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Abstract

We discuss the numerical integration of polynomials times non-polynomial weight-
ing functions in two dimensions arising from multiscale finite element computa-
tions. The proposed quadrature rules are significantly more accurate than standard
quadratures and are better suited to existing finite element codes than formulas
computed by symbolic integration. We validate this approach by introducing the
new quadrature formulas into a multiscale finite element method for the 2D reaction-
diffusion equation.
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1 Introduction

Finite element methods are highly popular because, among other reasons, they are good
and simple. Still, in its traditional form, the method fails to solve accurately some partial
differential equations (PDEs) with multiscale behavior, as when the coefficients of the
equations depend on small parameters. This can happen for instance if the coefficients
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are highly oscillatory (as in models for heterogeneous materials), or if a small param-
eter multiplies some of the terms in the equation (as in transport equations with low
diffusivity).

A possible strategy to overcome the above mentioned difficulties is to use special finite
element spaces instead of the usual space of piecewise polynomial functions [3–6,13–
15,11,17,19]. However, for polynomial basis functions, the standard quadrature are exact
and this property is lost if more complicated spaces are used. Hence, the use of nonpoly-
nomial functions has its drawbacks, since standard quadratures either become innacu-
rate or inefficient, as more integration points are necessary. This concern is not new.
In seminal papers of Hughes and Brooks [8,20,21], the problem of determining good
quadratures was already present, and they actually defined upwind methods by using
quadrature strategies.

In this paper we investigate and propose several exact and approximate quadrature
possibilities to integrate elementwise product of polynomials times basis functions with
exponential behaviour. Such integrals appear when developing enriched methods for
reaction-advection-diffusion equations [15,24], but also in other contexts [2,25,7]. Our
formulas allow for a direct implentation into existing FEM codes. Due to the way many
codes were developed, it can be actually simpler than implementing the results of sym-
bolic integrations.

We organize the paper as follows. In Section 2 we present a brief review of quadrature
rules in one-dimensional, and in quadrilateral elements. Next, in Section 3 we develop
quadratures for triangular elements. Finally, Section 4 presents some numerical tests,
Section 5 presents our conclusions.

2 One-dimensional and product rules

We are concerned with the problem of approximating weighted integrals in bounded
domains. Given a weighting function, i.e., a nonnegative and nonzero real function w
defined in [a, b], a quadrature (rule) with nint integration points is defined by a set of
integration weights Al and integration points xl ∈ [a, b] for l = 1, . . . , nint, such that

∫ b

a
q(x)w(x) dx ≈

nint
∑

j=1

Alq(xl) (1)

for a given function q. We say that such quadrature has degree of precision n if (1) is an
equality for any polynomial q of degree less or equal to n.

Since (1) is not exact if

q(x) =
nint
∏

l=1

(x− xl)
2,
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the maximum degree of precision of a quadrature with nint points is 2nint − 1. Thus, a
quadrature with precision n must have at least (n + 1)/2 integration points [10].

One of the simplest quadratures of degree of precision n is defined by choosing distinct
integration points x1, x2, . . . , xn+1 and using the weights

Al =
n+1
∏

i=1
i6=l

∫ b

a

(x− xi)

(xl − xi)
w(x) dx, l = 1, . . . , n+ 1. (2)

In particular, if the points xl are uniformly distributed, we refer to the quadrature as
a Newton-Cotes rule. Note that such rule has degree of precision n + 1 and uses n + 1
integration points, and that is greater than the lower bound (n+ 1)/2.

An optimal alternative is to consider Gaussian quadratures. Let p be a polynomial of
degree nint, satisfying the orthogonality relation

∫ b

a
p(x)q(x)w(x) dx = 0 (3)

for any polynomial q of degree less than nint. The roots of p are all different from
each other, and a Gaussian quadrature uses them as integration points, along with the
weights (2). It is not hard to show [10] that a Gaussian quadrature is optimal, i.e., nint

integration points yield a degree of precision 2nint − 1.

Although it may appear that Gaussian quadratures are always the best choice, this is not
so clear when performing weighted integrals in finite element codes, since the quadra-
ture points may change from element to element. On the other hand, in Newton-Cotes
methods, it is enough to fix the quadrature points and re-calculate only the quadrature
weights.

