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1 Introduction

The problem of choosing a control function to steer the solution of a partial-differential,
evolution equation (PDEE, for short) in a prescribed manner has given rise to a vast literature
(cf. Zuazua (2002)), Trétlzch (2010), Koput & Leugering (2011) and references therein) in
which great attention has been devoted to linear PDEEs and problems defined over finite-
time intervals. In particular, the basic aim of approximately reaching a prescribed final
state from a given initial one gives rise to various optimal control problems for parabolic
equations with different types of boundary conditions and control functions acting either on
the boundary of the spatial domain or as a source term in its interior.

The control functions to be determined as solutions of such optimization problems are
often allowed to depend on both time and space coordinates. On the other hand, having in
mind potential applications, interest naturally arises in considering control functions which
depend solely on time (their spatial action being defined by the “actuators” used). Accord-
ingly, the final-state approximation problems for parabolic PDEEs considered here will have
such control signals as decision variables. Moreover, it is desirable that “finite-dimensional”
approximations to the optimal control signals are characterized either as solutions to ap-
proximations of the original problems or as approximations to the optimal solutions of those
problems.

In this report, the problem of approximate positioning of the final state on a finite time
interval is examined for parabolic PDEEs with Dirichlet boundary conditions and point
(source) control functions. Minimization of a quadratic cost involving the final-state approx-
imation error is considered with and without a constraint on the maximum magnitude of the
control functions. To compute approximate solutions to such control problems, approximate
versions of them are tackled which are obtained from finite-dimensional approximations to
the control-to-final-state operator.

This report is organized as follows. In Section 2, the basic control problem is introduced.
In Section 3, its optimal solution is characterized. In Section 4, approximate solutions to
the basic, unconstrained control problem are derived. In Section 5, “peak value” constraints
are added to the basic problem and both the original problem and approximate versions of

it are discussed, including the use of Lagrangian duality to obtain approximate solutions.



Finally, in Section 6, two simple numerical examples are presented to illustrate the main

points previously discussed. Unless otherwise stated, proofs are presented in the Appendix.

2 Background and Problem Formulation

Consider a initial/boundary condition problem for the parabolic equation given (“in its

classical form”) by

+d(x)0(x,t) = f(x,t)

(1)

o0 "0 . 00 N L
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ij=1 i=

VeeU, 6(x,0) = g(x) (initial condition) (2)

Vte (0,00), VeedU , O(x,t)=0 (boundary conditions) (3)

where U € R" is an open and connected set, a¥ = a’!, b*, d, f and ¢ are given functions,
{A};; = a", A(z) > 0, a.e. in U. The associated (weak) function-space, ordinary differential

equation version, is given by

where g € Ly(U), f:(0,00) = Lo(U) , 6:(0,00) = Lo(U)

A: H}(U) — Ly(U) is defined by

Vo € HY(U), v € HU), (Alg)v) = ~Blo,v], 5)
where
Blo.u) & Y52 S0+ S WL 0+ (o), ©)

where (-, -) denotes the inner product of Ly(U).
For a”, b" and d in L. (U), A so defined is the infinitesimal generator of a Cy-semigroup

Sa (say). It then follows that whenever f € Ly(0,00;Ly(U)) and g € Ly(U) the weak



solution of ({]) is given by

006 £.0) = S2(0lo + | CSalt—a)f()lda . Vi e [0t ™)

It is now assumed that f(x,t) = fs(x,t) + Bg(x)Tu(t) where fs : U x [0,tr] — R and
Bg : U — R™ are given functions and u : [0,tr] — R™ is a control signal to be chosen in
such a way as to make 0(tr; f,g) “close” to a prescribed 6, € Ly(U).

More specifically, let w € Ls(0,t)™, p,, € Ry and define the cost functional

j(u> é ||Q<tF7 f7 g) - GTH%Q(U) + p’u,”uH%Q(O’tF)m (8)

(from now on, the “space” subindices of norms and inner products will be omitted whenever
context information makes then redundant).

A control signal is to be chosen on the basis of the optimization problem

Prob. I : min J(u). (9)

u€Ls(0,tp)™

3 Final State Positioning with Source Control

In this section, the optimal solution to Prob. I is explicitly characterized. To this effect,

note first that due to the linearity of 0(-; f,g) on (f,g),

0(:f.9)=0(:f49) +0(: f,.0), where f (t) = Bs(-)u(t), (10)

ie.,

0(; f.9) =00 £, 9) + Tolu)(), (11)

where T : Ly(0,tp)™ — {h : [0,tp] = Lo(U)}

Tolu)(t) £ / Saltr — a)lf,. (a))da, (12)



so that J(u) can be rewritten as

T (w) = To[u] = Oroll ) + pullel o0 ey (13)

where 0,, = 0, — 0(tp; fs,9) and Ty : Ly (0,t5)™ — Ly(U) is defined by Ty[u] = To[u](tr).
The existence of an optimal solution to Prob. I can be ascertained by means of a basic
result on minimum-distance problems pertaining to closed convex sets (Luenberger, 1963, p.

69), as stated in the next proposition.

Proposition 3.1. There exists u, € La(0,tr)™ such thatVu € Ly(0,tr)™, u # u,, J(u,) <
J(u).

Moreover, u, is the unique solution of the linear equation

Pullo + ,Te %[uo] 7; [ ] =0, (14)
i.€.,

o = [pul + T3 To] ™ [T 160 (15)
where T+ Lao(U) — Lo(0,tp)™ is the adjoint of Ty. \Y

Proof. Let T, : La(0,tp)™ — La(0,tp)™ x Ly(U) be defined by Ta[u] 2 (pi*u, To[u]). Then
J(u) = || Talu] = (0,6,0)]/%, , where X, £ Ly(0,tp)™ x Ly(U), and Prob. I is seen as the
problem of finding the minimum-distance approximation to (0,6,,) € X, in T,[L2(0,tr)™] -
note that X, is a Hilbert Space with the inner product

((v1,w1), (v, wa)) x, = <U17U2>L2(0,tp)m + <w17w2>L2(U)-

Moreover, To[L2(0,tr)™] is closed. Indeed, if Tolux] = @o = (@, Oa0) or, equivalently,

Y24, and (since Tp is continuous) Tg[ur] —

(pPug, Toluk]) = (o, 00) then ugx — pu
Tolpu* 0] = 0. Thus,  Talpu*tte) = (fo, Tolpu"*t0]) = (G0, 0) = T = ®o €
TalL2(0,t2)™].

As T,[L2(0,tp)™] is also convex, it follows from Theorem 3.12.1 (Luenberger, 1969, pg.

69) that Prob. I has a unique solution u, (say).



Note now that wu, is a solution to Prob. I < You € Ls(0,tp)™, J(u,) < J(u, + du)
= You € LQ(O,tF)m ,

20u(Uo, 0U) Ly(0,tp)m + PullOUl| Ty 0,0ym + 2(To[tho] — bro, Tolowl]) + || Tolou]|[7, 1) = 0
& Voue Ly(0,tp)™ , (putto + Ty - Tolteo) — T [0r0] , 0UY 1y0,65)m > 0
& putto + Ty - Toltho] = Ty [0r0] = 0.
Thus, wu, is the unique solution of the linear equation ({14]). |

Remark 3.1. The final-state error achieved with a given control signal, namely,

HQ(tF;iS +5T9u79) — 0,113 = || To[u] — 0rol3

can be written as

||7T9[u] - érong + |0ro — érongv

where 0, denotes the Ly(U)-orthogonal projection of 0, on the closure of Tg[La(0,tp)™] in
Lo(U). Thus, by appropriately choosing control signals, the final-state error can be made

arbitrarily close to
inf {1 T50u] = 03w € La(0, tr)™ b + 160 — Oroll3.

In fact, this can be done with the optimal w,(p,) of Prob. 1, for decreasing values of py,.

Indeed, taking € > 0 and u. € Lo(0,tp)™ such that
1 Tp[u.] — 9m||§ < e, the fact that T (wo(pu); pu) < T (ts; pu)

implies that

pullto(pu) 10 0 mym + [ Toltro(pu)] = Orolls < pullteclZ,oepym + -



Thus,
Ve >0 ,Ypu >0, [[To[to(pu)] — Oroll < pu||u5||%2(0,tp)m +e

and, hence, lim || Tg[wo(pa)] — 0,0]|2 = 0. \VA
Pu—0

Proposition above characterizes the optimal solution u, in terms of the linear op-
erators 7y and 7,*. To obtain explicit approximations to u,, the question naturally arises
of considering finite-dimensional approximations to these operators and the corresponding

version of equation . This is pursued in the next section.

