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1 Introduction

The problem of choosing a control function to steer the solution of a partial-differential,

evolution equation (PDEE, for short) in a prescribed manner has given rise to a vast literature

(cf. Zuazua (2002)), Trötlzch (2010), Koput & Leugering (2011) and references therein) in

which great attention has been devoted to linear PDEEs and problems defined over finite-

time intervals. In particular, the basic aim of approximately reaching a prescribed final

state from a given initial one gives rise to various optimal control problems for parabolic

equations with different types of boundary conditions and control functions acting either on

the boundary of the spatial domain or as a source term in its interior.

The control functions to be determined as solutions of such optimization problems are

often allowed to depend on both time and space coordinates. On the other hand, having in

mind potential applications, interest naturally arises in considering control functions which

depend solely on time (their spatial action being defined by the “actuators” used). Accord-

ingly, the final-state approximation problems for parabolic PDEEs considered here will have

such control signals as decision variables. Moreover, it is desirable that “finite-dimensional”

approximations to the optimal control signals are characterized either as solutions to ap-

proximations of the original problems or as approximations to the optimal solutions of those

problems.

In this report, the problem of approximate positioning of the final state on a finite time

interval is examined for parabolic PDEEs with Dirichlet boundary conditions and point

(source) control functions. Minimization of a quadratic cost involving the final-state approx-

imation error is considered with and without a constraint on the maximum magnitude of the

control functions. To compute approximate solutions to such control problems, approximate

versions of them are tackled which are obtained from finite-dimensional approximations to

the control-to-final-state operator.

This report is organized as follows. In Section 2, the basic control problem is introduced.

In Section 3, its optimal solution is characterized. In Section 4, approximate solutions to

the basic, unconstrained control problem are derived. In Section 5, “peak value” constraints

are added to the basic problem and both the original problem and approximate versions of

it are discussed, including the use of Lagrangian duality to obtain approximate solutions.
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Finally, in Section 6, two simple numerical examples are presented to illustrate the main

points previously discussed. Unless otherwise stated, proofs are presented in the Appendix.

2 Background and Problem Formulation

Consider a initial/boundary condition problem for the parabolic equation given (“in its

classical form”) by

∀ x ∈ U, ∀ t ∈ (0,∞) ,
∂θ

∂t
(x, t)−

n∑
i,j=1

∂

∂xi

[
aij

∂θ

∂xj

]
+

n∑
i=1

bi(x)
∂θ

∂xi
+ d(x)θ(x, t) = f(x, t)

(1)

∀x ∈ U , θ(x, 0) = g(x) (initial condition) (2)

∀ t ∈ (0,∞) , ∀x ∈ ∂U , θ(x, t) = 0 (boundary conditions) (3)

where U ∈ Rn is an open and connected set, aij = aji, bi, d, f and g are given functions,

{A}ij = aij, A(x) ≥ 0, a.e. in U . The associated (weak) function-space, ordinary differential

equation version, is given by

θ̇(t) = A[θ(t)] + f(t) , t > 0 , θ(0) = g (4)

where g ∈ L2(U), f : (0,∞)→ L2(U) , θ : (0,∞)→ L2(U)

A : H1
0 (U)→ L2(U) is defined by

∀φ ∈ H1
0 (U),∀ψ ∈ H1

0 (U), 〈A[φ], ψ〉 = −B[φ, ψ], (5)

where

B[φ, ψ] ,
∑
i,j

〈aij ∂φ
∂xi

,
∂ψ

∂xj
〉+

∑
i

〈bi ∂φ
∂xi

, ψ〉+ 〈dφ, ψ〉, (6)

where 〈·, ·〉 denotes the inner product of L2(U).

For aij, bi and d in L∞(U), A so defined is the infinitesimal generator of a C0-semigroup

SA (say). It then follows that whenever f ∈ L2(0,∞;L2(U)) and g ∈ L2(U) the weak
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solution of (4) is given by

θ(t; f, g) = SA(t)[g] +

∫ t

0

SA(t− α)[f(α)]dα , ∀t ∈ [0, tF ]. (7)

It is now assumed that f(x, t) = fS(x, t) + βS(x)Tu(t) where fS : U × [0, tF ] → R and

βS : U → Rm are given functions and u : [0, tF ] → Rm is a control signal to be chosen in

such a way as to make θ(tF ; f, g) “close” to a prescribed θr ∈ L2(U).

More specifically, let u ∈ L2(0, t)
m, ρu ∈ R+ and define the cost functional

J (u) , ‖θ(tF ; f, g)− θr‖2L2(U) + ρu‖u‖2L2(0,tF )m (8)

(from now on, the “space” subindices of norms and inner products will be omitted whenever

context information makes then redundant).

A control signal is to be chosen on the basis of the optimization problem

Prob. I : min
u∈L2(0,tF )m

J (u). (9)

3 Final State Positioning with Source Control

In this section, the optimal solution to Prob. I is explicitly characterized. To this effect,

note first that due to the linearity of θ(·; f, g) on (f, g),

θ(·; f, g) = θ(·; f
S
, g) + θ(·; f

u
, 0), where f

u
(t) = βT

S(·)u(t), (10)

i.e.,

θ(·; f, g) = θ(·; f
S
, g) + Ťθ[u](·), (11)

where Ťθ : L2(0, tF )m → {h : [0, tF ]→ L2(U)}

Ťθ[u](t) ,
∫ t

0

SA(tF − α)[f
u
(α)]dα, (12)
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so that J (u) can be rewritten as

J (u) = ‖Tθ[u]− θro‖2L2(U) + ρu‖u‖2L2(0,tF )m , (13)

where θro , θr − θ(tF ; fS, g) and Tθ : L2(0, tF )m → L2(U) is defined by Tθ[u] = Ťθ[u](tF ).

The existence of an optimal solution to Prob. I can be ascertained by means of a basic

result on minimum-distance problems pertaining to closed convex sets (Luenberger, 1963, p.

69), as stated in the next proposition.

Proposition 3.1. There exists uo ∈ L2(0, tF )m such that ∀u ∈ L2(0, tF )m, u 6= uo, J (uo) <

J (u).

Moreover, uo is the unique solution of the linear equation

ρuuo + T ∗θ · Tθ[uo]− T ∗θ [θro] = 0, (14)

i.e.,

uo = [ρuI + T ∗θ · Tθ]
−1 [T ∗θ [θro]] , (15)

where T ∗θ : L2(U)→ L2(0, tF )m is the adjoint of Tθ. ∇

Proof. Let Ta : L2(0, tF )m → L2(0, tF )m×L2(U) be defined by Ta[u] , (ρ
1/2
u u, Tθ[u]). Then

J (u) = ‖Ta[u] − (0, θro)‖2Xa
, where Xa , L2(0, tF )m × L2(U), and Prob. I is seen as the

problem of finding the minimum-distance approximation to (0, θro) ∈ Xa in Ta[L2(0, tF )m] -

note that Xa is a Hilbert Space with the inner product

〈(v1, w1), (v2, w2)〉Xa = 〈v1, v2〉L2(0,tF )m + 〈w1, w2〉L2(U).

Moreover, Ta[L2(0, tF )m] is closed. Indeed, if Ta[uK ] → x0 = (ûo, θ̂ao) or, equivalently,

(ρ
1/2
u uK , Tθ[uK ]) → (ûo, θ̂ao) then uK → ρ

−1/2
u ûo and (since Tθ is continuous) Tθ[uK ] →

Tθ[ρ−1/2u ûo] = θ̂ao. Thus, Ta(ρ−1/2u ûo) = (ûo, Tθ[ρ−1/2u ûo]) = (ûo, θ̂ao) = x0 ⇒ x0 ∈

Ta[L2(0, tF )m].

As Ta[L2(0, tF )m] is also convex, it follows from Theorem 3.12.1 (Luenberger, 1969, pg.