Another situation in which is not clear whether optimal quadrature rules are the best
choice is high-order finite elements with mass lumping ([9] and also [18, p. 443-444]).
In these schemes, quadrature points and mesh nodes coincide in order to produce a
diagonal mass matrix. We must constrain the integration weights Al to be positive so
that the mass matrix is positive definite.

Next we employ one-dimensional quadratures to approximate weighted integrals over
quadrilateral regions. Using isoparametric maps [18], such integrals can be transformed
into integrals of the form

∫ 1

−1

∫ 1

−1
q(x, y)w(x, y) dxdy . (4)

We assume that the decomposition w(x, y) = wx(x)wy(y) holds.

If f is polynomial, we write

f(x, y) = f1(x)g1(y) + . . .+ fm(x)gm(y) . (5)
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Assuming that the polynomials fi and gi have degree at most 2nint − 1, then the com-
putation of

∫ 1

−1

∫ 1

−1
fi(x)gi(y)w(x, y) dxdy =

∫ 1

−1
fi(x)wx(x) dx

∫ 1

−1
gi(y)wy(y) dy

can be performed by a Gaussian quadrature with nint points in each direction. Thus

∫ 1

−1

∫ 1

−1
fi(x)gi(y)w(x, y) dxdy =

nint
∑

j=1

Ax
j fi(xj)

nint
∑

k=1

Ay
kgi(yk),

where Ax
1 , . . . , A

x
nint

, and x1, . . . , xnint
are the weights and integration points for the

one-dimensional Gaussian quadrature with respect to wx. Similarly Ay
1, . . . , A

y
nint

, and
x1, . . . , xnint

are the weights and integration points with respect to wy.

Adding up the integrals of each component of f , we find

∫ 1

−1

∫ 1

−1
f(x, y)w(x, y) dxdy=

m
∑

i=1

∫ 1

−1

∫ 1

−1
fi(x)gi(x)w(x, y) dxdy

=
m

∑

i=1

nint
∑

j=1

Ax
j fi(xj)

nint
∑

k=1

Ay
kgi(yk)

=
nint
∑

j=1

nint
∑

k=1

Ax
jA

y
k

m
∑

i=1

fi(xj)gi(yk) (6)

=
nint
∑

j=1

nint
∑

k=1

Ax
jA

y
kf(xj, yk) .

The above rule is referred to as a product rule. From (6) it becomes clear that to propose
a product rule for (4), we ought to develop one-dimensional quadratures.

Let φ̂1(t) = (1 − t)/2 and φ̂2(t) = (1 + t)/2, and consider the weights of the form

wl,−(t) = e−ax[1−φ̂l(t)], wl,+(t) = e−ax[1+φ̂l(t)], (7)

where ax is positive. Consider then the approximation

∫ 1

−1
f(x)wx(x) dx ≈

nint
∑

j=1

Ax
j f(xj),

where wx is a function as in (7). Next, we present several formulas for Ax
j and xj . To

define Ay
j and yj, it is enough to change ax by ay in (7). Thus the description of (6) is

complete.
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2.1 A nine-point Newton–Cotes Rule

We consider here a quadrature of Newton–Cotes type using nine integration points for
the domain K̂ = [−1, 1] × [−1, 1]. Such rule has degree of precision two with respect to
each variable. The integration points are the tensor product of the Newton-Cotes one-
dimension coordinates −1/3, 0, and 1/3. Using the notation as in (6), we have nint = 3,
and

x1 = y1 = −1/3, x2 = y2 = 0, x3 = y3 = 1/3.

The weights in this case are given in Table 1, where

a1 = 6
12 − ax(7 − 2ax) − (12 + ax(5 + ax))e

−ax

a3
x

,

b1 = 6e−ax
12 − (5 − ax)ax − (12 + ax(7 + 2ax))e

−ax

a3
x

,

a2 = 8
(18 + 9ax + 2a2

x)e
−ax − 18 + ax(9 − 2ax)

a3
x

,

b2 = 8e−ax
(18 + 9ax + 2a2

x)e
−ax − 18 + ax(9 − 2ax)

a3
x

,

a3 = 6
12 − ax(5 − ax) − (12 + ax(7 + 2ax))e

−ax

a3
x

,

b3 = 6e−ax
12 − ax(7 − 2ax) − (12 + ax(5 + ax))e

−ax

a3
x

.

