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Abstract. We propose a multiscale finite element method to treat singularly perturbed
reaction diffusion equations. We enrich the usual piecewise linear or bilinear finite el-
ement trial spaces with local solutions of the original problem, as in the Residual Free
Bubble (RFB) setting, but do not require these functions to vanish on each element edge.
Such multiscale functions have an analytic expression as long as the data are assumed to
be linear. We enrich the space of test functions with bubbles allowing for static condensa-
tion, thus our method is of Petrov-Galerkin type. We perform error analysis in different
asymptotic regimes and present numerical validations.
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1 INTRODUCTION

It is well known that standard Galerkin method is inadequate to solve singularly per-
turbed problems. Such limitation is due to the instability of method to approach boundary
layers and causes non physical spurious oscillations in the numerical solutions (e.g., see
[11] and references therein).

Specially refined meshes, such as Shishkin meshes (see [13] and references therein)
can ameliorate this situation. Nonetheless, such strategy become complex when we are
confronted to solve problems in complicate geometries, and can be prohibitive to treat
realistic three-dimensional problems. Adaptivity is another possibility and consists of
associating a posteriori estimators to the Galerkin method in order to built refined meshes
(see for instance [1] and references therein).

Previous works [5, 8, 9, 14] carried out more stable and accurate formulations based on
stabilized methods for the reaction diffusion model, using coarse meshes. The stabilized
methods are based on modified variational formulations, but still employ piecewise poly-
nomials. These modifications involve stability parameters, and depend on the residuals
of the governing differential equation.

Partial justification of these ideas were made possible by relating stabilized methods
to the Galerkin method using piecewise polynomials enriched with “bubble” functions,
as illustrated in [2, 3]. To systematically treat various singularly perturbed problems,
residual-free bubbles were introduced in [4]. These bubbles are functions with local sup-
port which solve, exactly or not, differential equations at the element level, involving the
differential operator of the problem. The right hand sides of these local problems are the
residuals due to the polynomial part of the solution. The other ingredient is the require-
ment that the bubble part vanishes on element boundaries for second order problems.
Convergence results for linear and bilinear elements can be found in [12]. It turns out
that such construction for the reaction diffusion problem yields a poor approximation [6].
Assuming the bubble part of the trial solution to be zero across element edges introduces
inaccuracies across element edges.

In this work we have explored a new strategy, without the zero boundary value re-
striction on each element, conjugate with a Petrov-Galerkin method. We let the test
space to be enriched with residual-free bubble functions, but the functions in the trial
space have boundary values determined by edge restrictions of the governing differen-
tial operator. Such restrictions yield ordinary differential equations that can be solved
a priori. Even more importantly, we keep the modification computable at the element
level once the data are assumed piecewise linear. Moreover, we develop error estimates
for the multiscale finite element method based on [7] proving convergence analysis in two
different asymptotic regimes, and we point out sufficient conditions to obtain convergence
with respect to the small parameter. We also demonstrate that we recover the standard
Galerkin error estimates when the mesh is fine enough.

The paper is organized as follows. In Section 2 we describe our Petrov-Galerkin formu-
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lation. In Section 3 we derive error estimates in different asymptotic regimes, and next, in
Section 4, we perform numerical tests. Finally in the appendix we present some auxiliary
results.

2 THE METHOD

Let Ω be a bounded domain inR2 with polygonal boundary ∂Ω. We consider u ∈ H1
0 (Ω)

the weak solution of the reaction diffusion equation

Lu := −ε∆u+ σu = f in Ω, u = 0 on ∂Ω, (1)

where for simplicity ε and σ are positive constants. We assume f piecewise linear, thus
(1) is well-posed.

