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Abstract. In this work we investigate the modeling of heterogeneous plates, where the

length scale of the heterogeneity can be much smaller than the area of the plate’s middle

surface. We derive a two-dimensional model for the original problem, and the resulting PDEs

not only have rough coefficients but also depend on the thickness, resulting in a singularly

perturbed problem. We employ asymptotic techniques to show that, as the plate thickness

tends to zero, our model converges to the exact solution. To tame the numerical troubles of

the resulting model we use finite elements methods of multiscale type.

1. Introduction

The challenge of solving PDEs in beams, plates and shells has historically attracted re-

searchers from different fields, not only because of the importance of the physical problems

demanding such task, but also because of the beautiful problems arising from the endeavor.

Focusing on plates, the first necessary step is to perform some sort of dimension reduction,

i.e., model a three-dimensional problem with a two-dimensional model. Hopefully, the re-

sulting equations are easier to solve, and the final solution approximates in some sense the

exact solution of the original problem.

There are basically three known ways, not always exclusive, to obtain plate models. Proba-

bly the most common arguments are based on physical properties of the underlying problem,

often combined with some mathematical reasoning. It is also possible to derive the models

using asymptotic techniques, usually with a sound mathematical basis, and the results easier
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to justify a posteriori. The asymptotic arguments consist in taking the plate thickness to

zero and finding “limit problems.” For instance, linearly elastic plates have as limit bihar-

monic equations [12]. For heterogeneous materials however, an extra issue arises. There

are situations when the attempts of homogenizing the material may lead to different models,

depending on which limit is considered first, i.e., homogenization first and then dimension re-

duction, or the other way around [10,13]. This happens even when stationary heat problems

are considered [9].

To avoid such undesirable peculiarity, we shall use hierarchical modeling. In such ap-

proach, the solution can defined for instance as the minimizer of the potential energy in

the subspace of functions that are polynomials in the transverse direction. The higher the

polynomial order, the better is the model. Likewise, the thinner is the plate, the better is

the approximation [2, 21].

In this work we consider the heat equation in a heterogeneous plate of thickness 2δ given

by P δ = Ω × (−δ, δ), where Ω ⊂ R
2 is a bounded open domain with Lipschitz boundary

∂Ω. Let ∂P δ
L = ∂Ω × (−δ, δ) be the lateral side of the plate, and ∂P δ

± = Ω × {−δ, δ} its

top and bottom. We denote a typical point of P δ by x = (x
∼
, x3), where x

∼
= (x1, x2) ∈ Ω.

Accordingly, we write ∇ = (∇
∼
, ∂3) = (∂1, ∂2, ∂3), where ∂i indicates the partial derivative

with respect to xi. Also, ∂ij = ∂i∂j .

Let uδ ∈ H1(P δ) be the weak solution of

(1)

− div
(

A∇ uδ
)

= f δ in P δ,

uδ = 0 in ∂P δ
L, a33

∂uδ

∂n
= gδ in ∂P δ

±,

where f δ : P δ → R and gδ : ∂P δ
± → R. The matrix A : P δ → R

3×3
SYM is such that

A(x) =

(

a
∼∼
(x
∼
) 0

0 a33(x
∼
)

)

,

where a
∼∼

: Ω → R
2×2
SYM, and a33 : Ω → R. We also assume that aij , f

δ, and gδ are C∞

functions, and that there exist constants α and β such that

(2) α‖ξ‖2 ≤ ξ · A(x)ξ, ξ · A(x)η ≤ β‖ξ‖‖η‖,

for all ξ, η ∈ R
3, and for all x ∈ P δ. The norm ‖ · ‖ is the Euclidian norm in R

3. Note that

the heterogeneity is in the horizontal direction. This model mimics a plate with transverse

inclusions.