4 Approximate Solutions

In this section, a sequence {ug} is introduced which is defined on the basis of Galerkin
approximations to the operator 7Ty. It is then shown that under appropriate conditions this
sequence converges to u, in the Ly(0, tx)™—norm.

To this effect, let {Xx} be a sequence of finite-dimensional subspaces of Hj(U) with
approximability property, i.e., such that Vi) € HJ(U) there exists a sequence {¢r} C H}(U)
such that Vg € Xx and

A |4 — Y|l gy ) = 0. (16)

Let Ax : X — Xx be such that

Vo € X,V € Xg, (Ax[9],v) = —Blo, V]

or, equivalently, for an orthonormal basis {¢1, ..., ¢;} of Xk,

n

Vo€ Xk,  Axlel ==Y Blogrler & Vi=1,....n, Agld]=— Bl diléx.
k=1

k=1

Let then Ax € R™™ be defined by {Ax o = —B[oe, ¢
Let Pk be the orthogonal projection from Lo(U) onto Xk and define

T+ Lo(0.15)" = Xy by T{u] [ / " Siltr -7 [Pe [ﬁEU(T)HdT],



where Sk is the semigroup generated by Ag.

Note that T,5[u] = ch(tp;u)gbk, where €k (t;u) = [c1(t;u), ..., c,(t;w)] is given by
k=1

exc(tu) = / explAx(t — IMEu(r)dr, BL =8 - Bsnl and

(Bs1, 1) -+ (Bsm, 01)
Mgé : :

<18517 ¢TL> e </BSm7 ¢n>

The corresponding version of Prob. [ is then defined by

Prob. Ix:  min  Jx(u), (17)

u€Ly(0,tp)™

where

Ticlu] 2 175" [u] = OrollZ, ) + pullwl Lo 10)m

Similarly to what happens in the case of Prob. I, Prob. Ik has a unique solution wg

which is obtained from the optimality condition
puttsc + (T [T [uxe] = 0] = 0, (18)
where the adjoint operator (T,%)* : Lo(U) — Lo(0,tr)™ is such that
Vu € Ly(0,t5)", Y6 € Lo(w), (6, T ul) = (T7)" (6], u)
& kzi;w, ouetriw) = dicen(triw) = | " (Fic(r) by ()
so that (T7)*[8] = Fi(r)yc, where $5 2 [(6, 61) -+ (6, 6x)] and
Fre(r) 2 (M5)7 exp[AL (tr — 7)) (19)

To obtain wg note that it follows from that ux belongs to the image of (75)*, i.e.,



there exists

¢ € Ly(U) such that ug = (7,)*[¢] = Fxoy,

i.e., there exists ag € R™ such that
U = FKQK.

It then follows from that

puFrkax + Freg(tp; Frak) — FKéwl"(o =0

a sufficient condition for which being

_ K
PrOK + CK(tF; FKaK) — 07,0 = 0,

where 6 £ [(D1,0r0) - -+ (Dn(xc), 9ro>]T-

(20)

(21)

(22)

tp
Thus, as éx (tr; Frag) = Grag, where Gy = / Fi () Fg(7)dr, can be rewrit-
0

ten as pyag + Grag = 950 from which it follows that ax = (p, I+ GK)_léfi and, hence,

K

ug (1) = Fr(7)(pul + Gg)7'0,,, 7€ [0,15].

(23)

The remaining part of this section is devoted to proving that the sequence {ux } converges

to u, in the sense of the Ly(0,¢r)™— norm.

To this effect, consider the following proposition.

Proposition 4.1. There exists a real sequence {n¥ : K € Z, }such that

(a) Yu € Lo(0,tp)™, (| Tolu] = T [ulllLow) < 07 1l a.rym-

(b) {n%X} converges to zero.

Note now that Ji(w) = pullwllf, ) + 176lw] = b0 — (Tolu] = T [u])[3
Ti(w) = T (w) +|[Tolu] = T5* [ul 3 — 2(Tolu] — bro, Tolu] — T4 [u]).
As a result, with E% (u) £ J(u) — Jx(u), it follows from Proposition |4.1] that

1E7 (w)] < (07)* 1wl Ly0.e0ym + 20 Tolw] = Orollny [ul] Logotey-

9

(24)



On the other hand,
Tk (ur) < Tk (u,) = T (u,) — E§(uo) — J(uk) — E§(uK) < J(u,) — Eff(uo)

— J(uk) < J(uo) = EF (u,) + B (ux) =
J(ur) < T (uo) + |E7 (wo)| + | EF (ur)|
= (since J(ux) > T (u,))
0 < J(ug) — T (uo) < |E7 (uo)] + |EF (uk)|- (25)

Note also that, as n¥ — 0 (Proposition (b)), it follows from that |E%(u,)| —
0. Moreover, {ux} is a bounded sequence — indeed, [[ukl|7,qmym < [0r0ll7,@yru’ for, if

|ug|* > p;1||0m||%2(U) then Jx(ug) > ||0m||2LQ(U) = Jk(0) in which case ux would not be

tp

optimal for Prob. Ir. Thus, as Tplu] = Sa(tr — oz){z Bgiu(a)da, {To[ukl} is also
0 =1

bounded and, hence, it follows from that (as nf — 0) E% (ug) — 0. Thus,

{IE7 (uo)| + |E7 (ug)|} — 0 (26)

which together with implies that J(ux) — J(u,). Thus, the following corollary of
Proposition [4.1] has been established

Corollary 4.1: J(ugx) — J(u,). \Y

Moreover, as {ur} is bounded and J(ux) — J(u,), the desired convergence of the

approximate solutions {ux } can be established, as stated in the following proposition.

Proposition 4.2. The sequence {uy : K € Z,} of solutions to the approximate problems

Prob. Ix converges to the solution u, of Prob. I in the sense of the Ly(0,tp)™-norm. 'V

Proof. Note first that (since w, is an optimal solution of Prob. I)

T (uk) = T (e + (ur = to)) = T (to) + pullttc — wollZ, 04, + [ Tol(wr — wo)]l[7, 1)

10



It then follows from that
pulltire = wol|7,(04pym + 1 Tol(wr — wo)ll7, 1) < |ES (wo)] + |ES (ug)| =

pulltr — wolli, 0 pym < 1EF ()| + |EF (uk)].

Thus, in the light of , U — U, in Lo(0,tp)™.

5 Peak-value Constraints on Control Signals

In spite of the fact that the coefficient p, can be manipulated with a view to keeping
%o L2065y Within acceptable levels, it is also desirable to ensure that |ue(t)| remains
within prescribed bounds. In this connection, a version of Prob. [ with pointwise (with

respect to t) constraints may be formulated as follows

Prob. II: min J(u)

u€Ly(0,tp)™
subject to: Vi = 1,--- ;m,Vt a.e. in [0, tp], uai(t) < wi(t) < wup,(t), (27)

where u,; € C°[0,tr] and wy € C°[0,tp], upi(t) > wa;(t).

The existence of an optimal solution to Prob. II can be ascertained by means of an
argument entirely similar to the one used in connection with Prob. I. This leads to the next

proposition.

Proposition 5.1. Let Zp;(t) £ [ug;(t), upi(t)] and
Sur = {u € Ly(0,tp)™ :Yi=1---m, Vt a.e. in[0,tp], ui(t) € Tri(t)}

There exists u. € Syp such that Vu € Syr, u # u., J(u.) < J(u).

Moreover, u,. satisfies the following optimality condition:
Véu such that (u. + 6u) € Sur, (Puttc + T4 [To — br0] » Ou) Lo,y > 0 o1, equivalently, Vu
such that (u. + ou) € Syr, Vt a.e. in [0, tg] {(puuc + T [Tolue] — QTO])TCS'U,} (t) > 0. \Y

11



A characterization of the optimal solution which does not involve quantifiers is now

presented for which the following “saturation” operators are required: for i = 1,--- ,m

define Pp; : Ly(0,tp) — Lo(0,tp)

Prv)(t) =v(t) if v(t) € Tr(t)
Prilv](t) = uei(t) if v(t) < ugi(t)

Priv](t) = up(t) if wv(t) > up(t)

Proposition 5.2. Let Z,[u] £ T, [To[u] — 0,0). Fori=1,--- ,m
{ucti = Pu[—(1/pu){Zuucl}i] a.e. in [0, tp]. \4

In the light of Proposition , the problem of computing (approximations to) u,. is reduced to
(approximately) solving a “system” of equations in Ly(0, tr) with respect to w € Ly(0,tp)™,
the ¢ — th one of which is based on Pj;. As the latter is also an involved problem, even if Ty
is replaced by an approximation 7,5, motivation arises for bringing duality considerations
to bear on approximations of Prob. II.