The usual weak formulation of problem (1) consists on finding u ∈ H1
0 (Ω) such that

a(u, v) = (f, v), for all v in H1
0 (Ω), (2)

where the bilinear form a : H1
0 (Ω) ×H1

0 (Ω) → R is given by

a(u, v) := ε(∇u,∇v) + σ(u, v). (3)

As usual (·, ·)D denotes the inner product in L2(D) where D is a open subset of Ω. The
norm induce by such inner product is denoted by ‖.‖0,D. To simplify the notation, we write
(·, ·) and ‖.‖0 when D = Ω. The weak problem (2) is well-posed thanks to the coercivity
of the bounded bilinear form a(·, ·) over H1

0 (Ω) and the Lax–Milgram Theorem.
Let Th be a regular partition of domain Ω into elements K (triangles or quadrangles)

with boundary ∂K such that
Ω =

⋃

K∈Th

K,

where the intersection of two elements is either a vertex, or an edge, or empty. We define
Vh as the set of edges Z belonging to Th, we denote by hK the characteristic length of
K ∈ Th, and we set h = maxK∈Th

{hK}. By Ωlayer, we denote the set of of elements in Th

with boundaries that have nontrivial intersection with ∂Ω, and we define

Ω0 = Ω\Ωlayer, (4)

and hl = maxK∈Ωlayer
{hK}. In the sequel C, C1, C2, . . . will denote generic positive

constants, independent of hK , ε or σ, but whose value may vary in each occurrence.
Moreover, we write b ' d meaning that

b ≤ Cd and d ≤ Cb. (5)

The space S1(K) will be denoting the space of piecewise linear or bilinear polynomials
used to approximate the exact solution. We denote by Vh the standard finite element
space
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Vh := {vh ∈ C0(Ω) | vh|K ∈ S1(K) for all K ∈ Th}, (6)

and
V 0

h := Vh ∩H1
0 (Ω), (7)

and the Galerkin scheme associated to the continuous problem reads: find ug ∈ V 0
h such

that
a(ug, v1) = (f, v1), for all v1 in V 0

h . (8)

It is well known that the Galerkin method (8) is unable to approximate the solution
if ε � σh2. To overcome such limitation, we have proposed in [6] a method based on
enriching the standard finite element space. The idea is to add special functions, also
called multiscale functions, to the usual polynomial spaces to stabilize and improve the
accuracy of the Galerkin method. In order to describe the multiscale method, we first need
some definitions and notations. We denote by H1

0 (Th) and H1(Th) the spaces of functions
on Ω whose restriction to each element K belongs to H1

0 (K) and H1(K), respectively.
Let us introduce the operators Bi

K : S1(∂K) → L2(∂K) defined in the following way:
given a basis function qi of S1(∂K) we associate wi = Bi

Kqi ∈ L2(∂K) such that

Li
∂Kwi := −ε∂sswi + σiwi = qi on ∂K, wi = 0 at the nodes. (9)

The coefficient σi is set as a positive parameter which can depend on |K| and |Z|, and on
the node i, where Z denotes an arbitrary edge of ∂K. Such dependence will be specified
later (see equation (36)), and we denote by s a variable that parametrize ∂K by arc-
length. We point out that (9) is well-posed. A similar boundary condition was used in
[10] for elliptic problems with oscillatory coefficients. Now, let Mi

K : S1(K) → H1(K) be
the linear operator defined as follows: given vi a basis function of S1(K) let bi = Mi

K vi ∈
H1(K) be the solution of the problem

Lbi = vi in K, bi = Bi
K(
σi

σ
vi) on ∂K, (10)

where Bi
K are the local operators defined in (9). Since bi|∂K belongs to L2(∂K) problem

(10) is clearly well-posed in each K ∈ Th. Therefore, using (10) we introduce the operator
MK : S1(K) → H1(K) defined by

MK ph :=
∑

i

Mi
K(bi) pi, ph ∈ S1(K), (11)

where pi represents the coefficients of ph. Furthermore, we denote by Eh a subspace of
H1(Th), called multiscale space, such that Eh ∩ V 0

h = {0} and defined by

Eh := {ve ∈ H1(Th) | ve|K = MK v1 for all v1 ∈ Vh}, (12)
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where MK is the linear operator (10). Hence, an element vh of V 0
h ⊕Eh may be uniquely

written as
vh := v1 + ve,

where v1 ∈ V 0
h and ve ∈ Eh. The space Eh is a finite dimensional space and dim(Eh) =

dim(Vh). We note from (10) that the functions belonging to Eh may be a priori dis-
continuous across the edges of triangles. The continuity is enforced only at the nodes
of the triangulation. Therefore, the method is nonconforming. Our approximation of
the exact solution in the multiscale space (12) is defined by the solution of the following
Petrov-Galerkin problem: find uh ∈ V 0

h ⊕ Eh such that

ah(uh, vh) = (f, vh) for all vh ∈ V 0
h ⊕H1

0 (Th) (13)

where
ah(u, v) :=

∑

K∈Th

a(u, v)K ,

and
a(u, v)K := ε(∇u,∇v)K + σ(u, v)K . (14)