69) that Prob. I has a unique solution uo (say).
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Note now that uo is a solution to Prob. I ⇔ ∀δu ∈ L2(0, tF )m, J (uo) ≤ J (uo + δu)

⇔ ∀δu ∈ L2(0, tF )m ,

2ρu〈uo, δu〉L2(0,tF )m + ρu‖δu‖2L2(0,tF )m + 2〈Tθ[uo]− θro, Tθ[δu]〉+ ‖Tθ[δu]‖2L2(U) ≥ 0

⇔ ∀δu ∈ L2(0, tF )m , 〈ρuuo + T ∗θ · Tθ[uo]− T ∗θ [θro] , δu〉L2(0,tF )m ≥ 0

⇔ ρuuo + T ∗θ · Tθ[uo]− T ∗θ [θro] = 0.

Thus, uo is the unique solution of the linear equation (14).

Remark 3.1. The final-state error achieved with a given control signal, namely,

‖θ(tF ; f
S

+ βT
Su, g)− θr‖22 = ‖Tθ[u]− θro‖22

can be written as

‖Tθ[u]− θ̂ro‖22 + ‖θro − θ̂ro‖22,

where θ̂ro denotes the L2(U)–orthogonal projection of θro on the closure of Tθ[L2(0, tF )m] in

L2(U). Thus, by appropriately choosing control signals, the final-state error can be made

arbitrarily close to

inf
{
‖Tθ[u]− θ̂ro‖22 : u ∈ L2(0, tF )m

}
+ ‖θro − θ̂ro‖22.

In fact, this can be done with the optimal uo(ρu) of Prob. I, for decreasing values of ρu.

Indeed, taking ε > 0 and uε ∈ L2(0, tF )m such that

‖Tθ[uε]− θ̂ro‖22 ≤ ε , the fact that J (uo(ρu); ρu) ≤ J (uε; ρu)

implies that

ρu‖uo(ρu)‖2L2(0,tF )m + ‖Tθ[uo(ρu)]− θ̂ro‖22 ≤ ρu‖uε‖2L2(0,tF )m + ε.
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Thus,

∀ε > 0 , ∀ρu > 0 , ‖Tθ[uo(ρu)]− θ̂ro‖ ≤ ρu‖uε‖2L2(0,tF )m + ε

and, hence, lim
ρu→0

‖Tθ[uo(ρu)]− θ̂ro‖22 = 0. ∇

Proposition 3.1 above characterizes the optimal solution uo in terms of the linear op-

erators Tθ and T ∗θ . To obtain explicit approximations to uo, the question naturally arises

of considering finite-dimensional approximations to these operators and the corresponding

version of equation (13). This is pursued in the next section.

4 Approximate Solutions

In this section, a sequence {uK} is introduced which is defined on the basis of Galerkin

approximations to the operator Tθ. It is then shown that under appropriate conditions this

sequence converges to uo in the L2(0, tF )m–norm.

To this effect, let {XK} be a sequence of finite-dimensional subspaces of H1
0 (U) with

approximability property, i.e., such that ∀ψ ∈ H1
0 (U) there exists a sequence {ψK} ⊂ H1

0 (U)

such that ψK ∈ XK and

lim
K→∞

‖ψ − ψK‖H1
0 (U) = 0. (16)

Let AK : XK → XK be such that

∀φ ∈ XK ,∀ψ ∈ XK , 〈AK [φ], ψ〉 = −B[φ, ψ]

or, equivalently, for an orthonormal basis {φ1, . . . , φk} of XK ,

∀φ ∈ XK , AK [φ] = −
n∑
k=1

B[φ, φk]φk ⇔ ∀` = 1, . . . , n, AK [φ`] = −
n∑
k=1

B[φ`, φk]φk.

Let then AK ∈ Rn×n be defined by {AK}`k = −B[φ`, φk].

Let PK be the orthogonal projection from L2(U) onto XK and define

T Kθ : L2(0, tF )m → XK by T Kθ [u] ,

[∫ tF

0

SK(tF − τ)
[
PK
[
βT
Su(τ)

]]
dτ

]
,
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where SK is the semigroup generated by AK .

Note that T Kθ [u] =
n∑
k=1

ck(tF ;u)φk, where c̄K(t;u) = [c1(t;u), . . . , cn(t;u)] is given by

c̄K(t;u) =

∫ t

0

exp[AK(t− τ)]MK
β u(τ)dτ , βT

S = [βS1 · · · βSm] and

MK
β ,


〈βS1, φ1〉 · · · 〈βSm, φ1〉

...
...

〈βS1, φn〉 · · · 〈βSm, φn〉

 .

The corresponding version of Prob. I is then defined by

Prob. IK : min
u∈L2(0,tF )m

JK(u), (17)

where

JK [u] , ‖T Kθ [u]− θro‖2L2(U) + ρu‖u‖2L2(0,tF )m

Similarly to what happens in the case of Prob. I, Prob. IK has a unique solution uK

which is obtained from the optimality condition

ρuuK + (T Kθ )∗[T Kθ [uK ]− θro] = 0, (18)

where the adjoint operator (T Kθ )∗ : L2(U)→ L2(0, tF )m is such that

∀u ∈ L2(0, tF )m, ∀φ ∈ L2(u), 〈φ, T Kθ [u]〉 = 〈(T Kθ )∗[φ],u〉

⇔
n∑
k=1

〈φ, φk〉ck(tF ;u) = φ̄
T
K c̄K(tF ;u) =

∫ tF

0

(FK(τ)φ̄K)Tu(τ)dτ

so that (T Kθ )∗[φ] = FK(τ)φ̄K , where φ̄
T
K , [〈φ, φ1〉 · · · 〈φ, φK〉] and

FK(τ) , (MK
β )T exp[AT

K(tF − τ)]. (19)

To obtain uK note that it follows from (18) that uK belongs to the image of (T Kθ )∗, i.e.,
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there exists

φ ∈ L2(U) such that uK = (T Kθ )∗[φ] = FKφ̄K ,

i.e., there exists αK ∈ Rn such that

uK = FKαK . (20)

It then follows from (18) that

ρuFKαK + FK c̄K(tF ;FKαK)− FK θ̄
K
ro = 0 (21)

a sufficient condition for which being

ρFαK + c̄K(tF ;FKαK)− θ̄Kro = 0, (22)

where θ̄
K
ro ,

[
〈φ1, θro〉 · · · 〈φn(K), θro〉

]T
.

Thus, as c̄K(tF ;FKαK) = GKαK , where GK ,
∫ tF

0

FK(τ)TFK(τ)dτ , (21) can be rewrit-

ten as ρuαK + GKαK = θ̄
K
ro from which it follows that αK = (ρuI + GK)−1θ̄

K
ro and, hence,

uK(τ) = FK(τ)(ρuI + GK)−1θ̄
K
ro, τ ∈ [0, tF ]. (23)

The remaining part of this section is devoted to proving that the sequence {uK} converges

to uo in the sense of the L2(0, tF )m– norm.

To this effect, consider the following proposition.

Proposition 4.1. There exists a real sequence {ηKT : K ∈ Z+}such that

(a) ∀u ∈ L2(0, tF )m, ‖Tθ[u]− T Kθ [u]‖L2(U) ≤ ηKT ‖u‖L2(0,tF )m.

(b) {ηKT } converges to zero. ∇

Note now that JK(u) = ρu‖u‖2L2(0,tF ) + ‖Tθ[u]− θro − (Tθ[u]− T Kθ [u])‖22 ⇐⇒

JK(u) = J (u) + ‖Tθ[u]− T Kθ [u]‖22 − 2〈Tθ[u]− θro, Tθ[u]− T Kθ [u]〉.