We next describe the contents of this paper. In Section 2, we derive dimensional reduced

Partial Differential Equations (PDEs) for the Poisson problem in a heterogeneous plate using
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hierarchical modeling. The resulting PDEs depend on two small parameters, the thickness

and the length scale of the heterogeneity, and pose nontrivial numerical challenges [2–4].

Next, in Section 3, we show that our model is asymptotically consistent, i.e., it converges in

a proper sense to the solution of the original problem as the plate thickness goes to zero.

Modeling error estimates come by after a somewhat lengthy asymptotic analysis of both the

exact and approximate solution. A comparison between the related asymptotic expansions

yield error estimates in several norms [2], but we restrict ourselves to a H1 estimate in a

properly scaled plate.

Our model is given by an uncoupled system of two equations, corresponding to the even

and odd parts of the solution (with respect to the middle surface). The first part is a diffu-

sion equation with rapidly varying coefficients that does not depend on the plate thickness.

The second equation is of reaction-diffusion type with oscillatory coefficients on its diffusive

part, and the predominant “reaction” part depends on the thickness. Thus both equations

pose formidable numerical troubles, and to tame them we employ finite elements methods of

multiscale type. We describe these methods in Section 4, and perform computational exper-

iments using the Residual Free Bubbles (RFB) Method and the Multiscale Finite Element

Method in Section 5. In the Appendix, we outline the derivation of the model.

2. Derivation of the model

To derive our model for (1), we first characterize the exact solution uδ in an alternative

way. Let

V (P δ) = {v ∈ H1(P δ) : v|∂P δ
L

= 0}.

Then uδ minimizes the potential energy in V (P δ), i.e.,

uδ = arg min
v∈V (P δ)

I(v), where I(v) =
1

2

∫

P δ

∇ v · A∇ v dx−

∫

P δ

f δv dx+

∫

∂P δ
±

gδv dx.

Our model solution ũδ, which approximates uδ, is defined as the minimizer of the potential

energy in the space of functions in of V (P δ) which are linear in the transverse direction, i.e.,

ũδ = arg min
v∈V1(P δ)

I(v),

and V1(P
δ) = {v ∈ V (P δ) : v(x

∼
, x3) = v0(x

∼
) + x3v1(x

∼
), v0, v1 ∈ H1

0 (Ω)}.

If we write

(3) ũδ(x
∼
, x3) = w0(x

∼
) + x3w1(x

∼
),
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then w0, w1 ∈ H1
0 (Ω) are weak solutions for

−2δ div
[

a
∼∼
(x
∼
)∇

∼
w0

]

=

∫ δ

−δ

f δ(x
∼
, x3) dx3 + gδ(x

∼
, δ) + gδ(x

∼
,−δ) in Ω,(4)

−
2δ3

3
div
[

a
∼∼
(x
∼
)∇

∼
w1

]

+ 2δa33(x
∼
)w1 =

∫ δ

−δ

f δ(x
∼
, x3)x3 dx3 + δ[gδ(x

∼
, δ) − gδ(x

∼
,−δ)] in Ω.

(5)

Although the above system is simple to obtain, it apparently never appeared in the literature,

so we outline its derivation in the Appendix.

3. Modeling error estimate

In this section we estimate the modeling error with respect to the plate thickness δ. Note

that this is a nontrivial question since the domain itself depends on such parameter. Thus

we scale the domain to remove such dependence, and compare the solutions in a plate with

fixed thickness [12]. Let

P = Ω × (−1, 1), ∂PL = ∂Ω × (−1, 1), ∂P± = Ω × {−1, 1}.

Making the change of coordinates x̂ = (x
∼
, δ−1x3), and defining

u(δ)(x̂) = uδ(x), f(x̂) = f δ(x), g(x̂) = δ−1gδ(x),

it follows that

(6)
div
[

a
∼∼
(x̂
∼
)∇

∼
u(δ)

]

+ δ−2∂3

[

a33(x̂
∼
)∂3u(δ)

]

= −f in P,

u(δ) = 0 on ∂PL, δ−1a33(x̂
∼
)∂3u(δ) = δx̂3g on ∂P±.

