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Abstract. In this paper, we derive and analyze a Reissner–Mindlin–like model for isotropic
heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger–
Reissner principle, which we modify to derive consistent models. Due to the material het-
erogeneity, the classical polynomial profiles for the plate shear stress are replaced by more
sophisticated choices, that are asymptotically correct. In the homogeneous case we recover
a Reissner–Mindlin model with 5/6 as shear correction factor. Asymptotic expansions are
used to estimate the modeling error.

We remark that our derivation is not based on asymptotic arguments only. Thus, the
model obtained is more sophisticated (and accurate) than simply taking the asymptotic
limit of the three dimensional problem. Moreover, we do not assume periodicity of the
heterogeneities.

1. Introduction

Laminate slender structures are often adopted in practical applications for the excellent
ratio between mechanical performances and weight. However, in terms of modeling they
present several challenges.

In fact, although occupying a three dimensional domain in space, slender bodies are char-
acterized by having a one- or two-dimensional “aspect”. Accordingly, dimension reduction
models are posed in domains with at least one dimension less than the original problem, but
the model solution should approximate as close as possible the original three-dimensional
domain solution.

The modeling complexity is particularly significant for the case of slender structures made
of heterogeneous materials, also in the case of two dimensional planar plate-like bodies.
There have been numerous modeling attempts trying to incorporate the influence that the
heterogeneity has on the solution in such problems (see for instance [4], [11], and references
therein).

In this paper, we derive (and analyze) a version of the Reissner-Mindlin equations for
the case of a plate made by isotropic heterogeneous materials. To reach this goal, we use
the approach of Reference [1] for the development of a model. Such a technique relies on a
variational approach and it is based essentially on two ingredients: the choice of a variational
principle and the choice of proper subspaces.

Due to the material heterogeneity, in the following we need to develop an ad-hoc variational
principle, which is different from the ones adopted in Reference [1], effective only for the case
of homogeneous materials. Moreover, we also have to modify the subspaces in which we look
for the solution; in fact, the classical polynomial profiles for the shear stress valid for the
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case of homogeneous materials are now replaced by more sophisticated choices. In particular,
such new profiles are derived through considerations based on asymptotic expansions.

As a result of our analysis, we obtain equations (26)–(29) defining our candidate for
approximating the three dimensional heterogeneous plate problem solution.

We would like to emphasize that a plate model based on variational principles differs
substantially from a model which result from considering asymptotic limits. Indeed, the
former is defined by a system of singularly perturbed equations, and the corresponding
solution presents a complex behavior with respect to the thickness.

On the other hand, models originated by asymptotic considerations are of a different na-
ture. The best known example is the biharmonic plate model (cf. [6], [7], [9] for homogeneous
isotropic plates, and [5], [13] for the heterogeneous case). The corresponding equations do
not depend singularly on the plate thickness, and usually have limited applicability, as shown
in [2], [6].

The outline of the paper is as follows. In the next section, we describe the traditional
variational approaches and why it is not possible to use them. In Section 3 we detail the
variational principle upon which we base our derivation and present a description of the
proposed model. Finally, in Section 4, we prove the consistency of our solution and some
other convergence results. We postpone to various appendices most of the details regarding
derivation of the model, asymptotic expansions, and convergence results.

Before proceeding, we introduce and explain some notation. We use one underbar for first
order tensors in three variables, two underbars for second order tensors in three variables, etc.
Similar notation holds with undertildes for tensors in two variables. We can then decompose
3-vectors and 3× 3 matrices as follows:

u =

(

u∼
u3

)

, σ =

(

σ∼∼
σ∼

σ∼
T σ33

)

.

Moreover, throughout the paper we make use of the following operators that assigns for a
given tensor its moments:

(1)















Ik(h) = ε−k−1

∫ ε

−ε
h(x3)xk3 dx3, I∼

k(h∼) = ε−k−1

∫ ε

−ε
h∼(x3)xk3 dx3,

I∼∼
k(h∼∼

) = ε−k−1

∫ ε

−ε
h∼∼

(x3)xk3 dx3, I∼∼∼∼
k(h∼∼∼∼

) = ε−k−1

∫ ε

−ε
h∼∼∼∼

(x3)xk3 dx3.

2. Plate model construction by variational approach

We consider a linearly elastic body occupying the three-dimensional domain P ε = Ω ×
(−ε, ε), where Ω is a bounded two-dimensional domain. Clamped on the lateral boundary
∂P ε

L = ∂Ω× (−ε, ε), the body is under the action of a surface force density gε on its top and
bottom ∂P ε

± = Ω×{−ε, ε}, and a volume force density f ε. The equations of linear elasticity
state that the displacement uε : P ε → R3, and the stress σε : P ε → R3×3

sym satisfy

(2)

{

Aσε = e(uε), − div σε = f ε in P ε,

uε = 0 on ∂P ε
L, σεn = gε on ∂P ε

±,
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where e(uε) = (∇uε + ∇T uε)/2 is the symmetric part of the gradient of uε, and A is the

compliance tensor. Limiting the discussion to an isotropic material, the compliance tensor
A is defined as

(3) Aτ =
1 + ν

E
τ − ν

E
tr(τ) δ,

for every second-order tensor τ , being δ the identity tensor. The Young’s modulus E and
the Poisson’s ratio ν are material parameters, which might depend on the transverse variable
x3, being however independent of the planar variable x∼.

A way to systematically derive two dimensional plate models is the variational approach
proposed in [1]. This procedure consists in choosing a variational principle, which corre-
sponds to a weak formulation of (2). The plate model is then derived restricting the test
and trial spaces to suitable subspaces.

In [1] the following two different variational principles were considered to treat the case of
isotropic and homogeneous bodies.

• The couple (uε, σε), solution of Problem (2), is the unique critical point of the func-
tional

(4) J(v, τ) =
1

2

∫

P ε
Aτ : τ dx+

∫

P ε
v · div τ dx+

∫

P ε
f · v dx

on L2(P ε)× Σgε , where Σgε = {σ : σ ∈ H(div, P ε), σn = gε on ∂P ε
± }.

Following the variational approach of Reference [1], plate models are derived re-
stricting (4) to particular subspaces of L2(P ε)×Σgε , characterized by having specific
polynomial dependences in the transverse direction.

It is interesting to notice that not all choices of subspaces lead to a well-posed PDE
system, as well as some specific choices lead to models that, although well-posed, are
divergent in a sense that we make clear later on.

It is also interesting to recall that, starting from functional (4) and adopting two dif-
ferent subspaces, it is possible to obtain two versions of the Reissner-Mindlin model,
both with the shear correction factor 5/6. By “version”, we mean that the left hand
side of the equations are the same as the standard Reissner-Mindlin ones, up to the
shear correction factor, while the right hand side may differ.

• The couple (uε, σε), solution of Problem (2), is the unique critical point of the func-
tional

(5) J∗(v, τ) =
1

2

∫

P ε
Aτ : τ dx−

∫

P ε
e(v) : τ dx+

∫

P ε
f · v dx+

∫

∂P ε±

g · v dx∼

on { v ∈ H1(P ε) : v = 0 on ∂P ε
L } × L2(P ε).

Again, modeling is possible by searching for critical points in subspaces with certain
polynomial dependence.

It is interesting to notice that the minimum energy models are a particular instance
of this approach, and that the simplest model derived using this approach is not a
minimum energy model.
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Finally, we recall that starting from the functional (5) and adopting specific sub-
spaces, the resulting system is a variant of Reissner–Mindlin model, with shear cor-
rection factor 1. The other models based on (5) are either more complicate than
Reissner–Mindlin or divergent.

