = Ω× (−δ, δ), where Ω ⊂ R
2 is a bounded open domain, with Lipschitz continuous border ∂Ω.

We denote the top and the bottom of the plate by ∂P δ
±
= Ω× {−δ, δ}, and the lateral part of the

plate by ∂P δ
L = ∂Ω× (−δ, δ).

Consider the Poisson problem of finding uδǫ
3D : P δ → R solution of

(1)
− div aǫ ∇uδǫ

3D = f δ in P δ,
(

aǫ ∇uδǫ
3D

)

· n = 0 on ∂P δ
±
, uδǫ

3D = 0 on ∂P δ
L,

where f δ ∈ L2(P δ) and aǫ : Ω → R
3×3
sym are given. Here, R3×3

sym is the space of 3 × 3 symmetric

matrices. The thermal conductivity tensor aǫ : P δ → R
3×3
sym might be quite arbitrary, but we

append the symbol ǫ to indicate that small inclusions are allowed. As usual, we assume that there

exist constants c0 and c1 that independ on ε and such that

(2) c0

3
∑

i=1

ξ2i ≤ ξTaǫξ ≤ c1

3
∑

i=1

ξ2i

for every ξ ∈ R
3 and almost every x ∈ P δ. Finally, for simplicity, we do not allow aǫ to depend on

x3 [6].

We introduce the notation x = (x
∼
, x3) ∈ P δ to indicate a point in the domain P δ, where

x
∼

= (x1, x2) ∈ Ω and x3 ∈ (−δ, δ). Analogously, a vector with three components is denoted,

for instance, by v = (v
∼
, v3), where v

∼
= (v1, v2), and we use similar notation for the operator

∇ = (∇
∼
, ∂/∂x3), where ∇

∼
= (∂/∂x1, ∂/∂x2). In what follows, we decompose an element a ∈ R

3×3
sym

as

a =

(

a
∼∼

a
∼

a
∼

T a33

)

,

where a
∼∼
is a 2× 2 symmetric matrix.

We will denote by L2(Ω) the space of square Lebesgue integrable functions, by H1(Ω) the

subspace of L2(Ω) of functions that have derivatives in L2(Ω), and by H1
0 (Ω) the space of functions

in H1(Ω) with zero trace on ∂Ω.

The rest of this paper is organized as follows. In Section 2 we present the hierarchical modeling

method, and obtain a two-dimensional model for (1). In Section 3 we argue that the model

obtained is asymptotically consistent, in a sense that we make clear. Finally some conclusions are

drawn in Section 4.

2. Hierarchical Modeling

Defining

V (P δ) = {v ∈ H1(P δ) : v = 0 on ∂P δ
L},
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we have that uδǫ
3D ∈ V (P δ) solves

∫

P δ

aǫ ∇ uδǫ
3D · ∇ v dx =

∫

P δ

f δv dx, for all v ∈ V (P δ).

To obtain the hierarchical models, it is enough to consider subspaces of V (P δ) with polynomial

dependence in the x3 variable. Let

Vp(P
δ) = {v ∈ V (P δ) : v(x

∼
, x3) = v0(x

∼
) + v1(x

∼
)x3 + v2(x

∼
)x2

3 + · · ·+ vp(x
∼
)xp

3,

where v0, v1, v2 . . . , vp ∈ H1
0 (Ω)}.

We investigate here the simplest asymptotically consistent model given by ũδǫ
3D ∈ V1(P

δ) such that
∫

P δ

aǫ ∇ ũδǫ
3D · ∇ ṽ dx =

∫

P δ

f δṽ dx for all ṽ ∈ V1(P
δ).