Assuming that f and g are δ-independent, and considering the asymptotic expansion

(7) u(δ) ∼ u0 + δ2u2 + δ4u4 + · · · ,

we formally gather that

δ−2∂3

[

a33(x̂
∼
)∂3u0

]

+ div
[

a
∼∼
(x̂
∼
)∇

∼
u0

]

+ ∂3

[

a33(x̂
∼
)∂3u2

]

+ · · · = −f in P,(8)

δ−1a33(x̂
∼
)∂3u0 + δa33(x̂

∼
)∂3u2 + · · · = δx̂3g on ∂P±.(9)

Equating terms with same power of δ, we have that on P ,

∂3

[

a33(x̂
∼
)∂3u0

]

= 0,(10)

∂3

[

a33(x̂
∼
)∂3u2

]

= −f − div
[

a
∼∼
(x̂
∼
)∇

∼
u0

]

,(11)

∂3

[

a33(x̂
∼
)∂3u2k

]

= − div
[

a
∼∼
(x̂
∼
)∇

∼
u2k−2

]

for all k ≥ 2.(12)
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The boundary conditions on ∂P± are

(13) a33(x̂
∼
)∂3u0 = 0, a33(x̂

∼
)∂3u2 = x̂3g, a33(x̂

∼
)∂3u2k = 0 for all k ≥ 2.

Equations (10)–(13) define a sequence of Neumann problems with respect to x̂3 in (−1, 1),

parameterized by x̂
∼
∈ Ω. Next we decompose

(14) u2k(x̂) = ů2k(x̂) + ζ2k(x̂
∼
) for all k ∈ N,

where
∫ 1

−1

ů2k(x̂
∼
, x̂3) dx̂3 = 0.

From the Dirichlet condition in (6), we would like to impose u2k = 0 on ∂PL, i.e.,

ζ2k = 0 on ∂Ω,(15)

ů2k = 0 on ∂PL.(16)

However, this is not possible in general since only (15) can be imposed. Thus (16) does not

hold in general, making necessary the introduction of correctors.

Note now that ζ2k, ů2k, and thus u2k, are uniquely determined from (10)–(15). In fact,

from (10) and (13), we gather that ů0 = 0. To impose compatibility condition on (11) and

(13), then
∫ 1

−1

div
[

a
∼∼
(x̂
∼
)∇

∼
ζ0(x̂

∼
)
]

dx̂3 = −

∫ 1

−1

f(x̂
∼
, x̂3) dx̂3 − [g(x̂

∼
, 1) + g(x̂

∼
,−1)],

and from (15),

(17)
−2 div

[

a
∼∼
(x̂
∼
)∇

∼
ζ0(x̂

∼
)
]

= −

∫ 1

−1

f(x̂
∼
, x̂3) dx̂3 − [g(x̂

∼
, 1) + g(x̂

∼
,−1)] in Ω,

ζ0 = 0 on ∂Ω.

Since ů0 = 0, then u0 = ζ0.

In general, from (12) and (13) with k ≥ 2,

− div
[

a
∼∼
(x̂
∼
)ζ2k−2(x

∼
)
]

= 0 in Ω,

ζ2k−2 = 0 on ∂Ω,

thus ζ2k−2 = 0 for all k ≥ 2.

From (12), (13),

u0 = ζ0, u2 = ů2 6= 0, u4 = ů4, etc.
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Thus

(18) uδ ∼ ζ0 + δ2ů2 + δ4ů4 + · · · .

Note that the first term in the asymptotic expansion (18) matches w0, solution of (4).