2.1. Definition of model consistency. As discussed in the Introduction, every plate
model is supposed to approximate the 3D solution for the limiting “thin” plate case. Ac-
cordingly, we say that a plate model is consistent, or convergent, if for every “reasonable”
choice of loads it holds

(6) lim
ε→0

‖uε − uM,ε‖H1(P ε)

‖uε‖H1(P ε)

= 0,

where uε are the 3D displacements and uM,ε are the model displacements, respectively.
More precisely, let us suppose that there exist a set of ε-independent loads f and g defined

as f : Ω× (−1, 1)→ R3, g : Ω× {−1, 1} → R3 and such that

(7)

{

f∼(x∼, x̂3) = ε−1f∼
ε(x∼, εx̂3), f3(x∼, x̂3) = ε−2f ε3 (x∼, εx̂3),

g∼(x∼, x̂3) = ε−2g∼
ε(x∼, εx̂3), g3(x∼, x̂3) = ε−3gε3(x∼, εx̂3),

for x̂3 ∈ (−1, 1). Also, let us assume that the functions

ν̂(x̂3) = ν(εx̂3), Ê(x̂3) = E(εx̂3) for x̂3 ∈ (−1, 1),

are independent of ε and, since there is no risk of confusion, we still write ν and E, even in
the domain (−1, 1).

Under these hypotheses, as detailed in Appendix B, uε converges asymptotically to

uL(x) =

(

εζ∼
1(x∼)− x3∇∼ ζ

0
3 (x∼)

ζ0
3 (x∼)

)

,

where ζ∼
1 and ζ0

3 solve the following system of equations

(8)







































ε div∼

[

I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(ζ∼

1)
]

− ε div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 )
]

= −I∼
0(f∼

ε)− 2ε−1g∼
ε,e in Ω,

ε div div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(ζ∼

1)
]

− ε div div∼

[

I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 )
]

= −ε−1I0(f ε3 )

− I1(div f∼
ε)− 2ε−1 div g∼

ε,o − 2ε−2gε,e3 in Ω,

ζ∼
1 = 0, ζ0

3 =
∂ζ0

3

∂n
= 0 on ∂Ω.

with A∼∼∼∼
defined as

(9) A∼∼∼∼
τ∼∼

=
(1 + ν)

E
τ∼∼
− ν

E
tr(τ∼∼

)δ∼∼
,

and with the even and odd parts of g defined as

(10) gε,e(x∼) =
1

2

[

gε(x∼, ε) + gε(x∼,−ε)
]

, gε,o(x∼) =
1

2

[

gε(x∼, ε)− g
ε(x∼,−ε)

]

.

We say that the plate model is consistent, or convergent, if condition (6) is satisfied for all
loads such that at least one of the functions ζ∼

1 and ζ0
3 are nonzero.
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Remark. Note that Reference [12] uses a slightly different definition of consistency. �

Remark. Note that (8) couples the membrane and bending problems. Nevertheless, if ν and
E are even functions (symmetric plates), then it is easy to see that (8) decouples into the
membrane equation for ζ∼

1, and the biharmonic equation for ζ0
3 . �

2.2. Problems with the Hellinger–Reissner Principle. Taking into account the previ-
ous considerations, it would be natural to choose functional (4) as a starting point to derive
a plate model also for the case of heterogeneous materials. Unfortunately, the direct appli-
cation of functional (4) is not possible since, due to the heterogeneity, it leads to divergent
models, as discussed below.

Let us consider the case where g3 = 0 and ν and E are even functions of x3. Since the
three-dimensional problem (2) decouples in bending and membrane equations, for the sake
of simplicity we consider only the membrane contribution.

The simplest model based on (4) is obtained by assuming that trial/test in-plane displace-
ments and in-plane stresses are constant along the thickness (cf. [1] for the details)

(11) uM(x) =

(

η∼(x∼)

0

)

, σ∼∼
M(x) = σ∼∼

(x∼), σM33 (x) = 0, σ∼
M(x) = ε−1x3g∼

ε,e(x∼),

for some η∼ and σ∼∼
. Searching now for critical points, we obtain the following membrane

equation

(12) div∼

[

4I∼∼∼∼
0(A∼∼∼∼

)−1 e∼∼
(η∼)
]

= −I∼
0(f∼

ε)− 2ε−1g∼
ε,e in Ω.

On the other hand, for this specific (uncoupled) problem the 3D in-plane displacement
field u∼

ε converges asymptotically to εζ∼
1, solution of (cf. (8))

(13) div∼

[

I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(εζ∼

1)
]

= −I∼
0(f∼

ε)− 2ε−1g∼
ε,e in Ω,

Hence, the obtained membrane model is divergent since for a general heterogeneous ma-
terial

(14) 4I∼∼∼∼
0(A∼∼∼∼

)−1 6= I∼∼∼∼
0(A∼∼∼∼

−1) .

Remark. Note that for homogeneous plates 4I∼∼∼∼
0(A∼∼∼∼

)−1 = I∼∼∼∼
0(A∼∼∼∼

−1); accordingly, the above

membrane model is consistent, since u∼
M = η∼ = εζ∼

1.

To summarize, the extension of the techniques detailed in [1] to the case of heterogeneous
plates leads to the following two difficulties.

• The variational principle (4) is no longer suitable.
• Polynomial profiles in the transverse direction are no more satisfactory.

In particular, the second point is due to the fact that now the profiles for the stress tensor
components have a complicated shape, depending on the material heterogeneities. Accord-
ingly, assuming polynomial profiles for all the unknowns may lead to a poor representation
of the stress tensor in the transverse direction.

In what follows we overcome these difficulties by

• Choosing a different variational principle.
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• Choosing a subspace for the stress tensor which takes into account the heterogeneity
of the plate.

3. A new model

3.1. A new functional. As shown in Eq. (14), the processes of inverting and homogenizing
do not commute in the case of heterogeneous tensors, yielding an incorrect constitutive
relation for the plate planar components. To overcome this difficulty, we try to impose
directly in the model the following planar constitutive equation

(15) σ∼∼
ε = A∼∼∼∼

−1 e∼∼
(u∼

ε) +
ν

E
σε33A∼∼∼∼

−1δ∼∼
.

To reach this goal, we first introduce the space Sgε , defined by

(16) Sgε = { s : Bs ∈ Σgε }, where Bs =

(

A∼∼∼∼
−1s∼∼

s∼
s∼
T s33

)

.

We then consider the new functional

(17) J•(v, t) =

∫

P ε
ABt : Bt dx+

∫

P ε
v · divBt dx+

∫

P ε
v · f dx

defined on L2(P ε)× Sgε . It is easily seen that (uε, σε) ∈ L2(P ε)× Σgε is the unique critical

point of functional (4), if and only if the couple (uε, sε) = (uε, B−1σε) ∈ L2(P ε)× Sgε is the

unique critical point of functional (17). Since sε = B−1σε, it follows that it holds (cf. (16))

(18) s∼∼
ε = e∼∼

(u∼
ε) +

ν

E
σε33δ∼∼

= A∼∼∼∼
σ∼∼
ε, s∼

ε = σ∼
ε, sε33 = σε33.

Moreover, we have that (uε, sε) ∈ L2(P ε)× Sgε satisfies the weak equations

(19)















∫

P ε
ABsε : Bt dx+

∫

P ε
uε · divBt dx = 0 for all t ∈ S0,

−
∫

P ε
divBsε · v dx =

∫

P ε
f ε · v dx for all v ∈ L2(P ε),

where S0 = { s : Bs ∈ Σ0 }. The model we are going to derive is based on the weak

formulation (19) and, similarly to [1], it will be obtained by looking for critical points of J•

within suitable subspaces L̂
2
(P ε)× Ŝ

gε
⊂ L2(P ε)× Sgε .