Replacing ax by ay in the equations above yields the definition of Ay
j .

Table 1
Weights for one-dimensional quadrature using a three-point Newton Cotes rule. The table on
the left consider wx = wl,−, and the table on the right assume wx = wl,+.

Ax
1 Ax

2 Ax
3

l = 1 a1 a2 a3

l = 2 a3 a2 a1

Ax
1 Ax

2 Ax
3

l = 1 b1 b2 b3

l = 2 b3 b2 b1

2.2 A four-point Gaussian Rule

We now seek x1, x2, A
x
1 , A

x
2 such that

∫ 1

−1
p(x)wx(x) dx = Ax

1p(x1) + Ax
2p(x2),
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for all polynomials p with degree at most three with respect to each variable, where wx

is as in (7). The weights and points are given in Table 2, where

a1 =
1 − e−ax

ax

− c3
ax
√
c4
, a2 =

1 − e−ax

ax

+
c3

ax
√
c4
, a3 = −c1 +

√
c4

axc2
,

a4 = −c1 −
√
c4

axc2
, b1 = e−ax

1 − e−ax

ax
+
c3e

−ax

ax
√
c4
, b2 = e−ax

1 − e−ax

ax
− c3e

−ax

ax
√
c4
,

b3 =
c1 −

√
c4

axc2
, b4 =

c1 +
√
c4

axc2
,

c1 = (4 + ax)e
−2ax − 2(4 + a2

x)e
−ax + 4 − ax, c2 = (2 + a2

x)e
−ax − 1 − e−2ax ,

c3 = (6 − a3
x)e

−2ax − 2e−3ax − (6 + a3
x)e

−ax + 2,

c4 = 8e−4ax − 4(8 + 3a2
x − a3

x)e
−3ax + 8 + (12(4 + 2a2

x + a4
x)+a

6
x)e

−2ax

− 4(8 + 3a2
x + a3

x)e
−ax .

Finally, the definition of Ay
l and yk is complete when ax is replaced by ay in the equations

Table 2
Weights for one-dimensional quadrature using a two-point Gaussian rule. The table on the left
consider wx = wl,−, and the table on the right assume wx = wl,+.

Ax
1 Ax

2 x1 x2

l = 1 a1 a2 a3 a4

l = 2 a2 a1 b3 b4

Ax
1 Ax

2 x1 x2

l = 1 b1 b2 b3 b4

l = 2 b2 b1 a3 a4

above.

2.3 A numerical example

For the sake of illustration, we plot the point locations as we vary ax and ay. We choose
the weight as w(x, y) = w1,−(x)w1,−(y). Hence, w(·, ·) has an exponential behaviour in
[−1, 1] × [−1, 1], with w(1, 1) = e−ax−ay , and w(−1,−1) = 1. So, for large values of ax,
the quadrature points should cluster around the axis x = −1. Similarly, as ay increases,
the quadrature points cluster around the axis y = −1.

In Figure 1, we fix ax = 10, and plot the Gaussian points for ay = 1, ay = 10, ay = 100.
We also plot the points of the Newton–Cotes quadrature, which does not depend neither
on ax, nor on ay, staying over the diagonal y = x.

The Gaussian points were employed in [24] to compute the finite element matrices of
a hybrid finite element method for advection-diffusion problems with outflow boundary
layers.
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Fig. 1. Quadrature point locations, always with ax = 10. The diamonds correspond to ay = 1,
crosses to ay = 10, and squares to ay = 100. The circles correspond to the Newton Cotes
points, which remain fixed.

3 Quadratures in triangular regions

Optimal quadratures for triangles rely on two-dimensional orthogonal polynomials [23,26]
or on the solution of non-linear systems [26, Sec 3.8]. Similarly to quadrilaterals, inte-
grals in arbitrary triangles can be reduced by a linear transformation to integrals in the
triangle with vertices (0, 0), (0, 1) and (1, 0). However, the limits of integration in

∫ 1

0

∫ 1−x

0
f(x, y)w(x, y) dydx , w(x, y) = wx(x)wy(y) . (8)

prevent the direct use of product rules. An alternative is to use the change of variables

x =
1 + x̄

2
, y =

1 − x̄

2

1 + ȳ

2
,

which transforms (8) into the following integral [12] (see also [22,27]):

∫ 1

−1

∫ 1

−1
f

(

1 + x̄

2
,
1 − x̄

2

1 + ȳ

2

)

w
(

1 + x̄

2
,
1 − x̄

2

1 + ȳ

2

)

1 − x̄

8
dȳdx̄.