Since ů2k does not vanish on ∂PL, we introduce the boundary corrector

U ∼ δ2U2 + δ4U4 + · · · ,

where U2k ∈ H1(P ) solves

(19)

−δ2 div
[

a
∼∼
(x̂
∼
)∇

∼
U2k

]

− a33(x̂
∼
)∂33U2k = 0 in P,

∂U2k

∂n
= 0 on ∂P±, U2k = ů2k on ∂PL.

We finally conclude that the asymptotic expansion for u(δ) in P is

u(δ) ∼ ζ0 + δ2ů2 − δ2U2 + δ4ů4 − δ4U4 + · · · .

Next we show some results that are necessary to estimate the modeling error. The result

below follows from classical estimates. The constants are generally denoted by c, even if they

are not the same in different occurrences. These constants are independent of δ but might

depend on a
∼∼
, a33, Ω and also on Sobolev norms of f and g. We also assume that a

∼∼
, a33 are

smooth. Of course such hypothesis are not appropriate in practical applications, but they

allow for an explicity rate of convergence. See the remark after Theorem 9 for a discussion

on how one can proceed in the nonsmooth case.

The following classical regularity estimates follow.

Lemma 1. Let ζ0 and ů2k be defined as above, for k ∈ N. Then there exists a constant c

such that

(20) ‖ζ0‖H1(Ω) + ‖ů2k‖H1(P ) ≤ c.

To estimate (19), we consider now the problem of finding Ψ ∈ H1(P ) such that

(21)

−δ2 div
[

a
∼∼
(x̂
∼
)∇

∼
Ψ
]

− a33(x̂
∼
)∂33Ψ = 0 in P,

∂Ψ

∂n
= 0 on ∂P±, Ψ = w on ∂PL.

Lemma 2. Let Ψ as in (21). Assume also that
∫ 1

−1
w(x̂

∼
, x̂3) dx̂3 = 0 on ∂PL. Then there

exists a constant c such that

‖Ψ‖L2(P ) ≤ c‖∂3Ψ‖L2(P ).
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Proof. From the Neumann conditions on ∂P±, it follows that
∫ 1

−1
∂33Ψ dx̂3 = 0 in Ω. Thus,

integrating the first equation in (21) with respect to x̂3, we gather that

−δ2

∫ 1

−1

div
[

a
∼∼
(x̂
∼
)∇

∼
Ψ
]

dx̂3 = 0 in Ω,

and then

−δ2 div
[

a
∼∼
(x̂
∼
)∇

∼
Ψ
]

= 0 in Ω, Ψ = 0 on ∂Ω,

where

Ψ(x̂
∼
) =

∫ 1

−1

Ψ(x̂
∼
, x̂3) dx̂3.

Thus Ψ ≡ 0 in Ω. Then, from Poincaré’s inequality, ‖Ψ‖L2(P ) ≤ c‖∂3Ψ‖L2(Ω). �

Lemma 3. Let Ψ be the solution of (21), where w ∈W 1,∞(P ). Then there exists a constant

c such that

‖∇Ψ‖L2(P ) ≤ cδ−1/2‖w‖W 1,∞(P ).

Proof. As in [18], let χ ∈ C∞(Ω) such that

χ(x̂
∼
) =







1 if dist(x̂
∼
, ∂Ω) < δ,

0 if dist(x̂
∼
, ∂Ω) > 2δ,

and

(22) ‖χ‖2
L2(P ) ≤ cδ, ‖∇

∼
χ‖2

L2(P ) ≤
c

δ
.

Let

Vw(P ) := {v ∈ H1(P ) : v|∂PL
= w}.

Since Ψ − χw ∈ V (P ),

δ2

∫

P

a
∼∼
(x̂
∼
)∇

∼
Ψ∇

∼
(Ψ − χw) dx̂+

∫

P

a33(x̂
∼
)∂3Ψ∂3(Ψ − χw) dx̂ = 0.