As a result, with EK
J (u) , J (u)− JK(u), it follows from Proposition 4.1 that

|EK
J (u)| ≤ (ηKT )2‖u‖2L2(0,tF )m + 2‖Tθ[u]− θro‖2ηKT ‖u‖L2(0,tF )m . (24)
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On the other hand,

JK(uK) ≤ JK(uo) = J (uo)− EK
J (uo)⇐⇒ J (uK)− EK

J (uK) ≤ J (uo)− EK
J (uo)

=⇒ J (uK) ≤ J(uo)− EK
J (uo) + EK

J (uK) =⇒

J (uK) ≤ J (uo) + |EK
J (uo)|+ |EK

J (uK)|

=⇒ (since J (uK) ≥ J (uo))

0 ≤ J (uK)− J (uo) ≤ |EK
J (uo)|+ |EK

J (uK)|. (25)

Note also that, as ηKT → 0 (Proposition 4.1(b)), it follows from (24) that |EK
J (uo)| →

0. Moreover, {uK} is a bounded sequence – indeed, ‖uK‖2L2(0,tF )m ≤ ‖θro‖2L2(U)ρ
−1
u for, if

‖uK‖2 > ρ−1u ‖θro‖2L2(U) then JK(uK) > ‖θro‖2L2(U) = JK(0) in which case uK would not be

optimal for Prob. IK . Thus, as Tθ[u] =

∫ tF

0

SA(tF − α){
m∑
i=1

βSiu(α)}dα, {Tθ[uK ]} is also

bounded and, hence, it follows from (24) that (as ηKT → 0) EK
J (uK)→ 0. Thus,

{
|EK
J (uo)|+ |EK

J (uK)|
}
→ 0 (26)

which together with (25) implies that J (uK) → J (uo). Thus, the following corollary of

Proposition 4.1 has been established

Corollary 4.1: J (uK)→ J (uo). ∇

Moreover, as {uK} is bounded and J (uK) → J (uo), the desired convergence of the

approximate solutions {uK} can be established, as stated in the following proposition.

Proposition 4.2. The sequence {uK : K ∈ Z+} of solutions to the approximate problems

Prob. IK converges to the solution uo of Prob. I in the sense of the L2(0, tF )m–norm. ∇

Proof. Note first that (since uo is an optimal solution of Prob. I )

J (uK) = J (uo + (uK − uo)) = J (uo) + ρu‖uK − uo‖2L2(0,tF )m + ‖Tθ[(uK − uo)]‖2L2(U).

10



It then follows from (25) that

ρu‖uK − uo‖2L2(0,tF )m + ‖Tθ[(uK − uo)]|2L2(U) ≤ |EK
J (uo)|+ |EK

J (uK)| ⇒

ρu‖uK − uo‖2L2(0,tF )m ≤ |EK
J (uo)|+ |EK

J (uK)|.

Thus, in the light of (26), uK → uo in L2(0, tF )m.

5 Peak-value Constraints on Control Signals

In spite of the fact that the coefficient ρu can be manipulated with a view to keeping

‖uo‖L2(0,tF )m within acceptable levels, it is also desirable to ensure that |uoi(t)| remains

within prescribed bounds. In this connection, a version of Prob. I with pointwise (with

respect to t) constraints may be formulated as follows

Prob. II : min
u∈L2(0,tF )m

J (u)

subject to: ∀i = 1, · · · ,m,∀t a.e. in [0, tF ], uai(t) ≤ ui(t) ≤ ubi(t), (27)

where uai ∈ C0[0, tF ] and ubi ∈ C0[0, tF ], ubi(t) > uai(t).

The existence of an optimal solution to Prob. II can be ascertained by means of an

argument entirely similar to the one used in connection with Prob. I. This leads to the next

proposition.

Proposition 5.1. Let IFi(t) , [uai(t), ubi(t)] and

SuF , {u ∈ L2(0, tF )m : ∀i = 1 · · ·m, ∀t a.e. in [0, tF ], ui(t) ∈ IFi(t)}

There exists uc ∈ SuF such that ∀u ∈ SuF , u 6= uc, J (uc) < J (u).

Moreover, uc satisfies the following optimality condition:

∀δu such that (uc + δu) ∈ SuF , 〈ρuuc + T ∗θ [Tθ − θr0] , δu〉L2(0,tF )m ≥ 0 or, equivalently, ∀u

such that (uc + δu) ∈ SuF , ∀t a.e. in [0, tF ]
{

(ρuuc + T ∗θ [Tθ[uc]− θr0])Tδu
}

(t) ≥ 0. ∇
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A characterization of the optimal solution which does not involve quantifiers is now

presented for which the following “saturation” operators are required: for i = 1, · · · ,m

define PIi : L2(0, tF )→ L2(0, tF )

PIi[v](t) = v(t) if v(t) ∈ IFi(t)

PIi[v](t) = uai(t) if v(t) < uai(t)

PIi[v](t) = ubi(t) if v(t) > ubi(t)

Proposition 5.2. Let Za[u] , T ∗θ [Tθ[u]− θr0]. For i = 1, · · · ,m

{uc}i = PIi[−(1/ρu){Za[uc]}i] a.e. in [0, tF ]. ∇

In the light of Proposition 5.2, the problem of computing (approximations to) uc is reduced to

(approximately) solving a “system” of equations in L2(0, tF ) with respect to u ∈ L2(0, tF )m,

the i− th one of which is based on PIi. As the latter is also an involved problem, even if Tθ
is replaced by an approximation T Kθ , motivation arises for bringing duality considerations

to bear on approximations of Prob. II.

To this effect, let JK(u) , ρu‖u‖2L2(0,tF )m + ‖T Kθ [u]− θro‖22 and consider.

Prob. IIK : min
u∈SuF

JK(u). (28)

Approximate solutions to Prob. II can be obtained on the basis of Prob. IIK , as stated

in the following proposition.

Proposition 5.3. (a) ∀K ∈ Z+ there exists uKc ∈ SuF such that ∀u ∈ SuF , u 6= uKc ,

JK(uKc ) < JK(u).

(b) uKc → uc in L2(0, tF )m. ∇

A counterpart of Proposition 5.1 for Prob. IIK leads to

{uKc }i = PIi[−(1/ρu){ZK
a [u]}i] (29)

where ZK
a [u] , (T Kθ )∗[T Kθ [u] − θr0]. However, instead of directly tackling equation (29) in

order to obtain approximations to uKc , duality considerations pertaining to Prob. IIK are

now introduced.
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To this effect, note first that ui(t) ∈ IFi(t)⇔ uai(t)− ui(t) ≤ 0 and ui(t)− ubi(t) ≤ 0, so

that a Lagrangian functional for Prob. IIK can be defined by

LagK(u,λ) , JK(u) + 2〈λa,ua − u〉L2(0,tF )m + 2〈λb,u− ub〉L2(0,tF )m , (30)

where λa ∈ L2(0, tF )m, λb ∈ L2(0, tF )m and λ = (λa,λb).

The corresponding dual functional and dual problem are given by

ϕDK(λ) , min{LagK(u,λ) : u ∈ L2(0, tF )m} (31)

and Prob. IIDK : max
λ∈Sλ

ϕDK(λ),

where

Sλ , {(λa,λb) : λa ∈ L2(0, tF )m,λb ∈ L2(0, tF )m, ∀t a.e. in [0, tF ],λai(t) ≥ 0,λbi(t) ≥ 0}.

The following proposition is a direct consequence of Theorem 1 in Luenberger (1969),

pp. 224.

Proposition 5.4. (a) sup{ϕDK(λ) : λ ∈ Sλ} = min{JK(u) : u ∈ SuF}.

(b) Let uKc (λ) be the unique solution of min
u∈L2(0,tF )m

LagK(u,λ). Then uKc = uKc (λK), where

λK = arg max
λ∈Sλ

ϕDK(λ). ∇

To rely on Proposition 5.3 to obtain approximate solutions to Prob. IIK explicit charac-

terizations of both uKc (λ) and ϕDK(λ) are presented in the next proposition.