We consider next integrals of the form

I =
∫ 1

0

∫ 1−x

0
f(x)g(y)e−ax−by dydx,
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where a and b are postive numbers. Using the above transformation, we find that

I =
∫ 1

−1
f

(

(1 + x̄)/2
)1 − x̄

8
e−a(1+x̄)/2G(x̄)dx̄,

where

G(x̄) =
∫ 1

−1
g
(

(1 − x̄)(1 + ȳ)/4
)

e−b(1−x̄)(1+ȳ)/4 dȳ.

Consider now a one-dimensional quadrature as

∫ 1

−1
q(x̄)e−a(1+x̄)/2 dx̄ ≈

nint
∑

j=1

Aj(a)q
(

xj(a)
)

,

where both the weights Al and the quadrature points xl might depend on a. For instance,
consider the quadratures developed in Section 2, noting that (1+ x̄)/2 = 1− φ̂1(x̄). Then

I ≈
nint
∑

j=1

Aj(a)f
(

[1 + xj(a)]/2
)1 − xj(a)

8
G

(

xj(a)
)

.

Note that the above quadrature is not exact even if f and g are polynomials since G is
not a polynomial, but rather a polynomial times a exponential.

Now, given xj(a) let bj = b(1 − xj(a))/2. Thus

G
(

xj(a)
)

=
∫ 1

−1
g
(

[1 − xj(a)](1 + ȳ)/4
)

e−bj [1−φ̂1(ȳ)] dȳ

≈
nint
∑

k=1

Ak(bj)g
(

[1 − xj(a)][1 + yk(bj)]/4
)

.

The final quadrature reads as

I ≈
nint
∑

j=1

Aj(a)f
(

[1 + xj(a)]/2
)1 − xj(a)

8

nint
∑

k=1

Ak(bj)g
(

[1 − xj(a)][1 + yk(bj)]/4
)

.

Next, we present rules of Newton–Cotes and Gaussian types. These are genuinely two
dimensional quadratures, not based on product rules.

3.1 A three-point Newton–Cotes Rule

One can select (d + 2)(d + 1)/2 integration points that integrate (8) exactly if f is a
polynomial of degree at most d [26, Sc. 3.2], i.e.,

∫ 1

0

∫ 1−x

0
f(x, y)w(x, y) dydx =

(d+2)(d+1)/2
∑

k=1

Akf(pk).
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Each integration weight Ak (k = 1, . . . (d + 2)(d + 1)/2) can be found by integrating
the Lagrange interpolation polynomial associated to the point pk = (xk, yk), similarly
to (2). For instance, if d = 1, we can choose the points

p1 = (1/2, 1/2), p2 = (0, 1/2), p3 = (1/2, 0), (9)

whose barycentric coordinates are invariant to affine transformations that map a triangle
into itself [16]. In particular, when w(x, y) = e−a(x+y) we have Ak = ak/a

3, where

a1 = 4(1 − e−a) − a(1 + (3 + a)e−a),

a2 = a(1 + e−a) − 2(1 − e−a).

If w(x, y) = e−ax−by with a 6= b, Ak = bk/(a
2(a− b)b2) and

b1 = e−a(2 + a)b2 − a2(2 + b)e−b − (a(b− 2) − 2b)(a− b),

b2 =(a− 2)(a− b)2 + (2 + b− a)a2e−b − (a2 − a(b− 4) − 2b)be−a,

b3 =(b− 2)(b− a)2 + (2 + a− b)b2e−a − (b2 − b(a− 4) − 2a)ae−b.

3.2 A six-point Newton–Cotes Rule

If d = 2, the points are

p1 = (1/3, 1/3), p2 = (1/3, 2/3), p3 = (2/3, 1/3),

p4 = (1/2, 1/2), p5 = (0, 1/2), p6 = (1/2, 0),
(10)

where again the barycentric coordinates are invariant to affine transformations within
triangles [16]. These points are also found in [23, Tab 5].