From (13) we immediately have that the corresponding uh ∈ V 0
h ⊕ Eh satisfies

ah(uh, v1) = (f, v1) for all v1 ∈ V 0
h , (15)

a(uh, v
K
b )K = (f, vK

b )K for all vK
b ∈ H1

0 (K). (16)

We postpone to Section 3 the discussion of well-posedness of (13). Since by integrating
(16) by parts, we have that the enriched part of the solution uh, denoted by ue ∈ Eh, is
the solution of problem

Lue = f − Lu1 in each K ∈ Th, (17)

then, the first equation (15) is immediately satisfied by imposing

ue = MK(f − Lu1). (18)

It follows by construction and from (13) that

ah((I −MKL)u1, v1) = (f, v1) − ah(MKf, v1) for all v1 ∈ V 0
h , (19)

where we have used the relation (18) and I is the identity operator.
Remark: In the standard enriched strategy with bubble-like functions, as the Residual-

Free-Bubble (RFB) approach [4], it is also necessary to solve (17), but assuming that ue

vanishes on all ∂K ∈ Vh. It turns out that the corresponding local problem must be solved
numerically. Unlike the RFB approach, we obtain analytic solutions of (17), thanks to
the boundary condition (9) .
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Remark: Concerning the stabilized finite element method theory, it is possible to
establish analogies between the Residual-Free-Bubble approach and the unusual stabilized
method proposed in [8]. This is done by showing that MK = τKI where τK is a parameter
depending of hK . We recall that the unusual method reads: find us

1 ∈ V 0
h such that

as (us
1, v1) = fs (v1) for all v1 ∈ V 0

h , (20)

where the bilinear form as : V 0
h × V 0

h → R reads

as (u, v) := a (u, v) −
∑

K∈Th

(τKLu, σv)K (21)

and the linear form fs : V 0
h → R is defined by

fs (v) := (f, v) −
∑

K∈Th

(τKf, σv)K . (22)

The stabilization parameter τK is a piecewise constant function defined by

τK =
h2

K

σh2
K max{1, P eK} + 6ε

, (23)

where PeK is the Peclet number

PeK =
6ε

σh2
K

. (24)

Concerning the proposed multiscale approach, we believe that it is possible to prove some
analogies with the unusual method, but such equivalence in not trivial. This shall be
investigated in a future work.

2.1 Corresponding discrete formulation

Let us rewrite (18) in terms of basis functions. We assume that

Eh = span{φi}i∈I and Vh = span{ψi}i∈I , (25)

where ψi are the usual hat functions. Then, f and u1 are given by

u1 =
∑

i∈I0

ψiui, f =
∑

j∈I

ψjfj,

where ui , i ∈ I0, and fj, j ∈ I, are the nodal values of u and f , respectively. Here I and
I0 are the set of indexes of total and internal nodal points, respectively. It follows from
(18), and from the linearity of the operators L and Li

∂K that

ue =
∑

i∈I0

φiui −
∑

i∈I

φi
fi

σ
, (26)
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where the basis functions φi ∈ Eh, i ∈ I, satisfy

Lφi = −σψi in K, (27)

φi = µi on ∂K, (28)

for all K ∈ Th. From (9) and (26), µi ∈ L2(∂K) is the solution of the boundary value
problem

Li
∂Kµi = −σiψi in ∂K and µi = 0 at the nodes, (29)

on each edge belonging to ∂K ∈ Vh. It is convenient to present such problem in terms of
the unknown λi ∈ V 0

h ⊕ Eh, i ∈ I, defined by

λj := ψj + φj = (I − σMK)ψj for all j ∈ I. (30)

Hence, from the definition (30) the function λi, i ∈ I, satisfies

Lλi = 0 in K, (31)