Remark. We notice that Auricchio and Sacco in [4] already used the constitutive equa-
tion (15) to develop their model. �

3.2. Subspace choice. Our choices of profiles for displacements and stresses are based on
the asymptotic analysis of the three-dimensional solution. To obtain the simplest possible
convergent model, we decided to exclude the profile of the asymptotic limit of σε33. As we
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describe in Appendix B,

(20)























uε(x) ∼
(

εζ∼
1(x∼)− x3∇∼ ζ

0
3 (x∼)

ζ0
3 (x∼)

)

+ · · · ,

σ∼∼
ε(x) ∼ A∼∼∼∼

−1 e∼∼
(εζ∼

1(x∼)− x3∇∼ ζ
0
3 (x∼)) + · · · ,

σ∼
ε(x) ∼ ε2∇∼ div ζ∼

1(x∼)pm(x3) + ε2∇∼ ∆ ζ0
3 (x∼)pb(x3) + ε2p∼

l(x) + · · · ,

where ζ∼
1 and ζ0

3 solve (8), and

(21)











































pm(x3) =
I0
(

Eν
1−ν2

)

I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−1

∫ x3

−ε

Eν

1− ν2
dξ,

pb(x3) =
I1
(

E
1−ν2

)

I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε

E

1− ν2
ξ dξ,

p∼
l(x) =

ε−3

I0
(

E
1+ν

)

(∫ ε

−ε
f∼
ε dξ + 2g∼

ε,e

)∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε
f∼
ε dξ − ε−2g∼

ε(x∼,−ε).

Remark. Note that pm(±ε) = pb(±ε) = 0. Moreover, ε2p∼
l(x∼, ε) = g∼

ε(x∼, ε) and ε2p∼
l(x∼,−ε) =

−g∼
ε(x∼,−ε). Moreover, p∼

l depends only on the load. �

Remark. We remark that the leading terms of the variables involved in (21) have the following
shapes in the transverse direction:































a linear polynomial for u∼
ε;

a constant for uε3;

a linear polynomial for s∼∼
ε = A∼∼∼∼

σ∼∼
ε;

a linear combination of the functions (in general: not polynomials)

pm, pb and p∼
l for s∼

ε. �

We are now ready to introduce the subspaces L̂
2
(P ε) ⊂ L2(P ε) and Ŝ

gε
⊂ Sgε , respectively

for the displacement and the stress-related unknowns, by setting

(22) L̂
2
(P ε) =

{

uRM =

(

η∼(x∼)− x3φ∼(x∼)

ω(x∼)

) }

,

(23) Ŝ
gε

=

{

sRM =

(

s∼∼
m(x∼) + ε−1x3s∼∼

b(x∼) s∼
RM

s∼
RMT

gε,o3 (x∼) + ε−1x3g
ε,e
3 (x∼)

) }

,

where η∼, φ∼, ω, s∼∼
m and s∼∼

b are functions defined on Ω.

Moreover, for the shear stress s∼
RM there are two possibilities, since pm and pb can be

linearly dependent. This occurs for instance, if ν is constant, and consequently pm = 0.
Hence, we assume that

(24) s∼
RM(x) = ε2p∼

l(x) +

{

s∼
m(x∼)pm(x3) + s∼

b(x∼)pb(x3) if pm, pb are lin. indep.,

s∼
b(x∼)pb(x3) otherwise.
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3.3. Model derivation. Restricting the test and trial spaces as discussed in subsection 3.2,

problem (19) reduces to find (uRM , sRM) ∈ L̂
2
(P ε)× Ŝ

gε
solution of

(25)















∫

P ε
ABsRM : Bt dx+

∫

P ε
uRM · divBt dx = 0 for all t ∈ Ŝ

0
,

−
∫

P ε
divBsRM · v dx =

∫

P ε
f ε · v dx for all v ∈ L̂

2
(P ε).

Due to the structure of L̂
2
(P ε) and Ŝ

gε
, the above system (25) can be seen as a system whose

unknowns are the following functions, all defined on the mid-plane Ω:











the unknowns η∼, φ∼ and ω related to the kinematic fields;

the unknowns s∼∼
m and s∼∼

b related to in-plane stress;

the unknowns s∼
b and s∼

m related to shear stress.

In particular, our approximation to uε is given by

(26) uRM =

(

η∼(x∼)− x3φ∼(x∼)

ω(x∼)

)

.

From the weak formulation (25) it is possible to show that η∼, φ∼ and ω are uniquely determined
by the following system of partial differential equations on Ω:

(27)











































ε div∼

[

I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(η∼)
]

− ε2 div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(φ∼)
]

= ε2 l∼0 + ε4 l∼1 in Ω,

ε2 div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(η∼)
]

− ε3 div∼

[

I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(φ∼)
]

+ εCS(φ∼ −∇∼ ω)

= ε3I∼
0(p∼

l)− ε3 l∼5 + ε3 l∼2 + ε5 l∼3 in Ω,

εCS div(φ∼ −∇∼ ω) = ε3 div I∼
0(p∼

l)− ε3 div l∼5 + ε3l4 in Ω,

ω = 0, φ∼ = η∼ = 0 on ∂Ω,

where

CS =
(

I0(pm) I0(pb)
)

M∼∼

(

I0(pm)
I0(pb)

)

, M∼∼
=























(

d11 d12

d12 d22

)−1

if d11d22 − (d12)2 6= 0,

1
d22

(

0 0

0 1

)

otherwise,

(28)

d11 = I0

(

2(1 + ν)

E

(

pm
)2
)

, d12 = I0

(

2(1 + ν)

E
pmpb

)

, d22 = I0

(

2(1 + ν)

E

(

pb
)2
)

.
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The loads are given by

(29)



































l∼0 = −ε−1I∼
0(f∼

ε)− 2ε−2g∼
ε,e, l∼1 = −ε−3

[

I0
( ν

1− ν

)

∇∼ g
ε,o
3 + I1

( ν

1− ν

)

∇∼ g
ε,e
3

]

,

l∼2 = −ε−1I∼
1(f∼

ε)− 2ε−2g∼
ε,o, l∼3 = −ε−3

[

I1
( ν

1− ν

)

∇∼ g
ε,o
3 + I2

( ν

1− ν

)

∇∼ g
ε,e
3

]

,

l4 = ε−2I0(f ε3 ) + 2ε−3gε,e3 , l∼5 =
(

I∼
0
(

2(1+ν)
E

p∼
lpm
)

I∼
0
(

2(1+ν)
E

p∼
lpb
)

)

M∼∼

(

I0(pm)
I0(pb)

)

.

Details relative to the computations to go from (25) to (27) can be found in Appendix A.

Remark. Note that the definitions of the li’s are such that they are independent of ε if the
scaling (7) holds. �

After η∼, φ∼, and ω have been determined, the computation of s∼∼
RM , s∼

RM , and sRM33 can be

recovered as a post-processing. In particular the fields s∼∼
m and s∼∼

b are the solution of the

algebraic system

(30)











































I∼∼∼∼
0(A∼∼∼∼

−1)s∼∼
m + I∼∼∼∼

1(A∼∼∼∼
−1)s∼∼

b = I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(η∼)− εI∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(φ∼)

+ I0

(

ν

1− ν

)

gε,o3 δ∼∼
+ I1

(

ν

1− ν

)

gε,e3 δ∼∼

I∼∼∼∼
1(A∼∼∼∼

−1)s∼∼
m + I∼∼∼∼

2(A∼∼∼∼
−1)s∼∼

b = I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(η∼)− εI∼∼∼∼

2(A∼∼∼∼
−1) e∼∼

(φ∼)

+ I1

(

ν

1− ν

)

gε,o3 δ∼∼
+ I2

(

ν

1− ν

)

gε,e3 δ∼∼

while the fields s∼
m and s∼

b are computed as

(31)
(

s∼
m s∼

b
)

= (−φ∼ +∇∼ ω)
(

I0(pm) I0(pb)
)

M∼∼
− ε2

(

I∼
0(2(1+ν)

E
p∼
lpm) I∼

0(2(1+ν)
E

p∼
lpb)
)

M∼∼
.