Proposition 5.5. For any λ = (λa,λb) ∈ Sλ

uKc [λ] = uK − FK(I − (ρuI + GK)−1)αKλ + (λa − λb), and

ϕDK(λ) = ‖θro‖2L2(U) + 〈T Kθ [uK ],−θro〉+ ϕ̂DK(λ),

where

ϕ̂DK(λ) , −ρ−1u 〈λab,λab〉+ ρ−1u 〈ξKλ , (ρuI+GK)−1ξKλ 〉 − 2〈ξKλ ,αK〉+ 2〈λa,ua〉 − 2〈λb,ub〉 ,

λab = λa − λb, ξKλ ,
∫ tF

0

FT
k (τ)(λa(τ)− λb(τ))dτ and GKα

K
λ = ξKλ . ∇

13



It follows from Proposition 5.5 that λK = arg max
λ∈Sλ

ϕ̂DK(λ) is the solution of a quadratic

problem in L2(0, tF )m with non-negativeness constraints on the values λ(t) (a.e. in [0, tF )).

This suggests that approximate solutions λ̂K for this problem should be sought on the basis

of which the corresponding approximate solutions uKc [λ̂K ] can be readily obtained in the

light of Proposition 5.5.

Remark 5.1. Although uKc [λ̂K ] may fail to be in the feasible set SuF , a closely-related

feasible solution uRK [λ̂K ] can also be obtained on the on the basis of Proposition 5.5. To this

effect, let uoK [λ] = uK−FK(I− (ρuI+GK)−1)αKλ so that uKc [λ] = uoK [λ]+(λa−λb); define

uRK [λ] by:

∀t ∈ [0, tF ] such that {uoK [λ(t)]}i ∈ IFi(t),
{
uRK [λ(t)]

}
i

= {uoK [λ(t)]}i ,

∀t ∈ [0, tF ] such that {uoK [λ(t)]}i < uai(t),
{
uRK [λ(t)]

}
i

= uai(t),

∀t ∈ [0, tF ] such that {uoK [λ(t)]}i > ubi(t),
{
uRK [λ(t)]

}
i

= ubi(t).

For any λ, uRK [λ] ∈ SuF ; moreover, due to the so-called KKT optimality conditions for Prob.

IIK, uRK [λK ] = uKc [λK ] (i.e., at λ = λK, uRK equals the optimal solution of Prob. IIK).

In addition, given λ̂K, the assessment of uRK [λ̂K ] as an approximate solution to Prob. IIK

can be carried out on the basis of the inequality ϕDK(λ̂K) ≤ JK(uc) ≤ J (uRK [λ̂K ]) so that

whenever ϕDK(λ̂K) and J (uRK [λ̂K ]) are “close” uRK [λ̂K ] can be regarded as an “approximate”

solution to Prob. IIK. In the next section this approach is illustrated in two simple numerical

examples. ∇

6 Actuator Location

It is often the case that the spatial effect of the control signals ui, i = 1, . . . ,m, have a

local character due to the functions βSi only having non-zero value on “small” subsets of the

spatial domain U . In such cases, the “location” of each ui (i.e., the “centre” of the support

of βSi) may have significant effects on the magnitude of the final-state approximation error

attained with the optimal u.

More specifically, assume that U is symmetric with respect to xa ∈ U and let Uβ ⊂ U be

an open and connected set also centred on xa. Let βa : U → R be such that ∀ x ∈ U − Uβ,
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βa(x) = 0 (i.e., Uβ is the support of βa) and for a list X of locations Xi, X = (X1, . . . ,Xm),

Xi ∈ U and such that Uβ + (Xi − xa) ⊂ U , define βSi(·;Xi) : U → R by ∀ x ∈ U ,

βSi(x;Xi) , βa(x− (Xi − xa)) – note that Uβ + (Xi − xa) is the support of βSi(·;Xi).

Recall that the approximation error magnitude is given by

‖T Kθ [uK ] − θKro‖2 = ‖cK(tF ;uK) − θ
K

ro‖2 where uK = FKαK , cK(tF ;uK) = GKαK and

αK = (ρuI + GK)−1θ
K

ro.

Thus, ‖T Kθ [uK ] − θKro]‖2 = ‖{GK(ρuI + GK)−1 − I}θKro‖2 = ‖(I + ρ−1u GK)−1θ
K

ro‖2, since

GK(ρuI + GK)−1 = ρ−1u GK(I + ρ−1u GK)−1 = I− (I + ρ−1u GK)−1.

Thus, to choose actuator locations with the purpose of obtaining a good final-state ap-

proximation, a natural formulation for the actuator location problem would be:

Prob. Loc.: min
X=(X1,...,Xm), Uβ+(Xi−xa)⊂U

ν(X ), (32)

where ν(X ) , ‖{I + ρ−1F GK(MK
β (X ))}−1θKro‖22, GK(M) ,

∫ tF

0

exp[AKt]MMT exp[AT
Kt] dt,

MK
β (X ) =


〈βS1(X1), φ1 · · · 〈βSm(Xm), φ1〉

...
...

〈βS1(X1), φK · · · 〈βSm(Xm), φK〉

 .

Remark 6.1. The problem formulation above hinges upon the approximation error attained

with the optimal, unconstrained control signal uk. It is also natural to focus on the con-

strained optimal control signal ucK, in which case ν(·) would be replaced by νc(·) in the

formulation of Prob. Loc. by νc(X ) = ‖cK(tF ;ucK)− θKro‖2. ∇

Remark 6.2. Those two choices of cost functional for the actuator location problem are

“tuned” to a given final-state target θ
K

ro. Alternatively, if any final-state in a “broad” class

may be targeted with the same actuator-location arrangement, a natural choice for the cost-

functional of Prob. Loc. would be νs(X ) , ‖(I + ρ−1u GK(MK
β (X )))−1‖s. This would be

relevant for both uK and ucK for, in the case of uK, it yields an upper bound on ν(X ) for

any θ
K

ro with euclidean norm smaller or equal to a pre-specified value; whereas, in the case

of ucK, as uK(τ) = FK(τ)ρ−1u (I + ρ−1u GK(MK
β (X )))−1θ

K

ro, making νs(X ) “small” tends to

make the values of u(·) smaller thereby mitigating the increase in the approximation error
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magnitude due to the enforcement of peak-value constraints. ∇

The possible effect of actuator locations on the controlled final state is illustrated in

Figures 13, 14 and 15 below for the case of the one-dimensional heat equation with one scalar

control signal (i.e., u(t) ∈ R). Three locations are considered: a central one and two others

symmetrically situated with respect to the centre of U = (0, Lx) (i.e., x = Lx/2) and close

to the boundary ∂U . In this case, with the desired final state also symmetric with respect

to x = Lx/2 and for the approximating subspaces SK = span{
√

2/L sin ((π/Lx)x) , . . .,√
2/L sin ((Kπ/Lx)x)}, it can be shown that X0 = Lx/2 is a local extremum for ν(·). It

can be observed that the central location yields significantly better approximations for the

desired final state than those provided by the two other locations taken into account–this is

the case for both uK(X ) and ucK(X ).

In general, solving Prob. Loc. (even for the cost-functional ν(·)) is a difficult task as global

optimization techniques are required to obtain a solution on Um and ν(·) depends on X in an

intricate manner (through the inverse of (I + ρ−1u GK(MK
β (X ))) with GK(M) depending on

MMT and {MK
β (X )}`k = 〈βS`(X`), φk〉). Although a grid search would seem feasible in the

physically motivated cases of n−dimensional spatial domains with n = 1, 2, 3, it is noted that

with Ng points along each dimension, the number of possible actuator locations arrangement

would be (Nn
g )m. To perform a less demanding search, optimization objectives may be

weakened so that a randomly-generated sample of possible actuator-location arrangements

is examined with the sample size being specified on the basis of probabilistic considerations–

this approach has attracted considerable attention in the control literature (cf. Tempo & Ishii

(2007) and references therein). The sample size calculations of interest here are presented

below.

6.1 Sample Size for Random Search

Let x be a continuous, n−dimensional random variable with probability density function

(pdf) px the support of which is denoted by Sx ⊂ Rn. Let f : Sx → Rc
+ be continuous

and such that ∀ w ∈ f(Sx) the set {x ∈ Sx : f(x) = w} has zero Lebesgue measure.