Writing

(3) ũδǫ
3D(x) = ωδǫ

0 (x∼) + ωδǫ
1 (x∼)x3,

using (2) and the definition of V1(P
δ), we obtain that

∫

P δ

(∇
∼
ωδǫ
0 +∇

∼
ωδǫ
1 x3, ω

δǫ
1 ) · a

ǫ(∇
∼
v0, 0) dx =

∫

P δ

f δv0 dx for all v0 ∈ H1
0 (Ω),

∫

P δ

(∇
∼
ωδǫ
0 +∇

∼
ωδǫ
1 x3, ω

δǫ
1 ) · a

ǫ(∇
∼
v1x3, v1) dx =

∫

P δ

f δv dx for all v1 ∈ H1
0 (Ω),

Integrating with respect to x3, we gather that ωδǫ
0 and ωδǫ

1 , both in H1
0 (Ω), are the weak solution

of

(4)

− div
(

a
∼∼

ǫ · ∇
∼
ωδǫ
0 + a

∼

ǫωδǫ
1

)

= f0 in Ω.

−
δ2

3
div a

∼∼

ǫ ∇
∼
ωδǫ
1 + a

∼

ǫ ∇
∼
ωδǫ
0 + aǫ33ω

δǫ
1 = δf1 in Ω,

ωδǫ
0 = ωδǫ

1 = 0 on ∂Ω,

where we define

f0 =
1

2δ

∫ δ

−δ

f δ dx3, f1 =
1

2δ2

∫ δ

−δ

x3f
δ dx3.

Notice that no assumptions on the heterogeneities are necessary to obtain the two-dimensional

model, and its solution depends non-trivially on δ and ǫ. The next step is to show that, at least in

certain particular cases, the asymptotic behavior of the model mimics that of the original solution

of (1).

3. Asymptotic consistency

We argue in this section that the hierarchical model just presented has the same limits as

the exact three-dimensional solution, as δ and ǫ go to zero, no matter the order. The work of

Caillerie [8], which presented these results for the original solution uδǫ
3D is of utmost importance

here.
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3.1. The vanishing thickness asymptotic limit. To consider what is the asymptotic limit of

ũδǫ
3D as δ → 0, it is enough to analyze (4) and use (3). Assume first that f0 and f1 are independent

of δ. Formally taking δ → 0 in the second equation of (4), a step that we will justify latter, we

gather that ωδǫ
0 converges to ωǫ

0 and ωδǫ
1 to ωǫ

1, where

(5) ωǫ
1 = −

1

aǫ33
a
∼

ǫ · ∇
∼
ωǫ
0.

Substituting (5) in the first equation of (4), we have

(6)
− divA

∼∼

ǫ ∇
∼
ωǫ
0 = f0 in Ω,

ωǫ
0 = 0 on ∂Ω,

where

Aǫ
αβ = aǫαβ −

aǫα3a
ǫ
3β

aǫ33
for α, β = 1, 2.

Note that (6) is well-posed since A
∼∼

ǫ is uniformly positive definite, i.e., inequalities similar to (2)

hold. To see this, it is enough to check that η
∼
· A
∼∼

ǫη
∼
= ξ · aǫξ if ξ = (η

∼
,−a

∼

ǫ · η
∼
/aε33).

At this point, we remark that (6) is the equation satisfied by the weak limit of uδǫ
3D, as shown

in [8]. We note that some care has to be taken when interpreting this statement since the solutions

of (1) for δ > 0 are three-dimensional functions, but their limit is not. Actually, the limit is

independent of the transverse variable, and thus can be identified with a function defined in Ω.

The whole process of computing vanishing thickness limits is taken in a “thick” plate Ω× (−1, 1),

since such domain is δ-independent [8, 9, 15].

The justification of the above formal limit procedure could use outer asymptotic expansions [17],

or estimates as in [2]. We however proceed as follows.

Let the variational formulation for (4),

(7) a(ωδǫ
0 , ω

δǫ
1 ; v0, v1) =

∫

Ω

f0v0 dx
∼
+ δ

∫

Ω

f1v1 dx
∼
,

where

(8) a(ωδǫ
0 , ω

δǫ
1 ; v0, v1) =

∫

Ω

a
∼∼

ǫ ∇
∼
ωδǫ
0 · ∇

∼
v0 dx

∼
+

∫

Ω

ωδǫ
1 a

∼

ǫ · ∇
∼
v0 dx

∼
+

δ2

3

∫

Ω

a
∼∼

ǫ ∇
∼
ωδǫ
1 · ∇

∼
v1 dx

∼

+

∫

Ω

a
∼

ǫ ∇
∼
ωδǫ
0 v1 dx∼ +

∫

Ω

aǫ33ω
δǫ
1 v1 dx∼.