Finally, the stress components are given by (cf. (18))

(32) σ∼∼
RM = A∼∼∼∼

−1s∼∼
RM +

ν

1− ν
σRM33 δ∼∼

, σ∼
RM = s∼

RM , σRM33 = gε,o3 (x∼) + ε−1x3g
ε,e
3 (x∼).

3.3.1. Homogeneous Materials. When the plate is composed of homogeneous material, the
equations (27)–(31) considerably simplify. Since the material functions ν and E are sym-
metric, the equations decouple into membrane and bending parts. The membrane equation
reduces to

(33)







− 2ε div∼ A∼∼∼∼
−1 e∼∼

(η∼) = εI∼
0(f∼

ε) + 2g∼
ε,e + 2ε

ν

1− ν
∇∼ g

ε,o
3 in Ω,

η∼ = 0 on ∂Ω.

Equations (33) are the same as derived in [1], although the two derivations are based on
different choices of spaces.
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For the bending equation, we have

(34)



























− 2ε3

3
div∼ A∼∼∼∼

−1 e∼∼
(φ∼) + ε

5

6

E

1 + ν
(φ∼ −∇∼ ω) = −ε3 l∼5 − ε2 2ν

3(1− ν)
∇∼ g

ε,e
3 in Ω,

ε
5

6

E

1 + ν
div(φ∼ −∇∼ ω) = F + 2gε,e3 +

ε

3
div g∼

ε,o in Ω,

ω = 0, φ∼ = 0 on ∂Ω.

The loads are given by

(35)











l∼5 =
5

4
ε−1I∼

1(f∼
ε)− 5

12
ε−1I∼

3(f∼
ε) +

5

3
ε−2g∼

ε,o,

F = −1

4
ε2 div I∼

1(f∼
ε) +

5

12
ε2 div I∼

3(f∼
ε) + εI0(f ε3 ).

The problem defined by (34)–(35) differs from the bending problem found in [1]. Indeed, the
right hand side of the (34) is new, and it incorporates higher order moments of f∼. Notice

also that we recover a model of Reissner–Mindlin type, with shear correction factor 5/6.

4. Model consistency and some convergence results

4.1. Model consistency. We now study the consistency of our model, by performing an
asymptotic expansion with respect to ε for both the 3D displacement solution and the model
displacement solution. The key point for proving that (cf. (6))

(36) lim
ε→0

‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)

= 0

is to recognize that the leading terms of both the expansions coincide. More precisely, as
shown in Appendix B, the 3D displacement solution uε(x) admits the following expansion

(37) uε(x) = uL(x) + higher order terms

where

(38) uL(x) =

(

εζ∼
1(x∼)− x3∇∼ ζ

0
3 (x∼)

ζ0
3 (x∼)

)

.

On the other hand (cf. Appendix C), the model displacement solution uRM(x) can be
written as

(39) uRM(x) = uRML (x) + higher order terms

where

(40) uRML (x) =

(

εη∼
1(x∼)− x3φ∼

0(x∼)

ω0(x∼)

)

.

We have the following result.

Lemma 1. For the leading terms uL and uRML defined by (38) and (40), it holds

uL = uRML .
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Proof. From (60) of Appendix B, we have that the terms ζ∼
1 and ζ0

3 involved in uL(x) (cf. (38))
are uniquely determined by

(41)







































div∼

[

I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(ζ∼

1)
]

− div∼

[

I∼∼∼
1(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 )
]

= −ε−1I∼
0(f∼

ε)− 2ε−2g∼
ε,e in Ω,

div div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(ζ∼

1)
]

− div div∼

[

I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 )
]

= −ε−2I0(f ε3 )

− ε−1I1(div f∼
ε)− 2ε−2 div g∼

ε,o − 2ε−3gε,e3 in Ω,

ζ∼
1 = 0, ζ0

3 =
∂ζ0

3

∂n
= 0 on ∂Ω.

On the other hand, from (77) of Appendix C, we have that η∼
1, φ∼

0, ω0 ∈ H1
0 (Ω) solve

(42)



















div∼

[

I∼∼∼∼
0
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(φ∼

0)
]

= l∼0,

div div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div div∼

[

I∼∼∼∼
2
(

A∼∼∼∼
−1
)

e∼∼
(∇∼ ω

0)
]

= div l∼2 − l4

φ∼
0 −∇∼ ω

0 = 0.

Hence, φ∼
0 = ∇∼ ω

0 and ∂ω0/∂n = 0, so that η∼
1 and ω0 are determined by

(43)



























div∼

[

I∼∼∼∼
0
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(∇∼ ω

0)
]

= l∼0,

div div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div div∼

[

I∼∼∼∼
2
(

A∼∼∼∼
−1
)

e∼∼
(∇∼ ω

0)
]

= div l∼2 − l4

η∼
1 = 0, ω0 =

∂ω0

∂n
= 0 on ∂Ω.

Recalling (29), we see that system (41) is the same as (43). It follows that ζ∼
1 = η∼

1 and

ζ0
3 = ω0, so that uL = uRML . �

In the result below, we prove the consistency of our model. To be able to obtain relative
convergence estimates, we shall assume that that either ζ0

3 6= 0 or ζ∼
1 6= 0. We shall actually

assume this hypothesis throughout the paper.

Theorem 2. Let uε and uRM be defined by (2), and (26)–(29). Then there exists a constant
C = C(Ω, f , g) independent of ε, such that

(44)
‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)

≤ Cε.

Proof. In this proof, we consider only the case when the third component of uL, i.e. ζ0
3 , is not

identically zero. The case when ζ0
3 = 0 but ζ∼

1 6= 0 can be handled with the same technique.

Since uL = uRML , from the triangle inequality it holds

(45)
‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)

≤
‖uε − uL‖H1(P ε) + ‖uRML − uRM‖H1(P ε)

‖uε‖H1(P ε)

.

From Theorem 7 of Appendix B it follows

(46) ‖uε − uL‖H1(P ε) ≤ cε3/2.
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On the other hand, since

(47) uRML (x)− uRM =

(

(εη∼
1(x∼)− η∼(x∼))− x3(φ∼

0(x∼)− φ∼(x∼))

ω0(x∼)− ω(x∼),

)

from Theorem 8 of Appendix C an integration along x3 leads to

(48) ‖uRML − uRM‖H1(P ε) ≤ cε3/2.

Collecting (46) and (48) we obtain

(49) ‖uε − uL‖H1(P ε) + ‖uRML − uRM‖H1(P ε) ≤ cε3/2.

Furthermore, a lower bound for uε easily follows since

(50) ‖uε‖H1(P ε) ≥ ‖uε3‖H1(P ε) ≥ ‖ζ0
3‖H1(P ε) − ‖uε3 − ζ0

3‖H1(P ε) ≥ cε1/2,

for ε sufficiently small. Hence, from (45), (49) and (50) we have

(51)
‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)

≤ Cε.

�

Remark. From the proof of Theorem 2, it is easily seen that we have indeed

‖u∼
ε − u∼

RM‖H1(P ε)

‖u∼
ε‖H1(P ε)

≤ Cε,
‖uε3 − uRM3 ‖H1(P ε)

‖uε3‖H1(P ε)

≤ Cε.

�

4.2. Other Convergence Results. In this subsection we collect some results concerning
the modeling error for the stress field. Since the proofs are rather involved, we postpone
them to appendix D, for the sake of readability. We begin by recalling that σε is the 3D

stress solution (cf. (2)), while σRM is the model stress solution recovered by (32).
The next Theorem gives an error estimate for the planar stress components.