To this effect, let Ti(u) 2 pullul}, . ym + 175 1] = 653 and consider.

Prob. Ilk : min Jk(u). (28)

UESyF

Approximate solutions to Prob. II can be obtained on the basis of Prob. I[x, as stated

in the following proposition.

Proposition 5.3. (a) VK € Z, there exists u’ € S,p such that Vu € Sur, u # uk,
T (ue) < Tic(u).
(b) uf — u, in Ly(0,tp)™. \Y%

A counterpart of Proposition [5.1] for Prob. Il leads to

{ue i = Prl=(1/pu){Z; [ul}] (29)

where ZK[u] £ (TX)*[T,K[u] — 0,0). However, instead of directly tackling equation in
order to obtain approximations to uXX, duality considerations pertaining to Prob. Iy are

now introduced.

12



To this effect, note first that u;(t) € Zp;(t) < uq;i(t) — u;(t) < 0 and w;(t) — up(t) < 0, so

that a Lagrangian functional for Prob. Ik can be defined by
LagK(’u’a A) é jK(u) + 2<Aa7 U, — ’U’>L2(0,tF)m + 2<Aba u — ub)LQ(O,tF)m ) (30)

where X, € La(0,tp)™, Ap € Lo(0,tr)™ and XA = (Ag, Ap).

The corresponding dual functional and dual problem are given by
©pir(A) £ min{Lagg (u, \) : w € Ly(0,tr)™} (31)

and Prob. Ilpk : max ppg(A),
———— &S
where
S)\ £ {(Aa, Ab) . Aa & LQ(O,tF)m, Ab - L2(07tF)m7vt a.e. in [O,tF], Am(t) Z O,Abz(t) 2 O}
The following proposition is a direct consequence of Theorem 1 in Luenberger (1969),

pp. 224.
Proposition 5.4. (a) sup{¢px(A) : A € Sx} = min{Tx(u) : u € Syr}.

(b) Let uX () be the unique solution of er(lin : Lagr(w,X). Then uf = uX(A\g), where
ucLy(0,tp)™

A = arg Max oo (A). \Y

To rely on Proposition [5.3] to obtain approximate solutions to Prob. Iy explicit charac-

terizations of both w(A) and ¢pr () are presented in the next proposition.

Proposition 5.5. For any X = (XA, Ay) € Sa
ul Al = ug —Fx(I — (pu I+ Gg) oy + (Aa— Ny), and

c

o (A) = 10roll7, 0y + (75" [uk], —0r0) + SpK(N),

where

@DK()‘) = _p;1<>‘ab7 Aab> + :01:1<£§7 (puI + GK)71€§\(> - 2<£§(7 aK> + 2<>‘a7 ’U,a> - 2<)‘bv ub) )
tp
Aab = Ag — Ny, EX é/ FL(T)(Xa(T) = Xp(7))dr and Grak = €X. \V
0

13



It follows from Proposition that Ag = arg g\%as}f &pi (A) is the solution of a quadratic
problem in Ls(0,¢z)™ with non-negativeness constraints on the values A(t) (a.e. in [0,1r)).
This suggests that approximate solutions Ak for this problem should be sought on the basis
of which the corresponding approximate solutions u* [S\K] can be readily obtained in the

light of Proposition

Remark 5.1. Although uf[S\K] may fail to be in the feasible set Syr, a closely-related
feasible solution uﬁ[S\K] can also be obtained on the on the basis of Proposition , To this
effect, let u% A = u —Fr(I—(p I+ Gg) Hak so that uf[A] = u [N+ (Aa — Np); define
ult[A] by:

vt € [0,tp] such that {uf[A(t)]}; € Ipi(t), {wiA®)]}, = {u%[A@)]};,
Vt € [0,tp] such that {uf ()]}, < wai(t), {uf}[)\(t)]}i = uy(t),
vt € [0,t5] such that {ug[A(t)]}; > wi(t), {wi[A(®)]}, = wi(t).

For any X\, ul[\] € Syur; moreover, due to the so-called KKT optimality conditions for Prob.
Ik, uBAg] = uB[Xk] (ie., at X = Ak, ul equals the optimal solution of Prob. Ilg).
In addition, given S\K, the assessment of uf}[)A\K] as an approrimate solution to Prob. [k
can be carried out on the basis of the inequality ppx(Ax) < Ti(u.) < T(Wl[Ag]) so that
whenever opi(Ag) and J(ul[Ag]) are “close” ul[Ak] can be regarded as an “approzimate”
solution to Prob. I1x. In the next section this approach is illustrated in two simple numerical

examples. \Y%

6 Actuator Location

It is often the case that the spatial effect of the control signals w;, ¢ = 1,...,m, have a
local character due to the functions B¢, only having non-zero value on “small” subsets of the
spatial domain U. In such cases, the “location” of each u; (i.e., the “centre” of the support
of Bg;) may have significant effects on the magnitude of the final-state approximation error
attained with the optimal w.

More specifically, assume that U is symmetric with respect to z, € U and let Ug C U be

an open and connected set also centred on z,. Let 3, : U — R be such that Vo € U — Ug,

14



Bq(z) =0 (ie., Ug is the support of B,) and for a list X of locations X;, X = (Xy,..., X)),
X; € U and such that Ug + (X; — z,) C U, define Bg,(4&;) : U - Rby Vo e U,
Bgi(w; X)) £ Bu(x — (X — 14)) — note that Ug + (X; — 24) is the support of Bg;(+; X;).

Recall that the approximation error magnitude is given by
1T [ur] — 05 |le = ey (tr;uk) — 0" ||l where ug = Fro, cxltriug) = Gray and
ok = (pul + GK)_@T{{O-

Thus, (175 [ux] = Orellle = [{Gr(pul + Gr)™ =Dy, ll2 = T+ o' Gic) 0l sinee
Gr(pul +Gr)™' = p'Gr(I+p,'Gg) ™ =1~ (I+p,'Gg) ™!

Thus, to choose actuator locations with the purpose of obtaining a good final-state ap-

proximation, a natural formulation for the actuator location problem would be:

Prob. Loc.: min v(X), (32)
X=(X1,..., Xm), Uﬁ-i-(Xi—CCa)CU

tp
where v(X) 2 [ {+ pi G (ME(2))) 5 GaedM) 2 [ explA e MM explA k]
0

(Bs1(X1), 1 -+ </6.S'm( m)s $1)
Mj (&) = :

(Bs1(X1), 0 - (Bgp(dm), ¢x)

Remark 6.1. The problem formulation above hinges upon the approrimation error attained
with the optimal, unconstrained control signal wy. It is also natural to focus on the con-
strained optimal control signal uS;, in which case v(-) would be replaced by v () in the

formulation of Prob. Loc. by v.(X) = || ¢k (tr; ul) —55)”2. \Y

Remark 6.2. Those two choices of cost functional for the actuator location problem are
“tuned” to a given final-state target @5). Alternatively, if any final-state in a “broad” class
may be targeted with the same actuator-location arrangement, a natural choice for the cost-
functional of Prob. Loc. would be v (X) £ (I + p,'Gg(Mj (X)) ||s. This would be
relevant for both ux and u$ for, in the case of ug, it yields an upper bound on v(X) for
any 9,,0 with euclidean norm smaller or equal to a pre-specified value; whereas, in the case
of u, as ug(7) = Fr(7)p, (I + p,'Gg (Mg (X))~ 19m, making vs(X) “small” tends to

make the values of w(-) smaller thereby mitigating the increase in the approximation error

15



magnitude due to the enforcement of peak-value constraints. \%

The possible effect of actuator locations on the controlled final state is illustrated in
Figures 13, 14 and 15 below for the case of the one-dimensional heat equation with one scalar
control signal (i.e., u(t) € R). Three locations are considered: a central one and two others
symmetrically situated with respect to the centre of U = (0, L,) (i.e., * = L,/2) and close
to the boundary OU. In this case, with the desired final state also symmetric with respect
to v = L,/2 and for the approximating subspaces Sk = span{+/2/Lsin ((r/L,)z),...,
V/2/Lsin ((Kn/L,)x)}, it can be shown that Xy = L,/2 is a local extremum for v(-). Tt
can be observed that the central location yields significantly better approximations for the
desired final state than those provided by the two other locations taken into account—this is
the case for both uk (X) and uf (X).