We define the norm ||| · ||| by

|||(w0, w1)|||
2 = ‖w0‖

2
H1(Ω) + δ2‖w1‖

2
H1(Ω) + ‖w1‖

2
L2(Ω),

where ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω) denotes the usual norms in L2(Ω) and H1(Ω). The bilinear form

a(·, ·) is coercive and the solutions (ωδǫ
0 , ω

δǫ
1 ) bounded with respect to such norm, as stated in the

lemma bellow. Such result, combined with the Lax–Milgram Theorem, guarantees in particular

the existence and uniqueness of solutions to (7).
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Lemma 3.1. Let a(·, ·) be as in (8), and assume that (2) holds. Then, there exists a constant C

independent of δ and ǫ such that

a(w0, w1;w0, w1) ≥ C|||(w0, w1)|||
2 for all w0, w1 ∈ H0(Ω),

C|||(ωδǫ
0 , ω

δǫ
1 )||| ≤ ‖f0‖H−1(Ω) + ‖f1‖H−1(Ω),

where (ωδǫ
0 , ω

δǫ
1 ) solves (7)

Proof. Let ξ = (∇
∼
w0, w1) and ζ = (∇

∼
w1, 0). Then

a(w0, w1;w0, w1) =

∫

Ω

ξ · aǫξ +
δ2

3
ζ · aǫζ dx

∼
≥ C|||(w0, w1)|||

2

due to (2) and the definition of ||| · |||. The bound for |||(ωδǫ
0 , ω

δǫ
1 )||| follows from the coercivity of

a(·, ·) and (7). � �

Since ωδǫ
0 is bounded in H1(Ω), and ωδǫ

1 is bounded in L2(Ω), there exist ωǫ
0 ∈ H1(Ω) and

ωǫ
1 ∈ L2(Ω), and subsequences of ωδǫ

0 and ωδǫ
1 , such that ωδǫ

0 ⇀ ωǫ
0 weakly in H1(Ω) and ωδǫ

1 ⇀ ωǫ
1

weakly in L2(Ω), as δ → 0.

Taking v0 = 0 and the limit δ → 0 in (7), and using that δ∇
∼
ωδǫ
1 is bounded in L2(Ω), we obtain

ωǫ
1 = −

a
∼

ǫ

aǫ33
· ∇
∼
ωǫ
0.

Thus, (5) is justified. Considering now v1 = 0 and the limit δ → 0 in (7), we gather that (6) holds

in the weak sense. Since (6) has a unique solution, the whole sequence ωδǫ
0 and ωδǫ

1 converges as

δ → 0.

Thus, regardless of assumptions on the heterogenuities, in the vanishing thickness limit the

hierarchical and exact solutions coincide, and we write that formally as limδ→0 ũ
δǫ
3D = limδ→0 u

δǫ
3D.

Hence, making further assumptions with respect to ε (periodicity for instance), and taking the

limit with respect to ε, it follows that limε→0 limδ→0 ũ
δǫ
3D = limε→0 u

δǫ
3D.

3.2. Making ε → 0 first. We now consider the asymptotic limit ε → 0, for a fixed δ, and aǫ

periodic. The convergence results follow from standard arguments [7], and we thus opt to develop

the formal two scale asymptotic expansion [13, 14]. After that we take δ → 0 and conclude that,

again, the exact and model solutions have the same limits.