Theorem 3. There exists a constant C = C(Ω, f , g) independent of ε, such that

‖σ∼∼
ε − σ∼∼

RM‖L2(P ε)

‖σ∼∼
ε‖L2(P ε)

≤ Cε1/2.

�
Regarding the convergence of the shear stress, we could obtain weaker results. In particu-

lar, due to boundary layer effects, only interior estimates have been developed. Nevertheless,
the following theorem shows O(ε) convergence for the averaged shear stress.

Theorem 4. Let Ω0 be a domain such that Ω̄0 ⊂ Ω. Then there exists a constant C =
C(Ω,Ω0, f , g) independent of ε, such that

‖I∼
0(σ∼

ε − σ∼
RM)‖L2(Ω0)

‖I∼
0(σ∼

ε)‖L2(Ω0)

≤ Cε.
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�
Theorem 4 can be used to obtain interior convergence estimates for the shear stress (not

only for its average) in two particular situations.
The first one concerns the case of symmetric plates under bending, as displayed by the

following corollary.

Corollary 5. Assume that ν and E are even functions. Assume also that the loads induce a
pure bending state, i.e.

• f∼
ε is an odd function, and f ε3 is an even function, with respect to x3;

• gε = (g∼
ε,o, gε,e3 ).

Let Ω0 be a domain such that Ω̄0 ⊂ Ω, and set P ε
0 = Ω0 × (−ε, ε). Then there exists a

constant C = C(Ω,Ω0, f , g) independent of ε, such that

‖σ∼
ε − σ∼

RM‖L2(P ε0 )

‖σ∼
ε‖L2(P ε0 )

≤ Cε.

�
The second case is when the polynomials pm and pb are linearly dependent functions. For

instance, this occurs whenever ν is constant. Indeed, we have the following result.

Corollary 6. Assume that pm and pb are linearly dependent functions. Let Ω0 be a domain
such that Ω̄0 ⊂ Ω, and set P ε

0 = Ω× (−ε, ε). Then there exists a constant C = C(Ω,Ω0, f , g)
independent of ε, such that

‖σ∼
ε − σ∼

RM‖L2(P ε0 )

‖σ∼
ε‖L2(P ε0 )

≤ Cε.

�
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Appendix A

In this appendix we present the arguments necessary to obtain the model described in
Subsection 3.3. Throughout this derivation, we assume that (22), (23) and (24) hold. Also,
we consider that pm and pb are linearly independent. When these polynomials are linearly
dependent, the computations are analogous and simpler. During the computations, we need
that

(52) Aτ =

(

A∼∼∼∼
τ∼∼
− ν

E
τ33δ∼∼

1+ν
E
τ∼

1+ν
E
τ∼
T τ33

E
− ν

E
tr(τ∼∼

)

)

, and ABs =

(

s∼∼
− ν

E
s33δ∼∼

1+ν
E
s∼

1+ν
E
s∼
T s33

E
− ν

E
tr(A∼∼∼∼

−1s∼∼
)

)

.

The equations (30), together with the boundary conditions for η∼ and φ∼ in (27), are obtained

from the first equation of (25), by considering

t(x) =

(

t∼∼
m(x∼) + x3 t∼∼

b(x∼) 0

0 0

)

,

where t∼∼
m, t∼∼

b ∈ H∼∼
1(Ω) are arbitrary.

By considering next

(53) t(x) =

(

0 t∼
m(x∼)pm(x3)

[t∼
m(x∼)pm(x3)]T 0

)

, t(x) =

(

0 t∼
b(x∼)pb(x3)

[t∼
b(x∼)pb(x3)]T 0

)

,

in the first equation of (25), we conclude that














∫ ε

−ε

2(1 + ν)

E
(s∼

mpm + s∼
bpb)pm dx3 =

∫ ε

−ε
(−φ∼ +∇∼ ω)pm dx3 − ε2

∫ ε

−ε

2(1 + ν)

E
p∼
lpm dx3,

∫ ε

−ε

2(1 + ν)

E
(s∼

mpm + s∼
bpb)pb dx3 =

∫ ε

−ε
(−φ∼ +∇∼ ω)pb dx3 − ε2

∫ ε

−ε

2(1 + ν)

E
p∼
lpb dx3.

Equation (31) expresses the solution of the above algebraic system. It follows also that ω = 0
on ∂Ω.

Next, we consider the second equation of (25). By taking variations of test functions of
the form v(x) = (v∼(x∼), 0), we find

div∼

∫ ε

−ε
A∼∼∼∼
−1(s∼∼

m + ε−1x3s∼∼
b) dx3 = −

∫ ε

−ε
f∼
ε dx3 − 2g∼

ε,e.
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Using the first equation of (30), we obtain the first equation of (27). By considering v(x) =
(x3v∼(x∼), 0) we find

(54)

div∼

∫ ε

−ε
x3A∼∼∼∼

−1(s∼∼
m+ε−1x3s∼∼

b) dx3−
∫ ε

−ε

(

s∼
mpm+s∼

bpb
)

dx3 = −
∫ ε

−ε
x3f∼

ε dx3−ε2

∫ ε

−ε
x3

∂p∼
l

∂x3

dx3,

where we integrated by parts the second integral above. Using (31) we obtain that

(55) s∼
mI0(pm) + s∼

bI0(pb) = CS(−φ∼ +∇∼ ω)− ε2 l∼5.

Therefore, the second equation of (27) follows from (54), the second equation of (30) and
from (55).

To obtain the final equilibrium equation, we consider v(x) = (0, 0, v3(x∼)). Hence, it follows
that

div

∫ ε

−ε

(

s∼
mpm + s∼

bpb
)

dx3 = −ε3l4 − ε2 div

∫ ε

−ε
p∼
l dx3.

Using then (55), we obtain the third equation of (27).

Appendix B

As we mention in the Introduction, to find out the suitable profiles for the shear stress,
and also to derive error estimates, we look at the asymptotic expansion for the exact solution
uε. We do not give here a complete description of the expansion, but we only mention the
basic ideas and some final results. This expansion for heterogeneous plates generalize the
work of Dauge and Gruais [8]. See also [14], where the asymptotic for a general elasticity
problem is investigated. The first step to obtain an asymptotic expansion for uε is, as usual,
to introduce the change of variable (u∼, x3) → (u∼, x̂3) = (u∼, ε

−1x3), which maps the domain

P ε = Ω× (−ε, ε) onto Ω× (−1, 1). Thus, the 3D elasticity problem

(56)











− divA−1 e(uε) = f ε in P ε,

uε = 0 on ∂P ε
L,

A−1 e(uε)n = gε on ∂P ε
±,

can be accordingly transformed into a problem (depending on the parameter ε) defined on
the fixed domain Ω× (−1, 1). By assuming that

• there exist ε-independent functions f : Ω× (−1, 1)→ R3, and g : Ω× {−1, 1} → R3

such that

(57)

{

f∼(x∼, x̂3) = ε−1f∼
ε(x∼, εx̂3), f3(x∼, x̂3) = ε−2f ε3 (x∼, εx̂3),

g∼(x∼, x̂3) = ε−2g∼
ε(x∼, εx̂3), g3(x∼, x̂3) = ε−3gε3(x∼, εx̂3),

for x̂3 ∈ (−1, 1);
• the functions

ν̂(x̂3) = ν(εx̂3), Ê(x̂3) = E(εx̂3) for x̂3 ∈ (−1, 1),

are independent of ε;
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an asymptotic expansion for uε reads as follows

(58) uε(x) ∼
(

εζ∼
1(x∼)− x3∇∼ ζ

0
3 (x∼)

ζ0
3 (x∼)

)

+ ε

(

εζ∼
2(x∼)− x3∇∼ ζ

1
3 (x∼)

ζ1
3 (x∼)

)

+ ε2

(

0
ů2

3(x∼, ε
−1x3)

)

+ ε2w2(x∼, ε
−1ρ, ε−1x3) + ε2

(

εζ∼
3(x∼)− x3∇∼ ζ

2
3 (x∼)

ζ2
3 (x∼)

)

+ ε3ů3(x∼, ε
−1x3) + · · · .