In general, solving Prob. Loc. (even for the cost-functional v(-)) is a difficult task as global
optimization techniques are required to obtain a solution on U™ and v(-) depends on X in an
intricate manner (through the inverse of (I + p,'Gg(Mf(X))) with G (M) depending on
MM" and {Mf (X)}a = (Bge(Xe), ¢x)). Although a grid search would seem feasible in the
physically motivated cases of n—dimensional spatial domains with n = 1,2, 3, it is noted that
with N, points along each dimension, the number of possible actuator locations arrangement
would be (N;)™. To perform a less demanding search, optimization objectives may be
weakened so that a randomly-generated sample of possible actuator-location arrangements
is examined with the sample size being specified on the basis of probabilistic considerations—
this approach has attracted considerable attention in the control literature (cf. Tempo & Ishii
(2007) and references therein). The sample size calculations of interest here are presented

below.

6.1 Sample Size for Random Search

Let x be a continuous, n—dimensional random variable with probability density function
(pdf) p, the support of which is denoted by S, € R". Let f : S, — R$ be continuous
and such that V w € f(S,) the set {x € S, : f(z) = w} has zero Lebesgue measure.
Let f. be defined as f. = inf{f(z) : x € S,}. For a given ¢ € (0,1) define §. > 0 by
Pr{x € S, : f(x) > f.+ 0.} =1 —e. Note that 6. — 0 as e — 0.
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Let {x; : 1 =1,..., N} be (a sample of) independent and identically distributed random
variables with pdf p, and define f¥ £ min{f(z;):4=1,...,N}. For a given a € (0,1), N
is to be chosen so that

Pr{fN < f,+6}>1-aq. (33)

To this effect, note that

N
Pr{f¥ < fo+8} = 1—P7“{f>fvZf*+5a}=1—P7“{ﬂ{xiESx:f(xi)Zf*+5a}}@

=1

N
= 1—HPr{xiGSxif($i)Zf*+5e}

=1

= 1-{Pr{z €S, : f(x) > f. + .1}

S Pr{fN<fite}=1-(1-¢)N
Thus, holds if and only if

I-1-a¥>1-a & a>10-¢e) <« loga> Nlog(l—z¢)

& N> N, =loga/log(l —¢) = %.

Thus, roughly speaking, in the case of a uniform pdf on S,, for N > N,. the probability
that f is smaller than “the values of f(x) on (1 —¢) x 100% of S,” is greater that (1 — «).
In Section 7.3, an example is presented to illustrate the potential of such a random
search to choose the locations of two “actuators” in connection with the heat equation on a

two-dimensional spatial domain.

7 Examples and Numerical Results

In this section, two simple numerical examples are presented to illustrate the way the results
above can be used to characterize control signals which aim at steering a solution of a PDEE

over a given interval [0,¢p] towards a prescribed final state.
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7.1 A One—dimensional Example

Let U = (0, L,) and consider the one-dimensional heat equation with homogeneous Dirichlet

boundary conditions and single-point control w : [0,tr] — R, i.e.,

00 0%0

a(gg,lt) = kam—(2,t) + Bg(z)u(t)

VeeU Vte (0,00), a2

VeeU, 0(z,0) =0 (zero initial condition)

Vte(0,00), 6(0,t)=60(L,,t)=0 (boundary conditions)
with the corresponding weak version given by

00 00 0p;
VZ:1,2,,<E(,TS),¢Z> = _ka <%(7t)7a_ﬁ_>+<ﬁ57¢z>u(t)

<9<7 0)7 ¢z> = 0,

2 k
where ¢y : [0, Ls] = R is given by ¢x(x) = /- sin ( 7 x>

Approximate solutions ux and u§ are sought to the problems

Prob. I: min J(u;pr) or Prob. I,: min J(u;pr),

w€Ls(0,tr) ————— u€ESur

where J (u; pr) = ||u||%2(07tF) + prl|Tolu] — 6,53, 0., is the final state to be approximately

reached and

Sur = {u € Los(0,t5) : vl 0tr) < fal -
In this case, {Ax e = — < L% <_E_:> oS (kﬂLz()) 7 L% (_i_:> oS <£7TL£')>>7 ie.,

k)2 _
A = diag {—ka (L—”> } and By = |(Bs, /2 sin (2)) - (B, /2 sin (K22)))].
The optimal solution of Prob. I is given by, V7 € [0, tr]

u(r) = B exp{A%(tr — 7)}ax,
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where
ag = (I+ PFGK)*lppéf(o, (éfi)T — [<0m, L% sin (172_95))> e <9m’ L% sin (Kz_w()> >]

tr o
and Gx = / exp[AKt]QSKﬁgK exp[Agt]Tdt, i.e., Gg is the unique solution of
0

AxGg + GgA} = exp[Axtr]BsxBsx exp[Axtr]” — BsxBsx-

The approximation error on the final state for a given control signal w is given by
Tolu]—0,, = ex[u]+éx[u] where ex[u] = T [u]—0X (error projection on span{¢y, ..., ¢x})
and éxc[u] = {Tg[u] — 75" [u]} — {0ro — 0,5}

To get an upper bound on ||7g[u] — 6,,||2 note that

I Tolu] = 0,02 = llex[w]? + |[xlul|l2, (34)
lex[ull} = llex(tr;u) — 0,2, (35)
lexlulll: < | Tolu] — T [ulllo + 1670 — 65 - (36)

2

Note also that || 7p[u] — %K[u]Hz = Z cr(tpu)or|| = Z cr(tr;u)?, and
k=K +1 o k=K+1

tp 2
ci(tr,u) = / exp [—ka (i—ﬁ) (tr — 7')] Bspu(r)dr, where Bg, £ (Bg, k), so that
0 T

(in the light of Cauchy-Schwarz inequality)
||U||2L2(o,tp)

k)2
exp [—k‘a <L_> (tp — )]
z Lz(O,tF)

1 kr\ 2
= oltriu)? < |Bgl N {1 — exp [_ka <_L ) tF] } HUH%Q(O,tF)

2
= c(triu)® < ‘/35k|2

1
2
< |Bsil WHU|\%Q(0¢F)-

Lo
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It then follows that

- 1
K1, 112 2 2
T~ T e < 185 ~ B gy e o
where B.S'k 2 ZkK:1 BsiPr-
Thus, combining — gives an upper bound on ||7g[u] — 6.,/ which approaches the
squared norm of the approximation error in span{¢r, ..., ¢r} (i.e., |lex[u]||3) as K — oo.
For the optimal solution of Prob. Ik, the latter is given by

_ ~K .
lex[uk]l3 = llex(tr;uk) — 0,,]5  and since

(tF,’U,K / HK tF—T)U,K( dT_/ HK tF—T)HK(tF—T) aKdT where
Hg(t) = exp [Axt] Bsk, ck(tr;ug) = Grog <~

ex(trur) = Gr(I+ prGr)pr0h = (I — (14 prG)~11 0% it follows that
1 K
lexlur]llz = T+ prGr) 6,0 |l3- (38)

To compute approximate solutions to Prob. I., consider the truncated problem

Prob. 1. : urélng Jx(u; pr) and the corresponding dual problem,

Prob. Dy - ggg\}:@g()\a,)\b;pp) subject to Vt a.e. in (0,tr), Ay >0, Ay > 0,

where 8 (A, Ap) = inf{Lagx (u; Ao, Np) : w0 € Lo(0,t5)},

Lagg (w; Aa, Ny) = Ti(w; pr) + 20, g — ) + 2Ny, u — wp) and uy = j1, and w, = —uy.
The unique solution to the problem ueggé}tﬂ Lagr (u; Ag, Ap) is given by

u[A] = @y + A, where @i [N(1) = HE(tr — 7) {&x — T+ prGr) L préX |,

A=A, A), Aap = Ay — Ay and €5 —/ Hy(tp — 7)Aap(7)dT.

The corresponding value for the dual functional is given by

QDID(()‘«M Ap) = Lagi (ui[A]; Aa, Ap) = pFHGTOHg + pF(%K[u%]a —0ro) + @ID(()‘LM b)),
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where

@g(Aa,}\b) = _<Aab7)‘ab> +pF<(I+pFGK €A7€§\(>E €)\ 7aK>E+2<)‘a7ua>
—2()\b,ub>.