Thus, using (22),

δ2‖∇
∼

Ψ‖2
L2(P ) + ‖∂3Ψ‖2

L2(P )

≤ cδ2‖w∇
∼

Ψ‖L2(P )‖∇
∼
χ‖L2(p) + δ2‖∇

∼
Ψ∇

∼
w‖L2(P )‖χ‖L2(P ) + ‖∂3Ψ∂3w‖L2(P )‖χ‖L2(P )

≤ cδ3/2‖w‖W 1,∞(P )‖∇
∼

Ψ‖L2(P ) + cδ1/2‖∂3w‖L∞(P )‖∂3Ψ‖L2(P )

≤ cδ1/2(δ2‖∇
∼

Ψ‖2
L2(P ) + ‖∂3Ψ‖2

L2(P ))
1/2‖w‖W 1,∞(P ).

Thus, ‖∇Ψ‖L2(P ) ≤ cδ−1/2‖w‖W 1,∞. �

We need another technical result before proceeding with our estimates.
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Lemma 4. Let F ∈ L2(P ) and Θ ∈ H1(P ) weak solution of

−δ2 div
[

a
∼∼
(x̂
∼
)∇

∼
Θ
]

− a33(x̂
∼
)∂33Θ = F in P,

∂Θ

∂n
= 0 on ∂P±, Θ = 0 on ∂PL.

Then there exists a constant c such that

‖Θ‖H1(P ) ≤ cδ−2‖F‖L2(P ).

Proof. Note that Θ ∈ V (P ) is such that

δ2

∫

P

[

a
∼∼
(x̂
∼
)∇

∼
Θ
]

· ∇
∼
v dx̂+

∫

P

a33(x̂
∼
)∂3Θ∂3v dx̂ =

∫

P

Fv dx̂ for all v ∈ V (P ).

Making v = Θ, from (2) and the Cauchy-Schwartz inequality we have that

δ2‖∇
∼

Θ‖2
L2(P ) + ‖∂3Θ‖2

L2(P ) ≤ c‖F‖L2(P )‖Θ‖L2(P ).

Since Θ|∂PL
= 0, the Poincaré’s inequality holds and ‖∇Θ‖L2(P ) ≤ cδ−2‖F‖L2(P ). The result

follows from another application of the Poincaré’s inequality. �

Using Lemmas 2 and 3, we obtain an estimate for the solutions of (19).

Corollary 5. Assume that U2k, k ∈ N, solve (19). Then

‖U2k‖H1(P ) ≤ cδ−1/2.

We next estimate the residue r = uδ − (ζ0 + δ2ů2). We first note that

−δ2 div
[

a
∼∼
(x̂
∼
)∇

∼
r
]

− a33(x̂
∼
)∂33r = δ4a33(x̂

∼
)∂33ů4 in P,

∂r

∂n
= 0 on ∂P±, r = −δ2ů2 on ∂PL.

The following result holds.

Theorem 6. Let r as above. Then there exists a constant c such that

(23) ‖r‖H1(P ) ≤ cδ3/2.

Proof. From Lemmas 4, 2, and 3, it follows that

‖r‖H1(P ) ≤ c(δ−1/2‖δ2ů2‖W 1,∞(P ) + δ−2‖δ4a(x̂
∼
)∂33ů4‖L2(P )) ≤ cδ3/2,

and then the result holds. �
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The following result presents an estimate for the difference between uδ and the first term

of the asymptotic expansion.

Corollary 7. Let uδ be the solution of (1), and ζ0 be the solution of (17). Then

‖uδ − ζ0‖H1(P ) ≤ cδ3/2.

Proof. Adding and subtracting δ2ů2, and using (20) and (23), we gather that

‖uδ − ζ0‖H1(P ) ≤ ‖uδ − (ζ0 + δ2ů2)‖H1(P ) + δ2‖ů2‖H1(P ) ≤ cδ3/2 + cδ2.

�

To estimate the modeling error, we need the following result [1].

Lemma 8. Let w1 ∈ H1
0 (Ω) be the solution of (5). Then

‖w1‖H1(Ω) ≤ cδ1/2.