Above, ζ∼
k : Ω→ R2, ζk3 : Ω→ R and ůk : Ω×(−1, 1)→ R3 are functions independent of

ε. Moreover, the boundary correctors wk, needed to capture the boundary layers of the 3D
solution, are functions which decay exponentially to zero with ε−1ρ, where ρ is the distance
of a point x∼ ∈ Ω from the boundary ∂Ω. Inserting the formal expansion (58) into (56), one

recognizes that the functions ζ∼
k+1 and ζk3 can be determined by solving 2D partial differential

equations on Ω. In particular, the functions ζ∼
1 and ζ0

3 entering in the leading term

(59) uL(x) =

(

εζ∼
1(x∼)− x3∇∼ ζ

0
3 (x∼)

ζ0
3 (x∼)

)

of the expansion (58) solve the problem

(60)







































ε div∼

[

I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(ζ∼

1)
]

− ε div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 )
]

= −I∼
0(f∼

ε)− 2ε−1g∼
ε,e in Ω,

ε div div∼

[

I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(ζ∼

1)
]

− ε div div∼

[

I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 )
]

= −ε−1I0(f ε3 )

− I1(div f∼
ε)− 2ε−1 div g∼

ε,o − 2ε−2gε,e3 in Ω,

ζ∼
1 = 0, ζ0

3 =
∂ζ0

3

∂n
= 0 on ∂Ω.

Furthermore the functions ůk solve the following Neumann problem in each vertical fiber

(61)

∫ 1

−1

ůk(x∼, x̂3) dx̂3 = 0.

The asymptotic expansion for the stress comes from formal substitution of (58) in the
constitutive equation σε = A−1 e(uε). Hence

σε(x) ∼ ε

(

σ∼∼
1 0

0 0

)

(x∼, ε
−1x3) + εΞ1(x∼, ε

−1ρ, ε−1x3) + ε2

(

σ∼∼
2 σ∼

2

σ∼
2T 0

)

(x∼, ε
−1x3)

+ ε2Ξ2(x∼, ε
−1ρ, ε−1x3) + ε3

(

σ∼∼
3 σ∼

3

σ∼
3T σ3

33

)

(x∼, ε
−1x3) + · · · ,
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where Ξk correspond to boundary layer terms, and σk are defined in Ω× (−1, 1). It can be

shown that the components of σk are determined by

(62)



































σ∼∼
k(x∼, x̂3) = A∼∼∼∼

−1 e∼∼
(̊u∼

k) + A∼∼∼∼
−1 e∼∼

(ζ∼
k − x̂3∇∼ ζ

k−1
3 ) +

ν

1− ν
σk33,

σ∼
k(x∼, x̂3) =

∫ x̂3

−1

(

− div∼ σ∼∼
k−1 − δk,2f∼

)

dξ − δk,2g∼(x∼,−1),

σk33(x∼, x̂3) =

∫ x̂3

−1

(

− div σ∼
k−1 − δk,3f3

)

dξ − δk,3g3(x∼,−1),

where δk,l denotes the Kronecker symbol. In particular, from (62) it follows

(63)































σ∼∼
1(x∼, x̂3) = A∼∼∼∼

−1 e∼∼
(ζ∼

1 − x̂3∇∼ ζ
0
3 ),

σ∼
2(x∼, x̂3) =

∫ x̂3

−1

(

− div∼ A∼∼∼∼
−1 e∼∼

(ζ∼
1 − ξ∇∼ ζ

0
3 )− f∼

)

dξ − g∼(x∼,−1),

σ3
33(x∼, x̂3) =

∫ x̂3

−1

(

− div σ∼
2 − f3

)

dξ − g3(x∼,−1).

Although the first term of the asymptotic expansion of σ∼
ε is given by (63), the first equation

of (60) can be used to provide an alternative expression of σ∼
2. More precisely, after an easy

but cumbersome calculation, we find that

(64) σ∼
2(x∼, x̂3) = ∇∼ div ζ∼

1(x∼)pm(εx̂3) +∇∼ ∆ ζ0
3 (x∼)pb(εx̂3) + p∼

l(x∼, εx̂3),

where (cf. (21))










































pm(x3) =
I0
(

Eν
1−ν2

)

I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−1

∫ x3

−ε

Eν

1− ν2
dξ,

pb(x3) =
I1
(

E
1−ν2

)

I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε

E

1− ν2
ξ dξ,

p∼
l(x∼, x3) =

ε−3

I0
(

E
1+ν

)

(∫ ε

−ε
f∼
ε dξ + 2g∼

ε,e

)∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε
f∼
ε dξ − ε−2g∼

ε(x∼,−ε).

Even though the expansion (58) is formal, it is possible to derive asymptotic error estimates
using the technique of [8]. Considering the error function (cf. also (59))

(65)

uer(x) = uε(x)−
(

εζ∼
1(x∼)− x3∇∼ ζ

0
3 (x∼)

ζ0
3 (x∼)

)

= uε(x)− uL(x),

σer(x) = σε(x)−

(

εσ∼∼
1 ε2σ∼

2

ε2σ∼
2T ε3σ3

33

)

(x∼, ε
−1x3),

one has the following result.
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Theorem 7. Given uer and σer as in (65), there exists a constant C = C(Ω, f , g) independent
of ε, such that

∥

∥u∼
er
∥

∥

H1(P ε)
≤ Cε2,

∥

∥uer
3

∥

∥

H1(P ε)
≤ Cε3/2,(66)

∥

∥σ∼∼
er
∥

∥

L2(P ε)
≤ Cε2,

∥

∥σ∼
er
∥

∥

L2(P ε)
≤ Cε2,

∥

∥σer
33

∥

∥

L2(P ε)
≤ Cε2.(67)

Moreover, let Ω0 be a domain such that Ω̄0 ⊂ Ω, and let P ε
0 = Ω0 × (−ε, ε). Then there

exists a constant C = C(Ω,Ω0, f , g) independent of ε, such that

∥

∥u∼
er
∥

∥

H1(P ε0 )
≤ Cε5/2,(68)

∥

∥σ∼
er
∥

∥

L2(P ε0 )
≤ Cε7/2,

∥

∥σer
33

∥

∥

L2(P ε0 )
≤ Cε9/2.(69)

�

Appendix C

In this Appendix we briefly report some results about the asymptotic expansion for the
solution of our Reissner–Mindlin model (cf. (27)–(29)). We closely follow the arguments of
Arnold and Falk [3], in which a detailed asymptotic analysis is provided for the bending
problem of an isotropic and homogeneous plate.

The first step is to apply the divergence operator to the second equation of (27) and
subtract the third equation of (27) from the result, to obtain

(70) ∆ div φ∼ =
1

I2(D)
[ε−1I1(D) ∆ div η∼− div l∼2 + l4 − ε2 div l∼3],

where D = E/(1 − ν2). Applying the Laplace operator to the third equation of (27) and
using (70), we get

(71) εI2(D) ∆2 ω − I1(D) ∆ div η∼ = ε(l4 − div l∼2)− ε3 div l∼3

+
I2(D)

CS
ε3[−∆ div I∼

0(p∼
l) + ∆ div l∼5 + ∆ l4].