Note that for any non-negative X, and Xy, % (A,, Ap) is a lower bound for the optimal
value of Prob. I.kx. If (A2, A7) is optimal u$, € Syr. Moreover, Ao(7) = 0 and Aj(17) =0
(hence, A2, (1) = 0) whenever u$%[X°|(7) € (uq,up) so that, in this case, u%[A°](7) also
belongs to (we, up). When A2(7) # 0 (respectively AJ(7) # 0) uf (1) = u, and u%[A°|(7) <
u, (respectively, uf[A°](7) = up and wj[A°](7) > u,). This suggests a heuristic way of
obtaining a feasible u%[\], namely,
ug[A|(7) = @[N] (r) if @i [A] € (ua, wp),
ul A7) = ug if WEA)(T) < ug and wR[A](7) = wp  if WS [N](T) > uy.

To obtain approximate solutions to Prob. Dy, piecewise linear classes of multipliers are
considered, i.e., let Ny € Zy, 6y = tp/Nx, I, = [(k — 1)6, kde], v = [71 - - - Yny41] and define
Vk=1,...,Nx, Yte€Zy, At;vy) =+ (1/0)(Vks1 — 1) Atly,
where Aty =t — (k—1)d; (note that v, and 41 are respectively the values of A(¢, A) at the
lower and upper extreme points of the interval Z;). Such multipliers can then be written as

a function of ~ as follows:
Yt € Li, At) = hy (D Exy,

where hy, (1) = [hra(t) © hio(t)], Ef = [en(my) | erii(m,)], my = Na+1, hya : T — R,
hka(t) =1- hkb(t), hkb . Ik — R, hkb<t) = (1/5t)<t — ak) where A = (]{7 — 1)(5{/

As aresult, X = Te, (v, — ), where T, = {Z Hy(t; — 7)hi, (T )dr} E; and

—@5Aas A) = Yo (Py = Ty pr(I+ prGr) " Tey) Yap + 20T eV ap — 27200 + 2751,

where v
A

2 vu =y P ZEk [ matomtaiins 3, =S { | [ wonta] B
k=1 k
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N

and 71, =>" { { /I k ub(t)hgab(t)dt] Ek}

k=1
The problem to be numerically solved is then

Prob. DX max oS (Aa(va): Mol(y)i o). (39)

Yar Vb GRNA+ !

Prob. Ix and Prob. D,If were numerically solved for two pairs (6,,,3g) respectively
displayed in Figures 1, 2 and Figures 5, 6, with pr = 2000, K = 5, L, = 1 or 2, and
Ny = 30. For the first pair (6,,,3g) the unconstrained problem was solved leading to the
approximate solution ug( -; pr) which is plotted in Fig. 3 (dashed blue curve, labeled ug).
Table 1 gives the Ly(0,tr) and Lo (0,tr) norms of uk( - pr) and the Ly(U) norm of the

projection of the final-state, approximation error on span{¢y,..., ¢k}

| Jrcuipr) | ulle | lluwslloo [ 175" feer] = 6,cll2 |
| 160.5171 | 10.9233 | 43.5917 | 0.1435 |

Table 1: Unconstrained problem for the first pair (6,,, Bg), pr = 2000.

The constrained problem Prob. I.x was then solved for the same pair (0,,, 3g) with

the prescribed upper bound g, on ||ul/s taken to be p, = 30. Approximate solutions are

then obtained for Prob. DX

&, say (v, ~f). The corresponding multipliers are denoted by

AKX and A on the basis of which a feasible solution for Prob. I is computed, namely,
al = ul[A*] where A = (AX A). Table 2 below exhibits the results to Prob. I.x for

the first pair (6,,,8g).

| Tic(agpr) | ep N | llaillle | ekl | 175 [2R] — 652 |
| 168.2210 [ 167.0747 [ 10.5405 | 30 | 0.1690 |

Table 2: Constrained problem for the first pair (6,,, 8g), pr = 2000.

Recall that ¢ (M) is a lower bound on the optimal value of Prob. Ik and that @ is
a feasible solution for it. Thus, as shown in Table 2, Jx (@) does not exceed the optimal
value of Prob. I.x (say J%) by more than 1.15 (or by 0.7% of J%) — thus, #% can be taken

to be an "approximately - optimal” solution to Prob. I.k.
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Figure 3 displays the plots of @t and uy. Figure 4 exhibits the plots of X (the projection
of 0,, on span{¢s,..., ok}, in green), Ox 2 T [uk] (dashed blue) and
OF £ TK[ak](in red).

To illustrate the role of pr in getting better approximation of the desired final state,
numerical results were obtained for the same pair (6,,, 8g) with pr = 4000. The results are

presented in Tables 3, 4 and Figures 5 and 6.

| I (urcipr) | Nuxlle | urllso | 175" [ex] — 6,012 |
| 187.54639 | 12.3752 | 46.5118 | 0.0926 |

Table 3: Unconstrained problem for the first pair (6,,, Bg), pr = 4000.

Ix(agpr) | obN) [ @kl | 2%l [ 17,5 (@8] — 6l |
| 211.2104 [212.2948 [ 11.9634 | 30 | 0.1305 |

Table 4: Constrained problem for the first pair (6,,,3g), pr = 4000.

Comparing Tables 1 and 3, it can be noted that the increase in pg from 2000 to 4000
brought about a decrease in the Ly (0, tx)—norm of the approximation error on span{¢i, ..., ¢s}
(from 0.1435 to 0.0926) at the expense of increases in both the Ly (0, ) and Lo (0, ¢r) norms
of ug (respectively, from 10.9233 to 12.3752 and from 43.5917 and 46.5118).

Similarly, in the case of constrained problems (Tables 2 and 4) it can be noted that
the increase in pp decreased the Ls(0,tp)—norm of the “projected” approximation error
obtained under “peak-value” constraint (||u|| < 30) from 0.1690 (Table 2) to 0.1305 (Table
4). Note also that uk is “approximately optimal” as | (M) — T (wk; 4000)| /0B (AF) =~
1.09/212.2948 < 0.5 x 1072.

The plots of ux and uf and those of the corresponding approximations O and 9}@ of
the desired final state are respectively displayed in Figures 5 and 6.

Numerical results were also obtained for the pair (6,,,3g) shown in Figures 7 and 8.
First, an approximate solution ux was obtained for Prob. Ix — see Table 5 for the values
of its Ls(0,tr) and Lo (0,tr) norms and the corresponding values of the cost-functional and

the Ly(0,1) norm of the final-state error (projected on span{¢y,...,¢x}).
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| Tic(urcipr) |l | [urlloo [ 175 [ur] = 07> |
| 2835120 | 13.5254 | 23.5491 | 0.2242 |

Table 5: Unconstrained problem for the second pair (0,,, Bg), pr = 2000.

A numerical solution % was then obtained for Prob. I with the prescribed upper limit
oy 0N the Lo (0,tp)—norm of u being set at p, = 18. This was done along the same lines

described above in connection with the first pair (6,,, 3g). Table 6 exhibits the corresponding

assessment data for @f.

I (aiipr) | opAY) | lliclle | [9& s | 175" (25 — 6,012 |
| 300.2274 [ 286.3859 | 12.6191 | 18.0000 | 0.2655 |

Table 6: Constrained problem for the second pair (6., Bg), pr = 2000.

Note that 7, K (U pp) may only exceed the optimal value J9 of Prob. I.x by less than
5% (of J5%). Figures 9 and 10 respectively display the plots of uy (dashed blue) and @k
and those of 6% (the projection of 6,, on span{¢y, ..., ¢x}), Ok 2 T,X[ug] (dashed blue)
and 0% 2 TK[ul].

Results were also obtained for the second pair (6,,, Bg) with pr = 4000, as presented in

Tables 7 and 8 and Figures 11 and 12

| I (urcipr) | sl | urllso | 175" ] — 67012 |
| 362.0183 [ 15.3659 | 26.4600 | 0.1774 |

Table 7: Unconstrained problem for the second pair (6,,, Bg), pr = 4000.

SIS . . . R
T (@i pr) | epN) | [@ille | Il | 1755 [@5] — 05,2
| 3873645 | 387.2508 | 14.7342 | 18 | 0.2063 |

Table 8: Constrained problem for the second pair (6., Bg), pr = 4000.

Again, it can be noted that increasing pp brings about a better approximation to the
desired final state. Note also that |oR(A®) — Jx(uk; 4000)| /o8 (AF) ~ 0.11/387.2568 <

0.03 x 1072 and hence @ can be regarded as “approximately optimal” for the constrained

problem.
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Figure 1: Example 1. 6,,: target final state.
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Figure 2: Example 1. B4: control-to-state actuator.
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L,=1tr =1, 1ty =30, K =5, pp = 2000,N = 90, Nint = 120
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Figure 3: Example 1. Control signals uy (blue dashed), uft (red solid) for pr = 2000.