λi = ρi on ∂K, (32)

where ρi, i ∈ I, satisfies the ordinary differential problem

Li
∂Kρi = 0 on ∂K and ρi = ψi at the nodes, (33)

on each edge belonging to ∂K ∈ Vh.
Thus the discrete version of the weak formulation (19) reads

∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

[a(λj, ψi) − ε(∇ψj,∇ψi)]
fj

σ
for all i ∈ I0. (34)

Remark: Numerical experiments indicate that the modified scheme type

∑

j∈I0

a(λj, ψi)uj =
∑

j∈I

(λj, ψi)
fj

σ
for all i ∈ I0, (35)

yields accurate numerical approximations. This mass lumping trick is, nonetheless, con-
trary to our general philosophy of deriving the formulation through a sound formalism.
Thus, we do not analyse this approach.

2.2 Solving the local problems

Let K be an element of the partition Th, and Z an edge of its boundary ∂K. First we
assume that K is a triangular element. In such case, the dependence of coefficients σi in
terms of the shape of elements K is given by

σi :=
4|K|2

|Z|2|Z i|2
σ, (36)
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where Z i denotes the corresponding edge of K opposed to the node i. Moreover, we define

γi
K =

(

∂ψi

∂x
|K
)2

+

(

∂ψi

∂y
|K
)2

=
|Z i|2
4|K|2 ' h−2

K for all i ∈ I, (37)

and thanks to the definitions (36), (37) the analytical solution of (31), (32) is given by

λi(x, y) =
sinh

(

√

σ
γi

K
ε
ψi(x, y)

)

sinh
(

√

σ
γi

K
ε

) for all i ∈ I. (38)

Now, we assume that K is a straight quadrangular element, and we chose σi = 2σ. We
observe that the method becomes conform since we impose continuity of shape functions
on the boundary ∂K. Without loss of generality, consider a rectangle K with vertexes
1, . . . , 4 at (0, 0), (hx, 0), (hx, hy), (0, hy). Since the bilinear function ψ1 can be written as
ψ1(x, y) = ψ1

x(x)ψ
1
y(y), it follows that

λ1(x, y) =
sinh

(
√

σ
2ε
hxψ

1
x(x)

)

sinh
(
√

σ
2ε
hyψ

1
y(y)

)

sinh
(
√

σ
2ε
hx

)

sinh
(
√

σ
2ε
hy

) . (39)

satisfies (31), (32) exactly. The basis functions λj, j = 2, ..4, are immediately obtained
from λ1 by simply changing variables. By taking a particular node k ∈ I, and look at
all elements connected to this node, then the equation (39) illustrate the nodal shape
functions λk. Fixing σ = 1, we obtain for ε = 1, 10−2, 10−4, the shape functions λk,
depicted in Figures 1 and 2. Note that as ε approaches zero, the usual pyramid is squeezed
in its domain of influence in the neighborhood around node k. Note that the support of
λk coincide with the support of the piecewise bilinear function ψk.

3 CONVERGENCE RESULTS

We are now concerned with the error analysis of the multiscale method (19) in both
ε and h asymptotic limits. We will perform the analysis considering linear interpolation.
The bilinear case follows straightforward. For simplicity we perform the error analysis of
the method by setting γi

K independent of i ∈ I. With such assumption we assume an
equilateral triangulation of the domain. The general case is similar, but involves a quite
cumbersome symbolic computation (see Lemma 1 below). We start by recalling that the
multiscale method (19) reads: find u1 ∈ V 0

h such that

ae(u1, v1) = fe(v1), for all v1 ∈ V 0
h , (40)

where the modified bilinear and linear forms are

ae(u, v) := a(u, v) − ah(MKLu, v), and fe(v) := (f, v) − ah(MKf, v). (41)
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We first observe that the method (40) is consistent since MK(Lu− f) = 0, see definition
(10). We shall show that the problem (40), and consequently (19), is well-posed. Before
presenting the main coercivity result, we need the following estimates.