Above, the function p∼
l, the constant CS and the li’s are defined by (21), (28) and (29). Next,

we assume the following formal expansions

(72)











ω(x∼) ∼ ω0(x∼) + εω1(x∼) + ε2ω2(x∼) + · · · ,
η∼(x∼) ∼ εη∼

1(x∼) + ε2η∼
2(x∼) + · · · ,

φ∼(x∼) ∼ φ∼
0(x∼) + εφ∼

1(x∼) + ε2φ∼
2(x∼) + ε2Φ∼

2(x∼, ε
−1ρ) + ε3φ∼

3(x∼) + ε3Φ∼
3(x∼, ε

−1ρ) + · · · ,

where Φ∼
i are boundary corrector terms. Note that there is no boundary layer for ω or η∼.

We also remark that, due to the choice (22), the expansion (72) implies that for the model
displacement solution uRM(x) we are supposing that

(73) uRM(x) = uRML (x) + higher order terms

where

(74) uRML (x) =

(

εη∼
1(x∼)− x3φ∼

0(x∼)

ω0(x∼)

)

.
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Disregarding the boundary correctors for φ∼, formally substituting the above expansions

in (27) and matching the terms with the same power of ε, we find that ωi, η∼
i and φ∼

i solve

(75)



























































div∼

[

I∼∼∼∼
0
(

A∼∼∼∼
−1
)

e∼∼
(η∼

i+1)
]

− div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(φ∼

i)
]

= δi,0 l∼0 + δi,2 l∼1,

I1(D) ∆ div η∼
i+1 − I2(D) ∆2 ωi = δi,0(div l∼2 − l4) + δi,2 div l∼3

− δi,2
I2(D)

CS

[

−∆ div I∼
0(p∼

l) + ∆ div l∼5 + ∆ l4

]

,

CS(φ∼
i −∇∼ ω

i) = − div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(η∼

i−1)
]

+ div∼

[

I∼∼∼∼
2
(

A∼∼∼∼
−1
)

e∼∼
(φ∼

i−2)
]

+ δi,2

[

I∼
0(p∼

l)− l∼5 + l∼2

]

+ δi,4 l∼3.

In particular, by taking i = 0 in (75), we have that η∼
1, φ∼

0, and ω0 satisfy

(76)



















div∼

[

I∼∼∼∼
0
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(φ∼

0)
]

= l∼0,

I1(D) ∆ div η∼
1 − I2(D) ∆2 ω0 = div l∼2 − l4

φ∼
0 −∇∼ ω

0 = 0

Recalling that D = E/(1− ν2) and (cf. (9))

A∼∼∼∼
−1τ∼∼

=
E

1 + ν
τ∼∼

+
Eν

1− ν2
tr(τ∼∼

)δ∼∼
∀τ∼∼,

it is easily seen that (76) can be alternatively written as

(77)



















div∼

[

I∼∼∼∼
0
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(φ∼

0)
]

= l∼0,

div div∼

[

I∼∼∼∼
1
(

A∼∼∼∼
−1
)

e∼∼
(η∼

1)
]

− div div∼

[

I∼∼∼∼
2
(

A∼∼∼∼
−1
)

e∼∼
(∇∼ ω

0)
]

= div l∼2 − l4

φ∼
0 −∇∼ ω

0 = 0

Using the techniques of [3], it is possible to estimate the difference between the leading
terms in (72) and the exact Reissner-Mindlin solution, as stated in the theorem below.

Theorem 8. Let η∼, φ∼ and ω be the solution of (27). Assume that η∼
1, φ∼

0, and ω0 solve (76).

Then, for every positive integer k, there exists a constant C = C(Ω, f , g, k) independent of
ε such that

(78) ε−1‖η∼− εη∼
1‖Hk(Ω) + ‖ω − ω0‖Hk(Ω) + ‖φ∼ − φ∼

0‖H1(Ω) ≤ Cε.

Appendix D

In this Appendix we present proofs of the convergence results of Subsection 4.2.

Proof of Theorem 3. We recall that we wish to prove the following estimate:

‖σ∼∼
ε − σ∼∼

RM‖L2(P ε)

‖σ∼∼
ε‖L2(P ε)

≤ Cε1/2.
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We also recall that (cf. (15) and (32))

σ∼∼
ε = A∼∼∼∼

−1 e∼∼
(u∼

ε) +
ν

1− ν
σε33, σ∼∼

RM = A∼∼∼∼
−1s∼∼

RM +
ν

1− ν
σRM33 .

Thus, from the triangle inequality, we obtain

(79) ‖σ∼∼
ε − σ∼∼

RM‖L2(P ε) ≤ c
(

‖ e∼∼(u∼
ε)− s∼∼

RM‖L2(P ε) + ‖σε33‖L2(P ε) + ‖σRM33 ‖L2(P ε)

)

≤ c
(

‖ e∼∼(u∼
ε)− e∼∼

(εζ∼
1 − x3∇∼ ζ

0
3 )‖L2(P ε) + ‖s∼∼

RM − e∼∼
(εζ∼

1 − x3∇∼ ζ
0
3 )‖L2(P ε)

+ ‖σε33‖L2(P ε) + ‖σRM33 ‖L2(P ε)

)

.

From the two-dimensional Korn’s inequality in Ω and the first estimate of (67), we have

(80) ‖ e∼∼(u∼
ε)− e∼∼

(εζ∼
1 − x3∇∼ ζ

0
3 )‖L2(P ε) ≤ cε2.

From (67) of Theorem 7, the estimate ‖σ3
33‖L2(P ε) ≤ cε1/2, it follows that

(81) ‖σε33‖L2(P ε) ≤ ‖σε33 − ε3σ3
33‖L2(P ε) + ε3‖σ3

33‖L2(P ε) ≤ cε2.

Next, from the definition of σRM33 in (32), (10), and the scaling assumption (7), we have

(82) ‖σRM33 ‖L2(P ε) ≤ cε2.

To bound the term ‖s∼∼
RM − e∼∼

(εη∼
1 − x3∇∼ ζ

0
3 )‖L2(P ε), we first recall that (cf. (23))

s∼∼
RM = s∼∼

m + ε−1x3s∼∼
b ,

where (s∼∼
m, s∼∼

b) is the solution of system (30). Therefore, since Lemma 1 implies ζ∼
1 = η∼

1 and

∇∼ ζ
0
3 = φ∼

0, we get

‖s∼∼
RM − e∼∼

(εζ∼
1 − x3∇∼ ζ

0
3 )‖L2(P ε) = ‖s∼∼

RM − e∼∼
(εη∼

1 − x3φ∼
0)‖L2(P ε)

≤ ‖s∼∼
m − ε e∼∼(η∼

1)‖L2(P ε) + ‖ε−1x3(s∼∼
b + ε e∼∼

(φ∼
0))‖L2(P ε).(83)

Defining s∼∼
er,m := s∼∼

m − ε e∼∼(η∼
1) and s∼∼

er,b := s∼∼
b + ε e∼∼

(φ∼
0), we see from (30) that the couple

(s∼∼
er,m, s∼∼

er,b) solves











































I∼∼∼∼
0(A∼∼∼∼

−1)s∼∼
er,m + I∼∼∼∼

1(A∼∼∼∼
−1)s∼∼

er,b = I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(η∼− εη∼

1)− εI∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(φ∼ − φ∼

0)

+ I0

(

ν

1− ν

)

gε,o3 δ∼∼
+ I1

(

ν

1− ν

)

gε,e3 δ∼∼
,

I∼∼∼∼
1(A∼∼∼∼

−1)s∼∼
er,m + I∼∼∼∼

2(A∼∼∼∼
−1)s∼∼

er,b = I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(η∼− εη∼

1)− εI∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(φ∼ − φ∼

0)

+ I1

(

ν

1− ν

)

gε,o3 δ∼∼
+ I2

(

ν

1− ν

)

gε,e3 δ∼∼
.