Assume that aǫ is periodic with periodicity ǫ, i.e., there exists a periodic, ε-independent function

a such that aǫ(x
∼
) = a(ε−1x

∼
). We assume that a has period lα with respect to the αth coordinate,

and define Y = (0, l1)× (0, l2). Let

ωδǫ
0 (x∼) ∼ wδ,0

0 (x
∼
, y
∼
) + εwδ,1

0 (x
∼
, y
∼
) + ε2wδ,2

0 (x
∼
, y
∼
) + . . . ,

ωδǫ
1 (x∼) ∼ wδ,0

1 (x
∼
, y
∼
) + εwδ,1

1 (x
∼
, y
∼
) + ε2wδ,2

1 (x
∼
, y
∼
) + . . . ,
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where y
∼

= ǫ−1x
∼

and wj
α, α = 1, 2 and j = 1, 2, ... are periodic with respect to y

∼
. Formally

substituting the above expansions in the first equation of (4), we gather that

− ǫ−2 divy
∼

a
∼∼
∇
∼ y

∼

wδ,0
0 − ǫ−1

[

divy
∼

a
∼∼
∇
∼ x

∼

wδ,0
0 + divx

∼

a
∼∼
∇
∼ y

∼

wδ,0
0 + divy

∼

a
∼∼
∇
∼ y

∼

wδ,1
0 + divy

∼

(

a
∼
wδ,0

1

)]

− divx
∼

a
∼∼
∇
∼ x

∼

wδ,0
0 − divx

∼

a
∼∼
∇
∼ y

∼

wδ,1
0 − divy

∼

a
∼∼
∇
∼ x

∼

wδ,1
0 − divy

∼

a
∼∼
∇y

∼

wδ,2
0

− divx
∼

(

a
∼
wδ,0

1

)

− divy
∼

(

a
∼
wδ,1

1

)

+ · · · = f0.

We conclude that wδ,0
0 is independent of y

∼
, and we write wδ,0

0 (x
∼
, y
∼
) =: ωδ

0(x∼). Considering now the

second equation of (4), we have

−
δ2

3
ε−2 divy

∼

a
∼∼
∇
∼ y

∼

wδ,0
1 − ε−1 δ

2

3

[

divx
∼

a
∼∼
∇
∼ y

∼

wδ,0
1 + divy

∼

a
∼∼
∇
∼ x

∼

wδ,0
1 + divy

∼

a
∼∼
∇
∼ y

∼

wδ,1
1

]

+ a
∼
· ∇
∼ x

∼

ωδ
0 −

δ2

3
divx

∼

a
∼∼
∇
∼ x

∼

wδ,0
1 −

δ2

3
divx

∼

a
∼∼
∇
∼ y

∼

wδ,1
1 −

δ2

3
divy

∼

a
∼∼
∇
∼ x

∼

wδ,0
1

−
δ2

3
divy

∼

a
∼∼
∇
∼ y

∼

wδ,2
1 + a

∼
· ∇
∼ y

∼

wδ,1
0 + a33w

δ,0
1 + · · · = δf1.

Considering the term with the power ǫ−2 we conclude that wδ,0
1 is independent of y

∼
, and we write

w0
1(x∼, y∼) =: ωδ

1(x∼). Grouping the terms with the power ǫ−1 in both equations, we have

divy
∼

a
∼∼
∇
∼ y

∼

wδ,1
0 = − divy

∼

a
∼∼
∇
∼ x

∼

ωδ
0 − divy

∼

(

a
∼
ωδ
1

)

, divy
∼

a
∼∼
∇
∼ y

∼

wδ,1
1 = − divy

∼

a
∼∼
∇
∼ x

∼

ωδ
1.

To satisfy both equations, we set

wδ,1
0 (x

∼
, y
∼
) =

2
∑

β=1

χβ(y∼)
∂ωδ

0

∂xβ

(x
∼
) + χ3(y∼)ω

δ
1(x∼), wδ,1

1 (x
∼
, y
∼
) =

2
∑

β=1

χβ(y∼)
∂ωδ

1

∂xβ

(x
∼
),

where we introduce the cell problems for j = 1, 2, 3:

div
(

a
∼∼
∇χj

)

= −
2
∑

α=1

∂aαj
∂yα

in Y,

plus periodic boundary conditions. Finally, collecting the terms with the power ǫ0 in the both

equations, using periodicity arguments and the definitions for the functions wδ,1
0 and wδ,1

1 , we have

(9)

−

2
∑

α,β=1

∂α
(

Aαβ∂βω
δ
0

)

−

2
∑

α=1

∂α
(

Aα3ω
δ
1

)

= f0,

−
δ2

3

2
∑

α,β=1

∂α
(

Aαβ∂βw1

)

+
2
∑

α=1

A3α∂αω
δ
0 + A33ω

δ
1 = δf1,

where ∂α· = ∂ · /∂xα and

Aij =

∫

Y

aij +
2
∑

β=1

aiβ
∂χj

∂yβ
dy
∼

for i = 1, 2, 3.