Lemma 1 Let the linear operator MK be defined by (11). Then, there exist C1
λ, C

2
λ, C

1
ρ ,

C2
ρ , Cθ, Cξ, Cγ, and Cζ positive constants only depending on the inner angles of K, and

such that for all v1 ∈ Vh we have that

i) C1
λλ

K
min‖v1‖2

0,K ≤ ((I − σMK)v1, v1)K ≤ C2
λλ

K
max‖v1‖2

0,K ,

ii) −C1
ρρ

K
minh

−2
K ‖v1‖2

0,K ≤ −(σ∇MKv1),∇v1)K ≤ 0,

iii) 0 ≤ (∇((I − σMK)v1),∇v1)K ≤ C2
ρρ

K
maxh

−2
K ‖v1‖2

0,K ,

iv) ‖MKv1‖2
0,K ≤ Cθθ

K
maxσ

−2‖v1‖2
0,K ,

v) ‖∇(MKv1)‖2
0,K ≤ Cξξ

K
max(σhK)−2‖v1‖2

0,K ,

vi) ‖(I − σMK)v1‖2
0,K ≤ Cγγ

K
max‖v1‖2

0,K ,

vii) ‖∇((I − σMK)v1)‖2
0,K ≤ Cζζ

K
maxh

−2
K ‖v1‖2

0,K ,

where the quantities constants λK
min, λ

K
max, ρ

K
min, ρ

K
max, θ

K
max, ξ

K
max, γ

K
max and ζK

max depend

in a nontrivial way on ε, σ, hK, and are given in the Appendix. Here hK =
γi

K

CK
where

CK = 6
C1

ρ

C1

λ

.

Proof: See [7].

We are ready to prove the existence and uniqueness of solution for the problem (40).
First, let us consider the local h-dependent norm

‖v‖E,K :=
√

CKαK‖v‖2
0,K + h2

K‖∇v‖2
0,K for all v ∈ H1(Th), (42)

where αK is the positive constant given by

αK =
σh2

K

CKε
λK

min − ρK
min

6
, (43)

and we define α = minK∈Th
αK . The positiveness of αK follows from the definition of

eigenvalues ρK
min and λK

min. As usual the associate global norm is given by

‖v‖E :=
√

∑

K∈Th

‖v‖2
E,K for all v ∈ H1(Th), (44)

and we have the following coercivity result.
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Lemma 2 Let ‖.‖E,K be the norm defined by (42). Then, the bilinear form ae : Vh×Vh →
R is coercive and

ae(v1, v1) ≥ C
∑

K∈Th

ε

h2
K

‖v1‖2
E,K for all v1 ∈ Vh. (45)

Proof: The result follows from the definition of bilinear form (41), (43), applying the

items (i) and (ii) of Lemma 1, and since CK = 6
C1

ρ

C1

λ

.

Remark: Existence and uniqueness of solutions for problem (40) follows from Lax-
Milgram Theorem. Let ue ∈ Eh be uniquely defined by ue = MK(f − σu1) in K, where
u1 is the unique solution of (40). Then, ue + u1 belongs to V 0

h ⊕ Eh and satisfies (13).
Remark: The coefficient presented in the norm definition (42) have the following

behavior

lim
ε→0

αK =
3

4
and lim

hK→0

CKε

σh2
K

αK =
1

48
. (46)

3.1 Convergence with respect to ε

In this case we shall use the asymptotic properties of the exact solution u. As ε goes
to zero the exact solution converges, at least away from the boundary, to fσ−1. We shall
estimate the related error in the norm (44), and also bound u− fσ−1 in the same norm.
The final result, i.e., the estimate for u− u1, follows from the triangle inequality. Let us
define f ∈ V 0

h such that f = f in Ω0. We have the following estimate.

Lemma 3 Let u be the solution of (1). Then, there exit C1, C2, and C3 such that

i)
∥

∥

∥u− f
σ

∥

∥

∥

2

0
≤ C1

σ2

(

hl ‖f‖2
∞,Ω0 + εσ−1

∥

∥

∥∇f
∥

∥

∥

2

0

)

,

ii)
∥

∥

∥∇
(

u− f
σ

)
∥

∥

∥

2

0
≤ C2

σ2

[

(hlε
−1σ + 1) ‖f‖2

∞,Ω0 +
∥

∥

∥∇f
∥

∥

∥

2

0

]

,

iii)
∑

K∈Th

h2
K

∥

∥

∥∇
(

u− f
σ

)∥

∥

∥

2

0,K
≤ C3

σ2

[

(h3
l ε

−1σ + h2
l ) ‖f‖2

∞,Ω0 + h2
∥

∥

∥∇f
∥

∥

∥

2

0

]

.