When w(x, y) = e−a(x+y) we have Ai = ai/a
4, where

a1 = 9((3 + (3 + a)2)e−a − 3 − (3 − a)2)

a2 = 3((24 + 9a− a3/2)e−a − 3(8 − 5a+ a2))

a3 = a2

a4 = 2(80 − 32a+ 10(1 − a)2 − (89 + 41a+ (1 − a)3)e−a)

a5 = 2(18 − 10a+ 2a2 − ((4 + a)2 + 2)e−a)

a6 = a5

If w(x, y) = e−ax−by with a 6= b, Ai = bi/(a
3(a− b)b3) and
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b1 =9((4 + (a− 3)a)b3 − (4 + (b− 3)b)a3 − b3(a+ 4)e−a + a3(4 + b)e−b)

b2 =3((b− a)3(4a(3 − 2b)b+ 8b2 + a2(1 − b)(4 − 3b)) +

b3(a2(8 + a(5 + a)) + a(4 + a)(3 − 2a)b− (8 − a2)b2)e−a +

a3(ab2(13 + 4b) − 2b2(8 + b(5 + b)) + a2(4 − b(3 + 2b)))e−b)

b3 =3((b− a)3(a(12 − 7b)b+ 4b2 + a2(8 − b(8 − 3b))) +

b3(2a2(8 + a(5 + a)) − a2(13 + 4a)b− (4 − a(3 + 2a))b2)e−a +

a3(ab(4 + b)(−3 + 2b) + a2(8 − b2) − b2(8 + b(5 + b)))e−b)

b4 =−4((b− a)3(a(21 − 13b)b+ 12b2 + a2(12 − b(13 − 5b))) +

b3(a2(15 + 2a(5 + a)) + (1 − a)a(15 + 4a)b− (12 − a− 2a2)b2)e−a +

a3(a(−1 + b)b(15 + 4b) + a2(12 − b− 2b2) − b2(15 + 2b(5 + b)))e−b)

b5 =4((a− b)2(4b2 + 3a(1 − b)b+ a2(2 + (b− 2)b)) +

b3(a(5 + a) − (4 + a)b)e−a + a3(b− 2a)e−b)

b6 =4((a− b)2(a(3 − 2b)b+ 2b2 + a2(4 − (3 − b)b)) +

(a− 2b)b3e−a + a3(b(5 + b) − a(4 + b))e−b)

3.3 Gaussian Rules

Gaussian quadratures for triangular domains are derived from common roots of two-
dimensional orthogonal polynomials [26, Sc. 3.7]. While generalizing the Jacob polyno-
mials to two dimensions, Appell and Kampel of Fériet [1, Chap. VI,Note V] observed
that the resulting polynomials where orthogonal at reference triangle with with respect
to the weighting function w(x, y) = 1 (see also [26]). Moan [23] presented orthogonal
polynomials of degree ≤ 4 (with respect to w(x, y) = 1) and found roots for polynomials
of degree 1 to 3.

The formula for degree one [26, (3.8-1)] results easily from the system

∫ 1

0

∫ 1−x

0
f(x, y)w(x, y) dydx = A1f(x1, y1),

for any weight w, where f(x, y) = 1, x, y, and A1, x1, y1 are the unknowns. Making f = 1
yields A1, and then x1 and y1 follow from simple substitutions. Thus
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A1 =
∫ 1

0

∫ 1−x

0
w(x, y) dydx,

x1 =
1

A1

∫ 1

0

∫ 1−x

0
xw(x, y) dydx,

y1 =
1

A1

∫ 1

0

∫ 1−x

0
yw(x, y) dydx.

For w(x, y) = e−ax−by it follows for a = b that

A1 =
1 − (1 + a)e−a

a2
, x1 = y1 =

1 − (1 + a + a2/2)e−a

a(1 − (1 + a)e−a)
,

and for a 6= b that

A1 =
b(1 − e−a) − a(1 − e−b)

a(b− a)b
,

x1 =
(a− b)2 + b((a− b)(1 + a) + a)e−a − a2e−b

a(b− a)(b(1 − e−a) − a(1 − e−b))
,

y1 =
(a− b)2 − a((a− b)(1 + b) − b)e−b − b2e−a

b(b− a)(b(1 − e−a) − a(1 − e−b))
.