L,=1.tr =1,y =30, K =5, pr = 2000,N, =90, Nint = 120
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Figure 4: Example 1. Approximations to target final state for pr = 2000.
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a0 T T
——

R
45 Hie

3B

30—

28—

Contral Function

o=

1) 0.2

Figure 5: Example 1. Control signals u (blue dashed), uft (red solid) for pr = 4000.
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Figure 6: Example 1. Approximations to target final state for pr = 4000.
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Figure 9: Example 2. Control signals uy (blue dashed), uft (red solid) for pr = 2000.
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Figure 10: Example 2. Approximations to target final state for pr = 2000.
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Figure 11: Example 2. Control signals ug (blue dashed), uft (red solid) for pr = 4000.
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Figure 12: Example 2. Approximations to target final state for pr = 4000.

Finally, the effect of the location of the “actuator” B4 on the final-state error T [u$;]—0,,
is illustrated by taking Bg to be centered on ¢, € (0,2), i.e., by letting B¢ to be given by
Bg(z) =1, Vo e ({, —0g,l; +Ip), PBg(xr) = 0 otherwise, and computing the resulting
T [u$] for several values of £, (with 3 = 0.1), which are displayed in Figures 13-15,
respectively for ¢, = 3/10, ¢, =1 and ¢, = 2 — 3/10.
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Figure 13: Example 2. Approximations to target final state for pp = 4000, ¢, = 3/10.
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Figure 14: Example 2. Approximations to target final state for pr = 4000, ¢, = 1.
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IocP(19), L =2,¢,= 1, 2, =18, K=5, 5 =4000, N =90, Nint=500

Figure 15: Example 2. Approximations to target final state for pr = 4000, ¢, = 2 — 3/10.

7.2 A Two—dimensional Example

An example is now presented of an initial/boundary-value problem defined by the heat
equation on a rectangle in R%. More specifically, let U = (0, L,) x (0, L,), where L,, L, € R,
and consider the following equation:

Vo) €U Dayt) = ko { 20+ 20N (0 t) + Bl ppult
x —(x = — 4+ — (z x
Y ) 675 Y, « 81'2 ayQ » Y s\T,Yy

with zero initial conditions, i.e., V(x,y) € U, 6(x,y,0) = 0 and homogeneous Dirichlet

boundary conditions, i.e.,
vVt € [0,tp|, Y(z,y) €U, O(zx,y,t) =0,

where v : [0,tp] - R and Bg: U — R.
The corresponding weak, “K-th order”, Galerkin version is given by Vk =1,... K,

<%(., ',t),¢k> = —k, {<%(., 1), %> + <g—z(-, 1), %>} + Bgru(l),

where i =1,..., K,, j=1,.... K, k(i,j) = (i — 1)K, +j, K=K,K,,
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Ouii) (.9) = SH@)F), 07() = [ Esin [ F2]. 0(w) = /2 sin |52,

As in the previous example, control signals ux and uj are sought by means of the

problems
Prob. I : min jK(u;pF) and  Prob. I, : min jK(u;pF),
—————— ucls(0,tp) ——— u€Sur

where Jic(wi pr) = [ll2, 0y + prI T30l = 003, Tl = S5, cultriw)n, Oy, s the

final state to be “approximately reached” and, as before, ex (t;u) = [c1(t;u) -+ cx(t;u)]t
t

is given by €k (t;u) = / Fx (1) u(r)dr with Fg as in . In this case,
0
Ay =diag{ar - k=Fk(1,1),... k(1,K,), k(2,1),...,k(2,K}), ..., k(K 1),...,k(K:, K},

Wh@e‘%@ﬁ::_ka{[%ﬂz‘F[ﬁjQ}v and MK = [(B.¢1) - (Bg.0n)]".
Sur ={u € Ly(0,tp) : ae., |u(t)| < pu}

Note that Jic(us pr) = [ul2, ., + ol T Tu] = 0512, ) + 10,0 — OX 2, ), where 65
is the orthogonal projection of 6,, on the span of {¢1,..., ¢k}

The numerical results shown in Tables 9 — 12 were obtained with the following problem
data: k, =1, Ly =L, =1, tp =1, prp = 8000 and 20000, p, = 100, K, = K, = 5,
Oro(z,y) = 0 V(z,y) € OU, 0O,(z,y) = 2 V(x,y) € [L,/10,9L,/10] x [L,/10,9L,/10],
the graph of 6,, is the frustum of a rectangular pyramid with [0, L,] x [0, L,] as basis,
Bg =1 for (z,y) € [L,/4,3L,/4] x [L,/4,3L,/4]

Bg =0 otherwise

16X |2 = 1.7289 and Bg is given by

| I (uipr) | luglls | [uxls [ 17" Tug] 13 |
| 4978.00 [ 45.6636 | 192.5735 | 0.6037 |

Table 9: Unconstrained problem with pr = 8000.

I (uicipr) [ BN | uiclle [ lufclloo [ 1755 [ui] — 055 |
| 5668.10 [ 5485.00 [ 33.0038 [ 100 | 0.7565 |

Table 10: Constrained problem with pr = 8000.
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| Tic(wsci pr) | usclls T 1lwiclloe 175 Tr] — 075 |
| 812740 | 64.4017 | 265.37 | 0.4485 |

Table 11: Unconstrained problem with pp = 20000.

| Tie(uicipr) | epN) | llwiclls | Nl | 175" [ui] — 6715 |
| 12281.00 | 11195.00 | 37.8125 | 100 | 0.7366 |

Table 12: Constrained problem with pr = 20000.

Similarly to the results in the case of a one-dimensional spatial domain, Tables 9-11
illustrate the effect of increasing pr on the decrease of the approximation errors ||7,% [ux] —
0K |l2 (from 0.6037 in Table 9 to 0.4484 in Table 11) and || 7,5 [u%] — 0X|l2 (from 0.7565
in Table 10 to 0.7366 in Table 12). Note that in the latter case, increasing ppr from 8000
to 20000 had a small effect on the approximation error - this is due to the fact that the
maximum magnitude of u was kept at the same value (1, = 100).

Again, as observed in the 1D-case, the “relatively small” difference between % (A*) and
Tx(uSe; pr) (3.2% for pp = 8000 and 8.8% for pp = 20000) indicates that u$ is “nearly
optimal” for the constrained problem - recall that % (A*) is a lower bound on @ (u; pr)

for any u € Syr.
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Theta =8000, 1 input

cont’ PF

2.5 -

Figure 16: Transversal section of T [u] at £, = ¢, for pr = 8000.

Theta =20000, 1 input

cont’ PF

2.5 -

Figure 17: Transversal section of T [u$] at £, = ¢, = 1/2 for pr = 20000.
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Control Function

Theta =8000, 1 input

refi’ PF

0 02 04 06 08

08 06 04 02 oo 02 04 06 08 1

Figure 18: Transversal section of 6% .

P£=8000, 1 input
T

Time (t)

Figure 19: Graphs of uyx and u§ for pp = 8000.
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P£=20000, 1 input

Control Function
Y 5

Figure 20: Graphs of ux and u§ for pr = 20000.

Figures 16 — 20 respectively display 7, [u$], 0%, transversal sections of the first two plot

and ux and uf for pp = 8000 and 20000.

7.3 Actuator Location

The initial/boundary value example defined by the heat equation on a rectangle (0, L,) X
(0,L,) in R? which was introduced above is now slightly modified to involve two scalar

control signals (u(t) € R?) and numerical results obtained searching the set of their possible

“locations” will be presented.

More specifically, let the “source” term in the heat equation be given by
2
B,y X)ult) = 3 By, ys Xui(8),
i=1
where X = (X1, Xy), X; = (X7, XY) € R? and Bg;(+) is defined by

Bsi(w,y; Xi) = 1 V (z,y) € [X" — 0, & + 0] X [X] — 0, X + 0]
Bsi(w,y; X;) =0 otherwise.
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A location X will be assessed by the approximation error relative to the desired final

state 0¥ achieved by the optimal (unconstrained) control over (0,¢r), i.e., by
K
v(Xy, Xp) = [(T+ prGr (Mg (X1, X2)))0,, 2,

where Mj and G (M) are as in Section 6.

Two searches were carried with the following data: L, = L, =1, tp =1, pp = 8000,
V (z,y) € (0,L;) x (0,L,), 6. (r,y)=2, K=5 dg=0.1.