Therefore, for every x∼ ∈ Ω, we have

|s∼∼
er,m|+ |s∼∼

er,b| ≤ c
(

| e∼∼(η∼− εη∼
1)|+ ε| e∼∼(φ∼ − φ∼

0)|+ |gε,o3 |+ |g
ε,e
3 |
)

,
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where | · | denotes the usual algebraic norm for tensors. Hence, using (7) and Theorem 8 we
get

(84) ‖s∼∼
er,m‖L2(P ε) + ‖s∼∼

er,b‖L2(P ε) ≤ ε5/2.

Collecting (79)–(84) we obtain

(85) ‖σ∼∼
ε − σ∼∼

RM‖L2(P ε) ≤ ε2.

Moreover, proceeding as in (50) we find the following lower bound for σ∼∼
ε

(86) ‖σ∼∼
ε‖L2(P ε) ≥ ε‖σ∼∼

1‖L2(P ε) − ‖σ∼∼
ε − εσ∼∼

1‖L2(P ε) ≥ cε3/2,

for ε sufficiently small. The theorem now follows from (85) and (86). �

Proof of Theorem 4. We wish to obtain

‖I∼
0(σ∼

ε − σ∼
RM)‖L2(Ω0)

‖I∼
0(σ∼

ε)‖L2(Ω0)

≤ Cε.

We first recall that (cf. (32) and (24))

σ∼
RM = ε2p∼

l(x) + s∼
m(x∼)pm(x3) + s∼

b(x∼)pb(x3).

We focus on the more difficult case of pm and pb linearly independent (otherwise the com-
putations become easier).

From the triangle inequality it follows that
∥

∥I∼
0(σ∼

ε − σ∼
RM)

∥

∥

L2(Ω0)
≤
∥

∥I∼
0(σ∼

er)
∥

∥

L2(Ω0)
+
∥

∥I∼
0(σ∼

RM − ε2σ̄∼
2)
∥

∥

L2(Ω0)
,

where σ∼
er is defined in (65) and σ̄∼

2(x) = σ∼
2(x∼, ε

−1x3). Using Cauchy-Schwarz inequality, we
find that

(87)
∥

∥εI∼
0(σ∼

er)
∥

∥

L2(Ω0)
≤ (2ε)1/2

∥

∥

∥

∥

(∫ ε

−ε
|σ∼

er|2 dx3

)1/2∥
∥

∥

∥

L2(Ω0)

= (2ε)1/2
∥

∥σ∼
er
∥

∥

L2(P ε0 )
≤ cε4,

where Theorem 7 is used to obtain the last inequality (cf. (69)). Using (54) and (30), we
have that

(88) I∼
0(σ∼

RM) = ε div∼ I∼
1(A∼∼∼∼

−1)s∼∼
m + εI∼

2(A∼∼∼∼
−1)s∼∼

b + εI∼
1(f∼

ε) + 2g∼
ε,o

= ε div∼ I∼
1(A∼∼∼∼

−1) e∼∼
(η∼)− ε2 div∼ I∼

2(A∼∼∼∼
−1) e∼∼

(φ∼) + εI1

(

ν

1− ν

)

∇∼ g
ε,o
3 + εI2

(

ν

1− ν

)

∇∼ g
ε,e
3

+ εI∼
1(f∼

ε) + 2g∼
ε,o.
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Using (63) and integrating by parts, we gather that

(89)

∫ ε

−ε
σ∼

2(·, ε−1x3) dx3

=

∫ ε

−ε

(

x′3

∫ ε−1x3

−1

(

− div∼ A∼∼∼∼
−1 e∼∼

(ζ∼
1 − ξ∇∼ ζ

0
3 )− f∼

)

dξ − g∼(x∼,−1)

)

dx3

=

∫ ε

−ε
ε−1x3

[

div∼ A∼∼∼∼
−1 e∼∼

(ζ∼
1 − ε−1x3∇∼ ζ

0
3 ) + f∼(·, ε−1x3)

]

dx3 − 2εg∼(x∼,−1)

+ ε

∫ 1

−1

(

− div∼ A∼∼∼∼
−1 e∼∼

(ζ∼
1 − ξ∇∼ ζ

0
3 )− f∼

)

dξ.

Substituting the first equation of (8) in (89), we obtain

(90) I∼
0(σ̄∼

2) = div∼ I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(ζ∼

1) + div∼ I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(∇∼ ζ

0
3 ) + I∼

1(f∼) + 2ε−2g∼
ε,o.

Therefore, from (88) and (90) we get

(91)
∥

∥I∼
0(σ∼

RM − ε2σ̄∼
2)
∥

∥

L2(Ω0)

≤
∥

∥ε div∼ I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(η∼− εζ∼

1)− ε2 div∼ I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(φ∼ −∇∼ ζ

0
3 )
∥

∥

L2(Ω0)
+ cε‖gε3‖H1(Ω0)

≤ cε
∥

∥η∼− εζ∼
1‖H2(Ω0) + cε2

∥

∥φ∼ −∇∼ ζ
0
3

∥

∥

H2(Ω0)
+ cε‖gε3‖H1(Ω0) ≤ cε3,

where the final inequality follows from Theorem 8 and hypothesis (7). Combining esti-
mates (87) and (91), we conclude that

∥

∥I∼
0(σ∼

ε − σ∼
RM)

∥

∥

L2(Ω0)
≤ cε3.

The result follows since from Theorem 7 and the definition of σ∼
2, it holds

∥

∥I∼
0(σ∼

ε)
∥

∥

L2(Ω0)
≥ cε2.

�

Proof of Corollary 5. Our aim is to prove that

‖σ∼
ε − σ∼

RM‖L2(P ε0 )

‖σ∼
ε‖L2(P ε0 )

≤ Cε.

As before, let σ̄∼
2(x) = σ∼

2(x∼, ε
−1x3). From the triangle inequality and Theorem 7, we have

‖σ∼
ε − σ∼

RM‖L2(P ε0 ) ≤ ‖σ∼
ε − ε2σ̄∼

2‖L2(P ε0 ) + ‖σ∼
RM − ε2σ̄∼

2‖L2(P ε0 ) ≤ ‖σ∼
RM − ε2σ̄∼

2‖L2(P ε0 ) + cε7/2.

In the pure bending case, σ∼
RM simplifies as

σ∼
RM = s∼

bpb + ε2p∼
l.

Hence, from the definition of σ̄∼
2 and (64), we obtain

∥

∥I∼
0(σ∼

RM−ε2σ̄∼
2)
∥

∥

L2(Ω0)
=
∥

∥(s∼
b−ε2∇∼ ∆ ζ0

3 )I∼
0(pb)

∥

∥

L2(Ω0)
= ‖s∼

b−ε2∇∼ ∆ ζ0
3‖L2(Ω0)

∣

∣I∼
0(pb)

∣

∣.
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Using (91) we get
‖s∼

b − ε2∇∼ ∆ ζ0
3‖L2(Ω0) ≤ cε3.

Thus, it follows that

‖σ∼
RM − ε2σ̄∼

2‖L2(P ε0 ) = ‖pb‖L2(−ε,ε)‖s∼
b − ε2∇∼ ∆ ζ0

3‖L2(Ω0) ≤ cε7/2,

and the result is a consequence of ‖σ∼
ε‖L2(P ε0 ) ≥ cε5/2. �

Proof of Corollary 6. We recall that we are considering the case of pm and pb linearly depen-
dent. Therefore, let a ∈ R such that pm = apb. Then, using the same notation of the proof
of Theorem 5, we have that

σ̄∼
2 = (a∇∼ div ζ∼

1 +∇∼ ∆ ζ0
3 )pb.

It is enough now to proceed as in the proof of Theorem 5. �
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