Let f∗ be defined as f∗ = inf{f(x) : x ∈ Sx}. For a given ε ∈ (0, 1) define δε > 0 by

Pr{x ∈ Sx : f(x) ≥ f∗ + δε} = 1− ε. Note that δε → 0 as ε→ 0.
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Let {xi : i = 1, . . . , N} be (a sample of) independent and identically distributed random

variables with pdf px and define fN∗ , min{f(xi) : i = 1, . . . , N}. For a given α ∈ (0, 1), N

is to be chosen so that

Pr{fN∗ < f∗ + δε} ≥ 1− α. (33)

To this effect, note that

Pr{fN∗ < f∗ + δε} = 1− Pr{fN∗ ≥ f∗ + δε} = 1− Pr

{
N⋂
i=1

{xi ∈ Sx : f(xi) ≥ f∗ + δε}

}
⇔

= 1−
N∏
i=1

Pr{xi ∈ Sx : f(xi) ≥ f∗ + δε}

= 1− {Pr{x ∈ Sx : f(x) ≥ f∗ + δε}}N

⇔ Pr{fN∗ < f∗ + ε} = 1− (1− ε)N .

Thus, (33) holds if and only if

1− (1− ε)N ≥ 1− α ⇔ α ≥ (1− ε)N ⇔ logα ≥ N log(1− ε)

⇔ N ≥ Nαε , logα/ log(1− ε) =
log(1/α)

log(1/(1− ε))
.

Thus, roughly speaking, in the case of a uniform pdf on Sx, for N ≥ Nαε the probability

that fN∗ is smaller than “the values of f(x) on (1− ε)× 100% of Sx” is greater that (1−α).

In Section 7.3, an example is presented to illustrate the potential of such a random

search to choose the locations of two “actuators” in connection with the heat equation on a

two-dimensional spatial domain.

7 Examples and Numerical Results

In this section, two simple numerical examples are presented to illustrate the way the results

above can be used to characterize control signals which aim at steering a solution of a PDEE

over a given interval [0, tF ] towards a prescribed final state.
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7.1 A One–dimensional Example

Let U = (0, Lx) and consider the one-dimensional heat equation with homogeneous Dirichlet

boundary conditions and single-point control u : [0, tF ]→ R, i.e.,

∀ x ∈ U, ∀ t ∈ (0,∞) ,
∂θ

∂t
(x, t) = kα

∂2θ

∂x2
(x, t) + βS(x)u(t)

∀x ∈ U , θ(x, 0) = 0 (zero initial condition)

∀ t ∈ (0,∞) , θ(0, t) = θ(Lx, t) = 0 (boundary conditions)

with the corresponding weak version given by

∀i = 1, 2, . . . ,

〈
∂θ

∂t
(·, t), φi

〉
= −kα

〈
∂θ

∂x
(·, t), ∂φi

∂x

〉
+ 〈βS, φi〉u(t)

〈θ(·, 0), φi〉 = 0,

where φk : [0, Lx]→ R is given by φk(x) =

√
2

Lx
sin

(
kπx

Lx

)
.

Approximate solutions uK and ucK are sought to the problems

Prob. I : min
u∈L2(0,tF )

J̌ (u; ρF ) or Prob. Ic : min
u∈SuF

J̌ (u; ρF ),

where J̌ (u; ρF ) = ‖u‖2L2(0,tF ) + ρF‖Tθ[u] − θro‖22, θro is the final state to be approximately

reached and

SuF =
{
u ∈ L∞(0, tF ) : ‖u‖L∞(0,tF ) ≤ µu

}
.

In this case, {AK}k` = −
〈√

2
Lx

(
− kπ
Lx

)
cos
(
kπ (·)
Lx

)
,
√

2
Lx

(
− `π
Lx

)
cos
(
`π (·)
Lx

)〉
, i.e.,

AK = diag

{
−kα

(
kπ

Lx

)2
}

and β̄
T
SK =

[〈
βS,

√
2
Lx

sin
(

1π (·)
Lx

)〉
· · ·
〈
βS,

√
2
Lx

sin
(
Kπ (·)
Lx

)〉]
.

The optimal solution of Prob. I is given by, ∀τ ∈ [0, tF ]

u(τ) = β̄
T
SK exp{AT

K(tF − τ)}ᾱK ,
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where

ᾱK = (I + ρFGK)−1ρF θ̄
K
ro, (θ̄

K
ro)

T =
[〈
θro,

√
2
Lx

sin
(

1π (·)
Lx

)〉
· · ·
〈
θro,

√
2
Lx

sin
(
Kπ (·)
Lx

)〉]
and GK =

∫ tF

0

exp[AKt]β̄SKβ̄
T
SK exp[AKt]

Tdt, i.e., GK is the unique solution of

AKGK + GKA
T
K = exp[AKtF ]β̄SKβ̄

T
SK exp[AKtF ]T − β̄SKβ̄

T
SK .

The approximation error on the final state for a given control signal u is given by

Tθ[u]−θro = eK [u]+ěK [u] where eK [u] , T Kθ [u]−θKro (error projection on span{φ1, . . . , φK})

and ěK [u] = {Tθ[u]− T Kθ [u]} − {θro − θKro}.

To get an upper bound on ‖Tθ[u]− θro‖2 note that

‖Tθ[u]− θro‖22 = ‖eK [u]‖22 + ‖ěK [u]‖22, (34)

‖eK [u]‖22 = ‖c̄K(tF ;u)− θ̄Kro‖2E, (35)

‖ěK [u]‖2 ≤ ‖Tθ[u]− T Kθ [u]‖2 + ‖θro − θKro‖2. (36)

Note also that
∥∥Tθ[u]− T Kθ [u]

∥∥2
2

=

∥∥∥∥∥
∞∑

k=K+1

ck(tF ;u)φk

∥∥∥∥∥
2

2

=
∞∑

k=K+1

ck(tF ;u)2, and

ck(tF ,u) =

∫ tF

0

exp

[
−kα

(
kπ

Lx

)2

(tF − τ)

]
βSku(τ)dτ , where βSk , 〈βS, φK〉, so that

(in the light of Cauchy-Schwarz inequality)

⇒ ck(tF ;u)2 ≤ |βSk|
2

∥∥∥∥∥exp

[
−kα

(
kπ

Lx

)2

(tF − ·)

]∥∥∥∥∥
2

L2(0,tF )

‖u‖2L2(0,tF )

⇒ ck(tF ;u)2 ≤ |βSk|
2 1

kα

(
kπ
Lx

)2
{

1− exp

[
−kα

(
kπ

Lx

)2

tF

]}
‖u‖2L2(0,tF )

≤ |βSk|
2 1

kα

(
kπ
Lx

)2‖u‖2L2(0,tF ).
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It then follows that

‖Tθ[u]− T Kθ [u]‖22 ≤ ‖βS − β̂SK‖22
1

kα{(K + 1) π
Lx
}2
‖u‖2L2(0,tF ), (37)

where β̂Sk ,
∑K

k=1 βSkφk.

Thus, combining (34) -(37) gives an upper bound on ‖Tθ[u]−θro‖22 which approaches the

squared norm of the approximation error in span{φ1, . . . , φK} (i.e., ‖eK [u]‖22) as K →∞.