Remark. It is also possible to show the above result by modifying the proofs of Lemmas 4

and 3.

From Lemma 8, we have that ‖δx̂3w1‖H1(P ) ≤ cδ3/2. Let

ũ(δ)(x̂) = ũδ(x) = ζ0(x̂
∼
) + δx̂3w1(x̂

∼
).

Thus

‖ũ(δ) − u(δ)‖H1(P ) ≤ ‖ũ(δ) − ζ0‖H1(P ) + ‖u(δ) − ζ0‖H1(P ) ≤ cδ3/2 + cδ3/2 ≤ cδ3/2.

Thus, we can finally conclude the convergence of our continuous plate model with respect

to the plate thickness.

Theorem 9. Let u(δ) be the solution for (6) and ũ(δ) the model solution. Then there exists

an δ-independent constant such that

‖ũ(δ) − u(δ)‖H1(P ) ≤ cδ3/2.

Remark. Although the estimate of Theorem 9 requires the coefficients to be unduly smooth,

a convergence result follows from [11, Theorem 1] (see also [5, Proposition A.1]), and assum-

ing (2) is sufficient then. However, using such result, the rate of convergence with respect

to δ does not come out naturally.
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4. Multiscale numerical schemes

The plate problem we consider here has rough coefficients, and the reduced model inherits

such characteristic. Thus, although the PDEs in (4), (5) are much easier to solve than their

original three-dimensional counterparts, they still pose a tough computational challenge. In

fact, for highly heterogeneous materials, the coefficients a
∼∼
(·) and a33(·) can be oscillatory,

making the traditional finite element and difference methods almost useless. In (5) a new

difficulty arises since the PDE is singularly perturbed with respect to δ.

To overcome such troubles we employ two finite element methods of multiscale type. We

first briefly describe the Residual Free Bubbles (RFB) method [7,8,16,22], which consists in

enriching the usual finite element space of polynomials with bubbles, functions that vanish

on the border of each element.

Consider the second order elliptic problem

(24) Lu = f in Ω, u = 0 on ∂Ω,

where the differential operator L is defined by one of the equations below:

Lv = − div
[

a
∼∼
(x
∼
)∇

∼
v
]

, Lv = −
2δ3

3
div
[

a
∼∼
(x
∼
)∇

∼
v
]

+ 2δa33(x
∼
)v,

cf. (4), (5). Let a : H1
0 (Ω) ×H1

0 (Ω) → R be the bilinear form associated with (24).

Let Th be a regular partition of Ω into finite elements K. Associated with such partition,

let V1 ⊂ H1
0 (Ω) be the space of continuous piecewise linear functions, and the bubble space

VB = {v ∈ H1
0 (Ω) : v|∂K = 0 for all K ∈ Th}.

The residual free bubble method consists in applying the Galerkin method in V1 ⊕ VB, i.e,

we search for u1 + ub, where u1 ∈ V1, ub ∈ VB, and

(25) a(u1 + ub, v1 + vb) = (f, v1 + vb), for all v1 + vb ∈ V1 ⊕ VB.

The basic idea now is to apply a static condensation trick and write ub in terms of u1.

Testing (25) with functions in V1 only, we gather that ub = L−1
∗ f − L−1

∗ Lu1, where L−1
∗ :

L2(Ω) → VB is such that if v = L−1
∗ g, for g ∈ L2(Ω), then

Lv = g in K, v = 0 on ∂K,

for all K ∈ Th. Thus

(26) a(u1 − L−1
∗ Lu1, v1) = (f, v1) − a(L−1

∗ f, v1), for all v1 ∈ V1.
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In terms of finite element implementation, if {ψi}
N
i=1 is a basis of V1, where ψi are the usual

piecewise linear functions, we define λi such that

Lλi = 0 in K, λi = ψi on ∂K.