It is very interesting to note that applying hierarchical modeling as dimension reduction tech-

nique for the three-dimensional original problem, and then homogenizing the resultant problem is
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equivalent to homogenize the three-dimensional original problem and then apply the hierarchical

modeling technique.

We can now proceed as in Subsection 3.1 and consider the limit δ → 0, to conclude that ωδ
0 ⇀ ω0

weakly in H1(Ω) and ωδ
1 ⇀ ω1 weakly in L2(Ω), where

w1 = −
1

A33

2
∑

α=1

A3α∂αw0 ∈ L2(Ω),

and w0 ∈ H1
0 (Ω) is the weak solution of

(10)
−2 divx

∼

B
∼∼
∇
∼ x

∼

w0 = f0 in Ω,

w0 = 0 on ∂Ω,

with

Bαβ = Aαβ −
Aα3A3β

A33

, for α, β = 1, 2.

In conclusion, (10) yields the equation that the limit as ε → 0 and then δ → 0 of the hierarchical

model solution (which is, in the limit, independent of x3) must satisfy. It turns out that this

statement also holds for the limit of the solution of the original problem [8]. In other words,

limδ→0 limε→0 ũ
δǫ
3D = limδ→0 limε→0 u

δǫ
3D.

4. Conclusion

Dimension reduction techniques face a more difficult task under the presence of heterogeneities.

Asymptotic limits, a powerful analysis tool, do not yield good models since the final equations

depend on a priori assumptions that are too restrictive. This is not the case if hierarchical mod-

eling is employed, and adds yet another reason for preferring hierarchical models over asymptotic

ones [5].

The model proposed here is obtained without any unreasonable assumptions on the hetero-

geneities, and the result system is always well-posed. In terms of analysis, if one considers the

vanishing thickness limit, the model has the same limit as the exact solution, and again no assump-

tions on the heterogeneities are needed. One the other hand, homogenizing the hierarchical model

is the same as homogenizing the original three-dimensional problem and then reduce dimension.

And it turns out that, again, the vanishing thickness limit of the homogenized original and the

homogenized model solutions coincide.
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Notes, vol. 21, Amer. Math. Soc., Providence, RI, 1999, pp. 1–20. MR1696513 (2000j:74055)

[3] Habib Ammari and Chiraz Latiri-Grouz, Conditions aux limites approchées pour les couches minces périodiques,

M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 673–693, DOI 10.1051/m2an:1999157 (French, with

English and French summaries). MR1726479 (2000k:78015)

[4] Douglas N. Arnold and Alexandre L. Madureira, Asymptotic estimates of hierarchical modeling, Math. Models

Methods Appl. Sci. 13 (2003), no. 9, 1325–1350, DOI 10.1142/S0218202503002933. MR2005646 (2004j:35074)



8 ANA C. CARIUS AND ALEXANDRE L. MADUREIRA

[5] Douglas N. Arnold, Alexandre L. Madureira, and Sheng Zhang, On the range of applicability of the Reissner-

Mindlin and Kirchhoff-Love plate bending models, J. Elasticity 67 (2002), no. 3, 171–185 (2003), DOI

10.1023/A:1024986427134. MR1997951 (2004e:74053)

[6] Ferdinando Auricchio, Carlo Lovadina, and Alexandre L. Madureira, An asymptotically optimal model for

isotropic heterogeneous linearly elastic plates, M2AN Math. Model. Numer. Anal. 38 (2004), no. 5, 877–897,

DOI 10.1051/m2an:2004042. MR2104433 (2005i:74051)

[7] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, AMS Chelsea

Publishing, Providence, RI, 2011. Corrected reprint of the 1978 original [MR0503330]. MR2839402
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Laboratório Nacional de Computação Cient́ıfica and Fundação getúlio Vargas
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