For the optimal solution of Prob. IK , the latter is given by

‖eK [uK ]‖22 = ‖c̄K(tF ;uK)− θ̄Kro‖22 and since

c̄K(tF ;uK) =

∫ tF

0

HK(tF − τ)uK(τ)dτ =

∫ tF

0

HK(tF − τ)HK(tF − τ)TᾱKdτ , where

HK(t) = exp [AKt]βSK , c̄K(tF ;uK) = GKᾱK ⇔

c̄K(tF ;uK) = GK(I + ρFGK)−1ρF θ̄
K
ro = {I− (I + ρFGK)−1} θ̄Kro it follows that

‖eK [uK ]‖22 = ‖(I + ρFGK)−1θ̄ro
K‖22. (38)

To compute approximate solutions to Prob. Ic, consider the truncated problem

Prob. IcK : min
u∈SuF

J̌K(u; ρF ) and the corresponding dual problem,

Prob. DK : max
λa,λb

ϕKD(λa,λb; ρF ) subject to ∀t a.e. in (0, tF ), λa ≥ 0, λb ≥ 0,

where ϕKD(λa,λb) = inf{LagK(u;λa,λb) : u ∈ L2(0, tF )},

LagK(u;λa,λb) = J̌K(u; ρF ) + 2〈λa,ua − u〉+ 2〈λb,u− ub〉 and ub = µu and ua = −ub.

The unique solution to the problem min
u∈L2(0,tF )

LagK(u;λa,λb) is given by

ucK [λ] = ûcK + λab, where ûcK [λ](τ) = HT
K(tF − τ)

{
ᾱK − (I + ρFGK)−1ρFξ

K
λ

}
,

λ = (λa,λb), λab = λa − λb and ξKλ =

∫ tF

0

HK(tF − τ)λab(τ)dτ .

The corresponding value for the dual functional is given by

ϕKD(λa,λb) = LagK(ucK [λ];λa,λb) = ρF‖θro‖22 + ρF 〈T Kθ [ucK ],−θro〉+ ϕ̂KD(λa,λb),
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where

ϕ̂KD(λa,λb) = −〈λab,λab〉+ ρF
〈
(I + ρFGK)−1ξKλ , ξ

K
λ

〉
E
− 2〈ξKλ , ᾱK〉E + 2〈λa,ua〉

−2〈λb,ub〉.

Note that for any non-negative λa and λb, ϕ
K
D(λa,λb) is a lower bound for the optimal

value of Prob. IcK . If (λoa,λ
o
b) is optimal ucK ∈ SuF . Moreover, λoa(τ) = 0 and λob(τ) = 0

(hence, λoab(τ) = 0) whenever ucK [λo](τ) ∈ (ua,ub) so that, in this case, ûcK [λo](τ) also

belongs to (ua,ub). When λoa(τ) 6= 0 (respectively λob(τ) 6= 0) ucK(τ) = ua and ûcK [λo](τ) <

ua (respectively, ucK [λo](τ) = ub and ûcK [λo](τ) > ua). This suggests a heuristic way of

obtaining a feasible uRK [λ], namely,

uRK [λ](τ) = ûcK [λ](τ) if ûcK [λ] ∈ (ua,ub),

uRK [λ](τ) = ua if ûRK [λ](τ) ≤ ua and uRK [λ](τ) = ub if ûcK [λ](τ) ≥ ub.

To obtain approximate solutions to Prob. DK , piecewise linear classes of multipliers are

considered, i.e., let Nλ ∈ Z+, δt = tF/Nλ, Ik = [(k − 1)δt, kδt], γ = [γ1 · · · γNλ+1] and define

∀k = 1, . . . , Nλ, ∀t ∈ Ik, λ(t;γ) = γk + (1/δt)(γk+1 − γk)∆tk,

where ∆tk = t− (k− 1)δt (note that γk and γk+1 are respectively the values of λ(t,λ) at the

lower and upper extreme points of the interval Ik). Such multipliers can then be written as

a function of γ as follows:

∀t ∈ Ik, λ(t;γ) = hT
kab(t)Ekγ,

where hT
kab(t) = [hka(t)

... hkb(t)], E
T
k = [ek(mγ)

... ek+1(mγ)], mγ = Nλ+ 1, hka : Ik → R,

hka(t) = 1− hkb(t), hkb : Ik → R, hkb(t) = (1/δt)(t− ak), where ak = (k − 1)δt.

As a result, ξKλ = T ξγ(γa − γb), where T ξγ =

{
Nλ∑
k=1

∫
Ik
HK(tf − τ)hT

kab(τ)dτ

}
Ek and

−ϕ̂KD(λa,λb) = γT
ab

(
P γ − T T

ξγρF (I + ρFGK)−1T ξγ
)
γab + 2ᾱT

KT ξγγab − 2rTγaγa + 2rTγbγb,

where

γab , γa−γb, P γ ,
Nλ∑
k=1

ET
k

∫
Ik
hkab(t)h

T
kab(t)dtEk, r

T
γa =

Nλ∑
k=1

{[∫
Ik
ua(t)h

T
kab(t)dt

]
Ek

}
,
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and rTγb =

Nλ∑
k=1

{[∫
Ik
ub(t)h

T
kab(t)dt

]
Ek

}
.

The problem to be numerically solved is then

Prob. DK
γ : max

γa,γb∈RNλ+1
ϕKD(λa(γa),λb(γb); ρF ). (39)

Prob. IK and Prob. DK
γ were numerically solved for two pairs (θro,βS) respectively

displayed in Figures 1, 2 and Figures 5, 6, with ρF = 2000, K = 5, Lx = 1 or 2, and

Nλ = 30. For the first pair (θro,βS) the unconstrained problem was solved leading to the

approximate solution uK( ·; ρF ) which is plotted in Fig. 3 (dashed blue curve, labeled uK).

Table 1 gives the L2(0, tF ) and L∞(0, tF ) norms of uK( ·; ρF ) and the L2(U) norm of the

projection of the final-state, approximation error on span{φ1, . . . , φK}.

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2
160.5171 10.9233 43.5917 0.1435

Table 1: Unconstrained problem for the first pair (θro,βS), ρF = 2000.

The constrained problem Prob. IcK was then solved for the same pair (θro,βS) with

the prescribed upper bound µu on ‖u‖∞ taken to be µu = 30. Approximate solutions are

then obtained for Prob. DK
γ , say (γKa ,γ

K
b ). The corresponding multipliers are denoted by

λKa and λKb on the basis of which a feasible solution for Prob. IcK is computed, namely,

ǔRK = uRK [λK ] where λK = (λKa ,λ
K
b ). Table 2 below exhibits the results to Prob. IcK for

the first pair (θro,βS).

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θRro‖2
168.2210 167.0747 10.5405 30 0.1690

Table 2: Constrained problem for the first pair (θro,βS), ρF = 2000.

Recall that ϕKD(λK) is a lower bound on the optimal value of Prob. IcK and that ǔRK is

a feasible solution for it. Thus, as shown in Table 2, J̌K(ǔRK) does not exceed the optimal

value of Prob. IcK (say J o
cK) by more than 1.15 (or by 0.7% of J o

cK) – thus, ǔRK can be taken

to be an ”approximately - optimal” solution to Prob. IcK .
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Figure 3 displays the plots of ǔRK and uK . Figure 4 exhibits the plots of θKro (the projection

of θro on span{φ1, . . . , φK}, in green), θ̂K , T Kθ [uK ] (dashed blue) and

θ̂RK , T Kθ [ǔRK ](in red).

To illustrate the role of ρF in getting better approximation of the desired final state,

numerical results were obtained for the same pair (θro,βS) with ρF = 4000. The results are

presented in Tables 3, 4 and Figures 5 and 6.

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2
187.54639 12.3752 46.5118 0.0926

Table 3: Unconstrained problem for the first pair (θro,βS), ρF = 4000.

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θRro‖2
211.2104 212.2948 11.9634 30 0.1305

Table 4: Constrained problem for the first pair (θro,βS), ρF = 4000.

Comparing Tables 1 and 3, it can be noted that the increase in ρF from 2000 to 4000

brought about a decrease in the L2(0, tF )–norm of the approximation error on span{φ1, . . . , φ5}

(from 0.1435 to 0.0926) at the expense of increases in both the L2(0, tF ) and L∞(0, tF ) norms

of uK (respectively, from 10.9233 to 12.3752 and from 43.5917 and 46.5118).