Next, if u1 =
∑N

i=1 uiψi, then

N
∑

i=1

a(λi, ψj)ui = (f, ψj) − a(L−1
∗ f, ψj), j = 1, . . . , N.

The other method that we used to discretize our model is the Multiscale Finite Element

Method (MsFEM) [18–20]. In its present form, the MsFEM consists in using the Galerkin

method with the subspace generated by functions {λi}
N
i=1. Actually, both methods are closely

related [22], and yield similar numerical results.

Remark. Regarding the oscillatory reaction-diffusion problem (5), an alternative would be

to proceed as in [17], and propose alternative boundary conditions for the multiscale base

functions.

Remark. The computational cost of finding the basis functions λi is quite a drawback of both

RFB and MsFEM. Nevertheless, these methods are still cheaper than solving the original

PDE via traditional numerical schemes [20, Section 4.2], specially since the local problems can

be solved in parallel. Moreover, as reported in [20], the overall solution is rather insensitive

to the resolution of the basis functions. Of course, it is also possible to exploit eventual

periodicities of the coefficients and significantly reduce the amount of computation. For

instance, in the tests considered in Section 5, only one local problem had to be solved.

5. Numerical tests

In the present section, we show some numerical results related to the problems (4), (5).

In particular, using multiscale schemes for the double parameter problem (4), we show

computational results that we believe are new in the literature.

We assume in (4), (5) that Ω = (0, 1)×(0, 1), and a
∼∼
(·) = a(·)I

∼∼
, where I

∼∼
is the 2×2 identity

matrix, and that a33(·) = a(·) are periodic with respect to x and y with periodicity ε. In all

problems below we use a subgrid of 128× 128 elements, and always choose the coarse mesh

size as a multiple of ε, allowing considerable computational savings, as pointed out in the

last remark of Section 4. Furthermore, to check the accuracy of the methods we computed

“exact” solutions using overrefined meshes, since we do not have analytical expressions for

them.
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Figure 1. Plot for ψ − λ.

We use both the RFB and MsFEM to approximate (4). We assume

a(x1, x2) =
9

2
sin(2πǫ−1x1) cos(2πǫ−1x2) +

11

2
, f δ(x

∼
) = 0,

gδ(x
∼
, δ) + gδ(x

∼
,−δ) = 2δ,

with ε = 1/32. Note that with such choices for f δ and gδ the solution of (4) does not depend

on the value of δ.

We start by showing how far the multiscale basis function departs from the traditional

linear function, plotting ψ−λ in Figure 1 for a fixed element K = [0, 1/16]× [0, 1/16]. Then,

Figure 2 shows λ, and Figure 3 shows its level curves. Next, Figure 4 displays the profile

at x = y of various approximate solutions and also an “exact” solution, obtained with the

aid of an overrefined mesh. It is possible to see then that the finite element method with

piecewise linear functions fails to deliver a good approximation.

We next consider ǫ = 1/64 and consider the convergence of the methods in the range

ε ≤ h. Let

a(x1, x2) =
2 + p sin (2πǫ−1x1)

2 + p cos (2πǫ−1x2)
+

2 + sin (2πǫ−1x2)

2 + p sin (2πǫ−1x1)
, f δ(x

∼
) = 0,

gδ(x
∼
, δ) + gδ(x

∼
,−δ) = −2δ,

for p = 1.8. We compare our the results in Figure 5 in the l2 norm given by ‖uh‖l2(Ω) =
(

∑N
i=1 uh(x

∼
i)

2h2
)1/2

. Such norm is equivalent to ‖ · ‖L2(Ω) in V1 [6]. We again used a refined

mesh to find a well resolved approximation to the exact solution.
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Figure 2. Basis function λ.
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Figure 3. Level curves for λ.

Note that Galerkin with piecewise linear functions simply does not appear to converge

if ε ≤ h, while the multiscale methods perform quite well within such range. Of course, if

h ≪ ε, the convergence curves for the Galerkin method with piecewise linears recover its

usual looks.