Proof: See [7].

Corollary 4 Let u be the solution of (1). Then, there exits constant C such that

∥

∥

∥

∥

∥

u− f

σ

∥

∥

∥

∥

∥

E

≤ C

σ

[

h
1/2
l

(

hlε
−1/2σ1/2 + 1

)

‖f‖∞,Ω0 +
(

h+ ε1/2σ−1/2
)

‖∇f‖0

]

. (47)

Proof: The result follows by the norm definition (42), since αK < 1 for all K ∈ Th,
and from Lemma 3.

We have the following estimate result.
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Lemma 5 Let u1 be the solution of (40). There exists C such that

∥

∥

∥

∥

∥

f

σ
− u1

∥

∥

∥

∥

∥

E

≤ C

σ

[

hl

(

h
1/2
l ε−1/2σ1/2 + 1

) (

1 + α−1/2
)

‖f‖∞,∂Ω + hl‖∇f‖0 + hα−1/2 ‖∇f‖0

]

.

Proof: See [7].

We are ready to present the main convergence result.

Theorem 6 Let u be the solution of (2) and u1 be the solution of (40). There exists C
such that

‖u− u1‖E ≤ C

σ

{

h
1/2
l

[

h
1/2
l

(

h
1/2
l ε−1/2σ1/2 + 1

) (

1 + α−1/2
)

+ 1
]

‖f‖∞,∂Ω

+hα−1/2 ‖∇f‖0 +
(

h+ ε1/2σ−1/2
)
∥

∥

∥∇f
∥

∥

∥

0

}

.

Proof: The result follows using triangle inequality, Corollary 4, Lemma 5, and re-
defining the constants.

Remark: The convergence result presented in Theorem 6 points out that the error
depends on the form of f . Supposing that f vanishes on ∂Ω, then

lim
ε→0

‖u− u1‖E ≤ C
h

σ
‖∇f‖0 , (48)

since α → 3/4 when ε→ 0. Moreover, if f is supposed to be constant or linear in Ω0 and
hl ' εp with p ∈ (0, 1/2], thus we have convergence. If f is nonzero on ∂Ω and hl ' εp

with p ∈ (1/3, 1/2], then

lim
ε→0

‖u− u1‖E ≤ C
h

σ

(

‖∇f‖0 +
∥

∥

∥∇f
∥

∥

∥

0

)

, (49)

since α is bounded. As long as f is constant or linear in Ω we recover convergence.

3.2 Convergence with respect to h

In this subsection we perform a convergence analysis with respect to h. In what follows,
we consider that the positive constant C is independent of h but might depend on ε and
σ. First, recall that we denote by ug the solution of the Galerkin formulation (8). It is
well known that there exists constant C such that

√
σ‖u− ug‖0 +

√
ε‖∇(u− ug)‖0 ≤ Ch‖u‖2. (50)

Our first goal consists on estimating the Galerkin error in the norm (44). This is done in
the following lemma.

11
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Lemma 7 Let u be the solution of (2) and ug be the solution of (8). There exists a
constant C such that

∑

K∈Th

√
ε

hK

‖u− ug‖E,K ≤ Ch‖u‖2. (51)

Proof: The result follows using (44) and (50).

Lemma 8 Let ug be the solution of (8) and u1 be the solution of (40). There exist a
constant C such that

∑

K∈Th

√
ε

hK

‖ug − u1‖E,K ≤ Ch‖u‖2. (52)

Proof: See [7].

We are ready to present the main convergence result.

Theorem 9 Let u be the solution of (2) and u1 be the solution of (40). There exist C
such that

∑

K∈Th

√
ε

hK

‖u− u1‖E,K ≤ Ch‖u‖2. (53)

Proof: The result follows using triangle inequality, and from Lemmas 7 and 8.

Remark: The convergence result (53) is equivalent to the standard Galerkin error in
the energy norm.