Similarly, in the case of constrained problems (Tables 2 and 4) it can be noted that

the increase in ρF decreased the L2(0, tF )–norm of the “projected” approximation error

obtained under “peak-value” constraint (‖u‖∞ ≤ 30) from 0.1690 (Table 2) to 0.1305 (Table

4). Note also that uRK is “approximately optimal” as |ϕKD(λK)− J̌K(uRK ; 4000)|/ϕKD(λK) ≈

1.09/212.2948 ≤ 0.5× 10−2.

The plots of uK and uRK and those of the corresponding approximations θ̂K and θ̂RK of

the desired final state are respectively displayed in Figures 5 and 6.

Numerical results were also obtained for the pair (θro,βS) shown in Figures 7 and 8.

First, an approximate solution uK was obtained for Prob. IK – see Table 5 for the values

of its L2(0, tF ) and L∞(0, tF ) norms and the corresponding values of the cost-functional and

the L2(0, 1) norm of the final-state error (projected on span{φ1, . . . , φK}).
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J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2
283.5120 13.5254 23.5491 0.2242

Table 5: Unconstrained problem for the second pair (θro,βS), ρF = 2000.

A numerical solution ǔRK was then obtained for Prob. IcK with the prescribed upper limit

µu on the L∞(0, tF )–norm of u being set at µu = 18. This was done along the same lines

described above in connection with the first pair (θro,βS). Table 6 exhibits the corresponding

assessment data for ǔRK .

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θRro‖2
300.2274 286.3859 12.6191 18.0000 0.2655

Table 6: Constrained problem for the second pair (θro,βS), ρF = 2000.

Note that J̌K(ǔRK ; ρF ) may only exceed the optimal value J o
cK of Prob. IcK by less than

5% (of J o
cK). Figures 9 and 10 respectively display the plots of uK (dashed blue) and ǔRK

and those of θKro (the projection of θro on span{φ1, . . . , φK}), θ̌K , T Kθ [uK ] (dashed blue)

and θ̌RK , T Kθ [uRK ].

Results were also obtained for the second pair (θro,βS) with ρF = 4000, as presented in

Tables 7 and 8 and Figures 11 and 12

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2
362.0183 15.3659 26.4600 0.1774

Table 7: Unconstrained problem for the second pair (θro,βS), ρF = 4000.

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θ̌Rro‖2
387.3645 387.2568 14.7342 18 0.2063

Table 8: Constrained problem for the second pair (θro,βS), ρF = 4000.

Again, it can be noted that increasing ρF brings about a better approximation to the

desired final state. Note also that |ϕKD(λK) − J̌K(uRK ; 4000)|/ϕKD(λK) ≈ 0.11/387.2568 ≤

0.03× 10−2 and hence ǔRK can be regarded as “approximately optimal” for the constrained

problem.
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Figure 1: Example 1. θro: target final state.

Figure 2: Example 1. βS: control-to-state actuator.
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Figure 3: Example 1. Control signals uK (blue dashed), uRK (red solid) for ρF = 2000.

Figure 4: Example 1. Approximations to target final state for ρF = 2000.
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Figure 5: Example 1. Control signals uK (blue dashed), uRK (red solid) for ρF = 4000.

Figure 6: Example 1. Approximations to target final state for ρF = 4000.
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Figure 7: Example 2. θro: target final state.

Figure 8: Example 2. βS: control-to-state actuator.
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Figure 9: Example 2. Control signals uK (blue dashed), uRK (red solid) for ρF = 2000.

Figure 10: Example 2. Approximations to target final state for ρF = 2000.
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Figure 11: Example 2. Control signals uK (blue dashed), uRK (red solid) for ρF = 4000.

Figure 12: Example 2. Approximations to target final state for ρF = 4000.

Finally, the effect of the location of the “actuator” βS on the final-state error T Kθ [ucK ]−θro
is illustrated by taking βS to be centered on `x ∈ (0, 2), i.e., by letting βS to be given by

βS(x) = 1, ∀x ∈ (`x − δβ, `x + δβ), βS(x) = 0 otherwise, and computing the resulting

T Kθ [ucK ] for several values of `x (with δβ = 0.1), which are displayed in Figures 13–15,

respectively for `x = 3/10, `x = 1 and `x = 2− 3/10.
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Figure 13: Example 2. Approximations to target final state for ρF = 4000, `x = 3/10.

Figure 14: Example 2. Approximations to target final state for ρF = 4000, `x = 1.
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Figure 15: Example 2. Approximations to target final state for ρF = 4000, `x = 2− 3/10.

7.2 A Two–dimensional Example

An example is now presented of an initial/boundary-value problem defined by the heat

equation on a rectangle in R2. More specifically, let U = (0, Lx)×(0, Ly), where Lx, Ly ∈ R+

and consider the following equation:

∀(x, y) ∈ U, ∂θ

∂t
(x, y, t) = kα

{
∂2θ

∂x2
+
∂2θ

∂y2

}
(x, y, t) + βS(x, y)u(t)

with zero initial conditions, i.e., ∀(x, y) ∈ U , θ(x, y, 0) = 0 and homogeneous Dirichlet

boundary conditions, i.e.,

∀t ∈ [0, tF ], ∀(x, y) ∈ ∂U, θ(x, y, t) = 0,

where u : [0, tF ]→ R and βS : U → R.

The corresponding weak, “K-th order”, Galerkin version is given by ∀k = 1, . . . , K,

〈
∂θ

∂t
(·, ·, t), φk

〉
= −kα

{〈
∂θ

∂x
(·, ·, t), ∂φk

∂x

〉
+

〈
∂θ

∂y
(·, ·, t), ∂φk

∂y

〉}
+ βSku(t),

where i = 1, . . . , Kx, j = 1, . . . , Ky, k(i, j) = (i− 1)Ky + j, K = KxKy,
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φk(i,j)(x, y) = φxi (x)φyj (y), φxi (x) =
√

2
Lx

sin
[
iπx
Lx

]
, φyj (y) =

√
2
Ly

sin
[
jπy
Ly

]
.

As in the previous example, control signals uK and ucK are sought by means of the

problems

Prob. IK : min
u∈L2(0,tF )

J̌K(u; ρF ) and Prob. IcK : min
u∈SuF

J̌K(u; ρF ),

where J̌K(u; ρF ) = ‖u‖2L2(0,tF ) + ρF‖T Kθ [u] − θro‖22, T Kθ [u] =
∑K

k=1 ck(tF ;u)φk, θro is the

final state to be “approximately reached” and, as before, c̄K(t;u) = [c1(t;u) · · · cK(t;u)]T

is given by c̄K(t;u) =

∫ t

0

FK(τ)Tu(τ)dτ with FK as in (19). In this case,

AK = diag{ak : k = k(1, 1), . . . , k(1, Ky), k(2, 1), . . . , k(2, Ky), . . . , k(Kx, 1), . . . , k(Kx, Ky)},

where ak(i,j) = −kα
{[

iπ
Lx

]2
+
[
jπ
Ly

]2}
, and MK

β = [〈βS, φ1〉 · · · 〈βS, φk〉]T,

SuF = {u ∈ L2(0, tF ) : a.e., |u(t)| ≤ µu}.

Note that J̌K(u; ρF ) = ‖u‖2L2(0,tF ) + ρF‖T Kθ [u] − θKro‖2L2(U) + ‖θro − θKro‖2L2(U), where θKro

is the orthogonal projection of θro on the span of {φ1, . . . , φK}.

The numerical results shown in Tables 9 – 12 were obtained with the following problem

data: kα = 1, Lx = Ly = 1, tF = 1, ρF = 8000 and 20000, µu = 100, Kx = Ky = 5,

θro(x, y) = 0 ∀(x, y) ∈ ∂U , θro(x, y) = 2 ∀(x, y) ∈ [Lx/10, 9Lx/10] × [Ly/10, 9Ly/10],

the graph of θro is the frustum of a rectangular pyramid with [0, Lx] × [0, Ly] as basis,

‖θKro‖2 = 1.7289 and βS is given by

 βS = 1 for (x, y) ∈ [Lx/4, 3Lx/4]× [Ly/4, 3Ly/4]

βS = 0 otherwise
.