For the first one, a 5 x 5 grid was defined by S, = {0.1,0.3,0.5,0.7,0.9} as Sy X S,
and the set of possible locations S;fn 2 (X, ) X € (Sgr X Sgr),1 = 1,2} (comprised of
625 “locations”) was exhaustively searched. The minimum of v(-,-) on S, was found to be
0.5 0.5
0.7] ’ 0.3] )

For N, > N,., a search was also carried out on a set of N, pseudo-random samples of

1.2563 and it was attained at the location (

a constant pdf on Sy, = {(X1, ) : &; € (0,L,) x (0,L,),7 = 1,2}, with o and ¢ set to
a=¢e=10"% N, = 2/log(1/0.99) ~ 454.5454, so that N, was taken to be 500.

The minimum of v(-,-) on the 500 pseudo-random samples was found to be 1.2562 and

_ , , 0.2854| |0.6641
it was attained at the location , .
0.4170 0.5468

Finally, the case of three scalar control signals was considered in the same setting. With
the same values for a, ¢ and N, a search on pseudo-random samples of a constant pdf on
Sx, = {(X1, Xp, As) : X € (0, L) x (0, Ly),i = 1,2} was carried out leading to the minimum

value 1.1431 for v(-,-,-) which was attained at the location

0.2952 0.7628 0.7064
1= ’ XQ = ) X3 =

0.4485 0.2222 0.8012
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9 Appendix

Proof of Proposition [4.1(a): Consider the following auxiliary propositions

Auxiliary Proposition 1: Ty[u] — T, [u] = Ef [u] + EX[u] where

Bs / Z Sa(tr — 1) = Sk(tr — 7)) [Px[Bgil] ui(7)dr  and

tF m
a / S Saltr — 1) [T Pi)[Bs] wi(r)dr. v
0 =1
Auxiliary Proposition 2: | EF[u]l|r,w) < nF ¢l Ly040)  and
1ES [w]]| o) < 7779||UHL2 (0,tz)m
where

1/2 1/2

an 'y {Z”fl( ”LQOtF)} ) 777’9 {Zng HLQ OtF)}
JEtr — o) £ ||Saltr — o) [(X = Pg)[Bsil] | o) and
g5 (tr — 0) 2 || (Saltr — 0) = Sk(tr — o)) [Pc[Bsll L, - \

Proposition (a) follows immediately from the two statements above, since bringing the

second one to bear on the first leads to

Tolul — 75" [u] < (075 + 07 ulliaemn (e ny =075 +17y)-

Proof of Auxiliary Proposition 1: Note first that

V0 € LyU), ¥ te0.tr] , PxlSk(®)|Px(0)]] = Sk(t)[Px(0)] (A1)
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It then follows that

TKlu] = Py /0 " Sk(tr — o) [PxlBu(a)]] da = /0 " Py [Sk(tr — a)[PxlBLu(a)] da

so that (in the light of (A.1]))

/ Sk(tr — o) [PrlBbu(e)] da= [ >~ (Silir =) [PrlB(e)]) do
(A.2)
Note now that
Tilul = [ Saltr = )BSu@lda = [ Sa(tr — o) [PulBFute)] do + Bf u
where t o
Bt 2 [ Satte—a) [(1= Pe)(Bbu(e)]] da = [ 3" Saltr=a) (1= Pa) Bsius(a)] do.
As a result, =

Ttul = Tt = [ 3 St — o) PelBsiu(e)l da-+ B Tul ~ 73T

= (in the light of (A2)) Tolu] — 7" [u] = EE [u] + EX[ul).

To conclude the proof of Auxiliary Proposition 1, it remains to prove that ) holds.
To this effect let O (t) 2 Sk (t)[Px(0)] and 0% (t) = Px[0x(t)] and note that:
() Ok (0) = Px[6] and 65 (0) = Px[0x(0)] = Pk [Px[0]] = Px[6] = 0x(0),
(4) Yt € (0,tr), 0 (t) = Ax © Pic [Sic(8) [P (0)]] = A [0 (¢)] and
03.(t) = P[0k (t)] = Pl Axlix(®)]] = Ax[0(t)] (since Ax = Py o Aix, o Px and, hence,
Px o A = Ag).

Thus, in the light of (i) and (ii), V¢ € [0,1], Ox(t)=0%(t). |

Proof of Auxiliary Proposition 2: Note first that

1B ey < 3 [ Iattr =) [0 = PrlBsll (0 dos =
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m tr m
1E7 [u]l| o) < Z/O (e = a)ui(@)lda < Y 15 (e = a0 il aoie-
i=1 1=1

where fl-K(tF —a) = |Sa(tr — ) [(I— Pg)[Bg;] HLz(U) =

1/2
127 [w] | oo {ZHfK HLQOtF)} ]| Lo0,0)m-

Proceeding along the same lines, it follows that

1/2
125 [w]ll oo {ZH% IILQOtF)} el L0,y

Proof of Proposition [4.1|(b): Note first that ||S4(t)|| < pae! and, hence,

fE(tr — ) < pae™ (1 = Pr)[Bs ]l raw) =

£ (tr = )l aary = Hal (I = Pro)Bsillla@) 17 Lao.r).

Thus it follows from that || f5(tr — )llLo04r) — 0 as K — oo and, hence, 7ty — 0
as K — oo.

With respect to {77759} note that under the “assumption” that B[¢, 1] satisfies Garding’s
inequality (cf; Theorem 2, Evans (1998), pp.300), it follows from (5) and Theorem 5.2
(Morris, 1994) that

VO € Ly(U), ||Sk(t)[6] — Sa®)[0)]] o

converges uniformly on [0,¢r] to zero as K — co. Hence,
lgi (tr — ')H%Q(O,tF) — 0= 777159 — 0as K — oo.

It then follows that nf = 7]71% + 777[% — 0 as K — oo. |
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Proof of Proposition [5.1} Once it is established that S, r is convex and closed the argu-

ment employed in the proof of Proposition [3.1] also proves Proposition [5.1

To show that S,r is convex let u; € Sy, i = 1,2 and define u(t;o) = ouy(t) + (1 —
o)us(t), o € [0,1]. Then Vi = 1,...,m, Vt € [0,tp] a.e u;(t,0) = ouy(t) + (1 — o)uy(t) €
Zri(t) (since uy;(t) € Ipi(t) , u2i(t) € Ipi(t) and Zp;(t) is an interval).

To show that Sy,r is closed, let u’ € S,p be such that u* — w in the sense of the

Ly(0,tp)™norm. Then Vi =1,...m, |Ju; — uf|| 1,0 — 0 and, hence,
Vt a.e.in [0,tr] , |u(t) — ul(t)] = 0. (A.3)
Now let m;(t) = (1/2)(a;s(t) + bi(t)) and v;(t) = (1/2)(bs(t) — a;(t)). Then

Vi, V0, u' € Syp = Vt a.e. in [0,tp], Juf(t) — my(t)] < ~i(t) and

Jui(t) —wi()] = [(ua(t) — mi(t)) — (ui(t) — my(t))] =

> Jui(t) — my(t)] — u (t) — my(1)].
Thus Vt ae. in [0, 5], Ju;(t) — ub()| > Ju;(t) — m;(t)| — v(t) = Vi=1,--- ,m, VW e€Z,
Jus(t) — mi(6)] < 7i(t) + Juit) — ui(t)].

Thus in the light of (A.2)), V¢ a.e. in [0,tp|, Vi=1,--- ,m, |u;(t) —m;(t)| < 7;(t) = u € Syr.
With respect to the optimality condition, note that

T (w+ D) = T () + 20, (11, At} + pullAul3 00y + 2(Tolu] — 0,0, TolAut)) + | To[ A

= J(u+ Au) = T (u) + 2puu + Za[u], M) + (pul| Aullz + | To[Au]l[7, 0.0, )m).

where Z,[u] £ T, [To[u] — 0,,).
Thus u. € Syr is optimal if and only if VAu € Ly(0,tr)™ such that (u. + Au) € Syp,
(putte + Zo[u], Au) > 0.
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Note now that since
tp
(puts + Zalu], Au) = / (puts(t) + Zalul ()" Au(t)dt
0

the condition

“YAwu such that (u, + Au) € Sy, Vt a.e. in [0,tr], (putte(t) + Zi[u | (t))TAu(t) > 07

is sufficient for u. to be optimal. To see that it is also necessary, suppose that there exists
Au € Ly(0,tp)™ such that (u.+ Au) € Sy and for some subset S, of [0, x| with non-zero
measure, (put(t) + Za[u](t))TAu(t) < 0 for any t € S,. Then, defining Au(t) = Au(t)
for t € S, and Au(t) = 0 otherwise,

(u, + Au) € Sur and (pyu. + Z,u.), Au} = / (putte(t) + Zo[u ) ()T Au(t)dt < 0

a

so that u,. cannot be optimal. [ |

Proof of Proposition [5.2} Consider the following optimization problem for ¢ € [0, ¢x] :

mﬂi{n P + Za[u](t)]]53 subject to Vi = 1,--- ,m v; € Tpy(t).
veER™

As || pu(v+A0) + Zo[u (D3 = lpuv + Za[uc ()13 +2{puv + Za[u (1), puddv) + [ pudv]]3
v, is optimal if and only if vy; € Zp;(t) and VAw such that vy + Av; € Tgi(t)

(Puvr + Zalu (1), pudv) = 0 & (puvy + Zy[ucf(t), Av) = 0. (A.4)

As the solution of both this problem and of Prob. II are unique it follows from ({A.3)
and (A.4) that Vt a.e. in [0,tp], w.(t) = ve(1).