4 Application: a multiscale finite element

Let Ω ⊂ R
2 be an open bounded domain with polygonal boundary ∂Ω. The linear

reaction-diffusion problem consists of finding a function u = u(x) such that

−ε∆u+ σ u = f in Ω, u = 0 on ∂Ω, (11)

where the reactive and diffusive parameters σ and ε are positive constants. We assume
that the source f = f(x) is a given linear function. The weak formulation related to (11)
states that u ∈ H1

0 (Ω) satisfies

ε
∫

Ω
∇u · ∇v dx + σ

∫

Ω
u v dx =

∫

Ω
f v dx ∀v ∈ H1

0 (Ω), (12)

where H1
0 (Ω) is the space of functions in L2(Ω) that vanish in ∂Ω, and with weak

derivatives in L2(Ω).

To approximate (12) using finite elements, we discretize Ω by a conforming and regular
partition using triangular elements K and select the finite dimensional subspace Vh(Ω) ⊂
H1

0 (Ω) of continuous linear piecewise polynomials. We thus approximate u by uh ∈ Vh(Ω)
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such that

ε
∫

Ω
∇uh · ∇vh dx + σ

∫

Ω
uh vh dx =

∫

Ω
f vh dx ∀vh ∈ Vh(Ω). (13)

The classical Galerkin method just described is inadequate to approach problem (12)
accurately as long as ε ≪ σh2

K , where hK denotes the characteristic length of element
K. Actually, non-physical spurious oscillations characterize such numerical solutions due
to the lack of stability. Such issue is treated in [15] by replacing the trial linear finite
element space Vh(Ω) by the enriched space Vh(Ω) ⊕ Eh(Ω). Such space is generated by
the multi-scale functions λ(x), given by the formula

λ(x) :=
sinh(αK ψ(x))

sinh(αK)
, (14)

where the coefficient αK ∼ hK(σ/ε)1/2 is the Peclet number, and ψ(x) are piecewise
linear shape functions. Thus, the resolution of problem (13) using the trial space Eh(Ω)⊕
Vh(Ω) requires the accurate computation of

∫

K
λ(x)ψ(x)dx,

∫

K

∇λ(x)∇ψ(x)dx.

The integrals above can be actually written as combinations of polynomials times expo-
nential functions of the form presented in previous sections.

4.1 A numerical validation

Let the domain Ω be the unit square, which we discretize by a non-uniform mesh of 400
elements.

u = 0 u = 1

u = 1

u = 0

Ω

MESH

Fig. 2. Description of the domain discretization and boundary conditions.
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Such mesh as well as the imposed boundary conditions are depicted in Figure 2 (actually
to impose continuity over the boundary, and get the solution in H1

0 (Ω) a transition
element is used). Concerning the reaction-diffusion problem (11), we set σ = 1 and let ε
takes the values ε = 10−5 and ε = 10−6. The three-point Newton-Cotes rule (see Section
3.1) allows us to conserve all desirable properties of the multi-scale method unlike the
classical one-point Gauss which lead to a loss of accuracy similar to the one observed
through the Galerkin method, see Figure 3.

New Integration Rule Standard Gauss

New Integration Rule Standard Gauss

Fig. 3. Solutions by standard one-point Gauss integration and the new exponential-adaptative
integration formula (σ = 1 and ε = 10−6).
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Next, we use MAPLE to obtain an analytical expression for the exact integrals as it
comes out from the software. Adopting such formula carelessly results in rounding errors,
and spurious oscillations show up. This issue is avoided selecting the new numerical
integration as it can be seen on Figure 4, where we plot solution’s profiles at y = 1/2.

Analytical Integration

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Numerical Integration

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Analytical Integration

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Numerical Integration

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 4. Profile of solutions at y = 1/2, using numerical and analytical integration adopting
σ = 1 and ε = 10−5 (top) and ε = 10−6 (below).
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5 Conclusions

Multiscale finite element methods lead to integrals that cannot be handled with standard
Gaussian quadratures. On the other hand, it is not always trivial to insert symbolic
manipulation of such integrals into existing finite element codes. We address this issue
with weighted quadratures, which combine the accuracy of symbolic integrals and the
algorithmic structure of classical integration rules.

The quadrature formulas presented herein are specific to exponential shape functions.
Nevertheless, the methodology is readly extendable to other applications.
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