We next perform some numerical tests using the MsFEM in (5), again remarking that, to

the best of our knowledge, such method was never tested in this problem. Let

a(x1, x2) = a33(x1, x2) =
9

2
sin(2πǫ−1x1) cos(2πǫ−1x2) +

11

2
, f δ(x

∼
) = 0,

gδ(x
∼
,−δ) − gδ(x

∼
, δ) = 2,
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Figure 4. Diagonal profiles for exact, RFB, MsFEM and Linear FEM solutions.
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Figure 5. log ‖u− uh‖l2(Ω) for ǫ = 1/64.

where ǫ = 1/32. For δ = 10−1, we show ψ − λ and λ in Figures 6 and 7, for the local

problem in K = [0, 1/16] × [0, 1/16], with a rectangular submesh of 128 × 128 elements. In

Figure 8 we show the level curves of λ. Observe the onset of strong boundary layers due to

the singular perturbed flavor of the problem.

Finally, in Figure 9, we compare “exact” and approximate solutions for ω0+δω1, when δ =

10−3. The “exact” solution was again obtained using a refined mesh. Again the performance

of the MsFEM is good, while the traditional finite element method fails.
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Figure 6. function ψ − λ.
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Figure 7. Basis function λ.

Remark. The numerical results above are not related to the convergence result in Theorem 9.

Although numerical examples substantiating the approximation properties of our model

would be very interesting, that is certainly a daunting computational task. For the linearly

elastic problem, but with homogeneous materials, such endeavor was considered in [15]. See

also [14].
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Figure 8. Level curves for λ.
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Figure 9. Diagonal profiles for exact, MsFEM and Linear FEM solutions.

6. Appendix

From its definition, ũδ(x
∼
, x3) solves

(27)

∫

P δ

A(x
∼
)∇ ũδ ∇ ṽ dx =

∫

P δ

f δṽ dx+

∫

∂P δ
±

gδṽ, dx for all ṽ ∈ V1(P
δ).
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Using (3), where w0, w1 ∈ H1
0 (Ω), and substituting ṽ(x

∼
, x3) = v0(x

∼
) + v1(x

∼
)x3 ∈ V1(P

δ),

in (27), we gather that
∫

P δ

A(x
∼
)∇[w0(x

∼
) + w1(x

∼
)x3] · ∇ v0(x

∼
) dx =

∫

P δ

f δ(x)v0(x
∼
) dx+

∫

∂P δ
±

gδ(x)v0(x
∼
) dx,

∫

P δ

A(x
∼
)∇[w0(x

∼
) + w1(x

∼
)x3] · ∇[v1(x

∼
)x3] dx =

∫

P δ

f δ(x)v1(x
∼
)x3 dx+

∫

∂P δ
±

gδ(x)v1(x
∼
)x3 dx,

for all v0, v1 ∈ H1
0 (Ω). Integrating with respect to x3,

2δ

∫

Ω

a
∼∼
(x
∼
)∇

∼
w0(x

∼
)∇

∼
v0(x

∼
) dx

∼
=

∫

Ω

∫ δ

−δ

f δ(x)v0(x
∼
) dx3 dx

∼
+

∫

Ω

[gδ(x
∼
, δ) + gδ(x

∼
,−δ)]v0(x

∼
) dx

∼
,

2δ3

3

∫

Ω

a
∼∼
(x
∼
)∇

∼
w1 ∇

∼
v1 dx

∼
+ 2δ

∫

Ω

a33(x
∼
)w1v1 dx

∼
=

∫

Ω

∫ δ

−δ

f δ(x
∼
, x3)x3v1(x

∼
) dx3dx

∼

+ δ

∫

Ω

[gδ(x
∼
, δ) − gδ(x

∼
,−δ)]v1(x

∼
) dx

∼
,

and (4), (5) follow.
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