Now, the problem above is equivalent to the problem

m

1 2 1 ) p— . .. . .
i Zl (puvi +{Zo[u ](t)},)” subject to Vi=1,--- ,m,v; € Tp;(t)

which breaks down into m problems (for i = 1,---m)

min (v; — (1/pw) {—Za[u.)(t)},)* subject to v; € Tpi(t)

v, ER
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the solution of which is given by

vi = —(1/pu){Zaluc®)]}; I — (1/pu) {Za[uc(t)]}; € Zri(t)
vi = uy(t) if — (1/pu) {Za[uc(@®)]}; > uni(t)

v, = walt) it — (1pu) {Zalu(®)]}; < tailt).

[ |
Proof of Proposition [5.3} Proceeding as in the proof of Proposition , write
J(uf) =J(uc+ (uf —u.)) = J(uc) + 2(puthe + Za[u.l, (uf )
Hlpu(ul — w3 + Tolul —ull| (A.5)
and note that (as in the derivation of (24))
jK(uﬁ() S jK(“fc) - j(uc) - Eg(uc) =
Tk — EX@r) < J(u) - B (u) = (A6)
J(u) < J(ue) = Ej(ue) + B7 (u,) = (A.7)
J(us) < T(u) +|E7 (ue)| + [E7 (u)]. (A.8)

Combining (A.5)) and (A.g8)) leads to

||,0u(’U:§ - 'U'C)Hg + H%[uf - 'U'C]”g + 2<puuc + Za[’“’C]v (uf - u6)>

< |BF (uo)| +|EF (ug)]
= (in the light of the optimality condition of Proposition
pullue — el < |EF (ue) + | EF (u)].
With the same argument used in the proof of Proposition [4.2] the right hand side of the last

inequality above is shown to go to zero as K — 0. Hence, [[uf —u.lls > as K - 0. N
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Proof of Proposition [5.5}: The optimality condition satisfied by uX(\) is given by

puts + (T5°)"[T5" [u] = Bro] + (X — Aa) = 0 (A.9)

or, equivalently, taking orthogonal projections u' and u? of w on (7,%)*[L2(U)] and on its

orthogonal complement,
putt’ + (T3") [T [u! + u?]] = (T5%)"[0r0] — Agp = 0

and pyu? — A2, = 0 where Ay = Ay — Ay, AL, and A2, are the corresponding projections of
Aab-
Noting further that 7% [u?] = 0 (u? is orthogonal to the range space of (7,5)* and hence

is in the null space of T,X) the equations above can be rewritten as
putt! + (T3 V[T [u']] = (T5%)"[6ro] — Ay = 0

and  puu® = Agp — AL,
K
Now, 7¢"[u] = ch(tF; u)¢y, and (T,5)*[w](7) = H(tp — 7)w",

ko= 1
where {¢x; k= 1,- K)} is an orthogonal basis for X,

x(triw) £ ey(n(K) / Hy(tp — ryu(r)dr, Hig(t) £ o ()Bsx.
@5 2 [(w,61,) - (W, b)) and

((Bs)1, 1) - - ((Bs)m: $1)

BSK A c Rn(K)Xm‘

It follows that u! = HE (tr — -)aX and A}, = H;(tr — )X and, hence, the equation

involving u! above can be written as

C

Hy(tr — ) {pual + wl[al] - 0~ af } =0, (A.10)
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where 0% 2 [(0,0,01) - - - (B0, On(i0))]” and

X o] 2 (T [u], é0) - (T[], du)]
Le, wlal] =[a(tru) - o tp; f Hy(t — 1) HL(tp — 7)ul(7)dT
@@f[af] GKa and GK = HK(tF—T)Hﬁ(tF—T)dT.

0
A sufficient condition for (A.10) to be satisfied is then given by

puct + Gral Hm—i-af & of = (puI—i—GK)’l(éii—l—af)
It then follows that w/S[A] is given by (since p,u’ = A2,)

uSA] = Hg(tr —Jag +pp' (Aw — Hi(tr —)ay) &
ug{[)‘] (T) = H%(tF - T)(aK — Pu a)\) + Pu Aab(T) And

ud (A7) = ug(r) + He(t = 7) {(puI + Gr) ™" = p T} X + pi' A (7).
With respect to the dual functional ppg (), rewrite Lagg as

Lagg(u,A) = (pyu+ (%K)*[%K[u] =00 + (A — Ag),u) + <7;K[u] — 6,0, —0,,)
+ <Ab — Aa, u) + 2<Aa, ’U,a> — 2<Ab7 'U,b>. (All)

Thus, as ppr(X) = Lagk (uX[A], ), it follows from (A.9) and (A.11]) that
¢ (A) = <7;)K [uf[A” — 010, —0,0) + (A — A, ufP‘D + 2(Aa; Ua) = 2(Ap, wp)

or equivalently, since uX[A] = ug — us + p5 Aas,

oo (X) = [10r0l5 + (T4" [uic], —0r0) + P (N),

where

@DK()\) = <7;K[p;1)\ab - 'U,%], _9r0> - <)\ab7 U — ’Ué( + p;lAab> + 2<Aa7 ua) - 2<Ab7 ub>
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ie,

Por(N) = =ou Nay Aav) + Napy e — i — o (T5)7[050]) + (e, (T57)7[01)

+ 2<)\a, ’U,a> — 2()\1;, ub>,
and uS [(A] £ HE (tp — ) {p'T — (puI + Gx) ™'} & or, equivalently

(as p'T—(pul+Gr)™" = p ' {I—pulpud+Gg) '} =p, {I-T+p,'Gg)'}

= ' {pa' G+ p,'Gg) '} = p T+ p,'Gr) ' py ' Gg)

uf [N = Hi (tp — )pg' (pul + Gg) ' Groy.
Finally, as (T;%)*[0,,) = HE (tr — )8}, and ux = HE (tr — ),

(WS, (T [0r0]) = (o (pul + Gi) ' Grak, GO ) and
Kapy W — e — p (T [0r)) = (€5, pa (pul + Gr) ' Grak — ax — p3'0n) s,

tp

where oax = (PuI + GK)fléK f = / HK(tF - T)Aab(T)dT (5\( = GKO&()'

r0?
0

As a result, ppg(A) is given by

Gpx(A) = =0 (Aas, Aa) + 05 (EX (pul + Gk) 'Gray) — (€5, ax + ,0;19£>

+P;1<(Pu1 + GK)_laﬁf’ GK@S)) + 2<Aa7 ua) - 2<Ab7 ub>'

Now, {(pul + Gi) 'Grak, GrbE) = (65, (p I+ Gi) ' G),) =

Gpx(A) = =0 (Aas, Aw) + 0o (EX (pul + Gg)T'EX) — (€X . ak)

+p;1<€§\(7 {(puI + GK)_IGK - I} 9f«§> + 2<Aa7 ua> - 2<Ab, ub)-

Moreover, as  (pu I+ Gr) 'Gg = I+ p3'Gr) 10, G =1— I+ p'Gg) 7!
so that

@DK()‘) = _pz:l()‘ab? )‘ab> + P;1<€§(, (puI + GK)_1€§(> - <€§\<7 aK)

—pHEK (T4 p Gr)TION) + 20, wa) — 20N, w).
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Note now that p; (I + p3'Gg) 105 = (p I+ Gg) 105 = ag. Thus,

oA = =0 Aab Aa) + 0 (X (pul + Gi)T'EX) — 2(€X, k)

+2<)\a; ’U,a> — 2()\1,, 'u,b>.
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