4 NUMERICAL EXAMPLES

4.1 The unity square: bilinear elements

Let us first consider the unit source problem (f = 1) defined on the unit square depicted
in Figure 3, subject to a homogeneous boundary condition. For a fixed σ = 1, and small
ε, boundary layers appear close to the domain boundary. Figure 4 shows the solutions of
the four different methods described herein, for ε = 10−6. The unusual stabilized method
and the current method perform better than the other two methods. Examining the
solutions profiles, see Figure 5, it becomes clear that the current method is superior to
other methods. For ε = 10−3 and ε = 1, all methods have comparable performance.

4.2 The unity square: linear elements

We consider the discontinuous source problem where f is given by

f(x, y) =

{

1, 0 ≤ x < 1
2
,

0, 1
2
≤ x ≤ 1,

(54)

on the unit square and subject to a homogeneous boundary condition depicted in Figure 6.
For a fixed σ = 1, and small ε, internal and external boundary layers appear. Figure 7

12
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shows the solutions of different methods described herein, including the modified method
(35) for ε = 10−6. The current method performs better than the Galerkin method, and
it corrects the spurious oscillations. Examining the solutions profiles, see Figure 8, it is
interesting to note that the modified method also gives good results close to the internal
boundary layer.

5 Appendix

We present in this section the expression of the eigenvalues introduced in Lemma 1,
and we show graphically the behavior of some coefficients and eigenvalues. To simplify
the formulas, we introduce βK defined by

βK =

√

σh2
K

CKε
.

The expression of eigenvalues are given by

λK
min =

1

β2
K

(

1 +
3

βK sinh βK

− 3 cosh βK

βK sinh βK

+
βK

2 sinh βK

)

,

λK
max =

1

β2
K

(

1 − βK

sinh βK

)

,

−ρK
min = −3/2

(

1 +
2

βK sinh βK

− 2 cosh βK

βK sinh βK

)

,

ρK
max =

3

βK

(

cosh βK

sinh βK

− 1

sinh βK

)

,

γK
max =

1

4β2
K sinh(βK)2

(

cosh(βK)2 − 8 cosh(βK) − β2
K + 4β sinh(βK) + 7

)

,

ζK
max =

1

8 sinh (βK)2

(

2 cosh (βK)2 − 2 cosh (βK) sinh (βK) − 1
)

(

6 cosh (βK)4 + 6 cosh (βK)3 sinh (βK) − 9 cosh (βK)2 − 6 cosh (βK) sinh (βK) + 3

+6 βK
2 cosh (βK)2 + 6βK

2 sinh (βK) cosh (βK) − 3βK
2

−
((

cosh (βK)4 − 2 cosh (βK)2 + 34βK
2 cosh (βK)2 + 1 − 34 βK

2 + βK
4
)

(

1 + 8 cosh (βK)4 − 8 cosh (βK)2 + 8 cosh (βK)3 sinh (βK) − 4 cosh (βK) sinh (βK)
))1/2

)

,

θK
max =

3

βK sinh βK

(

1 +
−21 (cosh βK)2 − 24 cosh βK − 5 βK

2 + 45 + 2 βK
2 (cosh βK)2

36 sinh βKβK

)

,

ξK
max =

1

8 (βK sinh βK)2

(

βK
4F (βK) + βK

2G(βK) + βKH(βK)
)

,

where the functions F , G andH are given by an intricate nonlinear combination of sinh βK

and cosh βK .
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Figure 1: The function λk for ε = 1 (left) and ε = 10−1 (right).
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Figure 2: The function λk for ε = 10−3.
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Figure 3: Problem statement.
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GALERKIN  METHOD RFB  METHOD

UNUSUAL  METHOD NEW  ENRICHED  METHOD

Figure 4: Comparison among Galerkin, Unusual, Residual Free Bubble, and the multiscale method for
ε = 10−6.
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Figure 5: Profile of solutions at x = 0.5 (ε = 10−6).
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Figure 6: Problem statement.
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MODIFIED
MULTISCALE METHOD MULTISCALE  METHOD

GALERKIN  METHOD

Figure 7: Comparison among Galerkin, and multiscale methods for ε = 10−6.
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MODIFIED MULTISCALE METHOD
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Figure 8: Profile of solutions at x = 0.5 (ε = 10−6).
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