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖22
4978.00 45.6636 192.5735 0.6037

Table 9: Unconstrained problem with ρF = 8000.

J̌K(ucK ; ρF ) ϕKD(λK) ‖ucK‖2 ‖ucK‖∞ ‖T Kθ [ucK ]− θKro‖22
5668.10 5485.00 33.0038 100 0.7565

Table 10: Constrained problem with ρF = 8000.
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J̌K(uK ; ρF ) ‖uK‖2 ‖ucK‖∞ ‖T Kθ [uK ]− θKro‖22
8127.40 64.4017 265.37 0.4485

Table 11: Unconstrained problem with ρF = 20000.

J̌K(ucK ; ρF ) ϕKD(λK) ‖ucK‖2 ‖ucK‖∞ ‖T Kθ [ucK ]− θKro‖22
12281.00 11195.00 37.8125 100 0.7366

Table 12: Constrained problem with ρF = 20000.

Similarly to the results in the case of a one-dimensional spatial domain, Tables 9–11

illustrate the effect of increasing ρF on the decrease of the approximation errors ‖T Kθ [uK ]−

θKro‖2 (from 0.6037 in Table 9 to 0.4484 in Table 11) and ‖T Kθ [ucK ] − θKro‖2 (from 0.7565

in Table 10 to 0.7366 in Table 12). Note that in the latter case, increasing ρF from 8000

to 20000 had a small effect on the approximation error - this is due to the fact that the

maximum magnitude of u was kept at the same value (µu = 100).

Again, as observed in the 1D-case, the “relatively small” difference between ϕKD(λK) and

J̌K(ucK ; ρF ) (3.2% for ρF = 8000 and 8.8% for ρF = 20000) indicates that ucK is “nearly

optimal” for the constrained problem - recall that ϕKD(λK) is a lower bound on ǔK(u; ρF )

for any u ∈ SuF .
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Figure 16: Transversal section of T Kθ [ucK ] at `x = `y for ρF = 8000.

Figure 17: Transversal section of T Kθ [ucK ] at `x = `y = 1/2 for ρF = 20000.
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Figure 18: Transversal section of θKro.

Figure 19: Graphs of uK and ucK for ρF = 8000.
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Figure 20: Graphs of uK and ucK for ρF = 20000.

Figures 16 – 20 respectively display T Kθ [ucK ], θKro, transversal sections of the first two plot

and uK and ucK for ρF = 8000 and 20000.

7.3 Actuator Location

The initial/boundary value example defined by the heat equation on a rectangle (0, Lx) ×

(0, Ly) in R2 which was introduced above is now slightly modified to involve two scalar

control signals (u(t) ∈ R2) and numerical results obtained searching the set of their possible

“locations” will be presented.

More specifically, let the “source” term in the heat equation be given by

βS(x, y;X )u(t) =
2∑
i=1

βSi(x, y;Xi)ui(t),

where X = (X1,X2), Xi = (X x
i ,X

y
i ) ∈ R2 and βSi(·) is defined by

βSi(x, y;Xi) = 1 ∀ (x, y) ∈ [X x
i − δβ,X x

i + δβ]× [X y
i − δβ,X

y
i + δβ]

βSi(x, y;Xi) = 0 otherwise.
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A location X will be assessed by the approximation error relative to the desired final

state θKro achieved by the optimal (unconstrained) control over (0, tF ), i.e., by

ν(X1,X2) = ‖(I + ρFGK(MK
β (X1,X2)))θ

K

ro‖2,

where MK
β and GK(M) are as in Section 6.

Two searches were carried with the following data: Lx = Ly = 1, tF = 1, ρF = 8000,

∀ (x, y) ∈ (0, Lx)× (0, Ly), θr(x, y) = 2, K = 5, δβ = 0.1.

For the first one, a 5 × 5 grid was defined by Sgr = {0.1, 0.3, 0.5, 0.7, 0.9} as Sgr × Sgr
and the set of possible locations SXgr , {(X1,X2) : Xi ∈ (Sgr × Sgr), i = 1, 2} (comprised of

625 “locations”) was exhaustively searched. The minimum of ν(·, ·) on SXgr was found to be

1.2563 and it was attained at the location

0.5
0.7

 ,

0.5
0.3

.

For Na > Nαε, a search was also carried out on a set of Na pseudo-random samples of

a constant pdf on SX2 = {(X1,X2) : Xi ∈ (0, Lx) × (0, Ly), i = 1, 2}, with α and ε set to

α = ε = 10−2, Nαε = 2/ log(1/0.99) ≈ 454.5454, so that Na was taken to be 500.

The minimum of ν(·, ·) on the 500 pseudo-random samples was found to be 1.2562 and

it was attained at the location

0.2854
0.4170

 ,

0.6641
0.5468

.

Finally, the case of three scalar control signals was considered in the same setting. With

the same values for α, ε and Na a search on pseudo-random samples of a constant pdf on

SX3 = {(X1,X2,X3) : Xi ∈ (0, Lx)× (0, Ly), i = 1, 2} was carried out leading to the minimum

value 1.1431 for ν(·, ·, ·) which was attained at the location

X1 =

0.2952

0.4485

 , X2 =

0.7628

0.2222

 , X3 =

0.7064

0.8012


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9 Appendix

Proof of Proposition 4.1(a): Consider the following auxiliary propositions

Auxiliary Proposition 1: Tθ[u]− T Kθ [u] = EK
S [u] + EK

T [u] where

EK
S [u] ,

∫ tF

0

m∑
i=1

(SA(tF − τ)− SK(tF − τ)) [PK [βSi]]ui(τ)dτ and

EK
T [u] ,

∫ tF

0

m∑
i=1

SA(tF − τ) [(I− PK)[βSi]]ui(τ)dτ. ∇

Auxiliary Proposition 2: ‖EK
T [u]‖L2(U) ≤ ηKT f‖u‖L2(0,tF )m and

‖EK
S [u]‖L2(U) ≤ ηKT g‖u‖L2(0,tF )m ,

where

ηKT f ,

{
m∑
i=1

‖fKi (tF − ·)‖2L2(0,tF )

}1/2

, ηKT g ,

{
m∑
i=1

‖gKi (tF − ·)‖2L2(0,tF )

}1/2

fKi (tF − σ) , ‖SA(tF − σ) [(I− PK)[βSi]] ‖L2(U) and

gKi (tF − σ) , ‖ (SA(tF − σ)− SK(tF − σ)) [PK [βSi]]L2(U) . ∇

Proposition 4.1(a) follows immediately from the two statements above, since bringing the

second one to bear on the first leads to

Tθ[u]− T Kθ [u] ≤ (ηKT f + ηKT g)‖u‖L2(0,tF )m (e.i., ηKT = ηKT f + ηKT g).

�

Proof of Auxiliary Proposition 1: Note first that

∀θ ∈ L2(U), ∀ t ∈ [0, tF ] , PK [SK(t)[PK(θ)]] = SK(t)[PK(θ)] (A.1)
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It then follows that

T Kθ [u] = PK

∫ tF

0

SK(tF − α)
[
PK [βT

Su(α)]
]
dα =

∫ tF

0

PK
[
SK(tF − α)[PK [βT

Su(α)]]
]
dα

so that (in the light of (A.1))

T Kθ [u] =

∫ tF

0

SK(tF − α)
[
PK [βT

Su(α)]
]
dα =

∫ tF

0

m∑
i=1

(SK(tF − α) [PK [βSiui(α)]]) dα

(A.2)

Note now that

Tθ[u] =

∫ tF

0

SA(tF − α)[βT
Su(α)]dα =

∫ tF

0

SA(tF − α)
[
PK [βT

Su(α)]
]
dα + EK

T [u]

where

EK
T [u] ,

∫ tF

0

SA(tF−α)
[
(I− PK)[βT

Su(α)]
]
dα =

∫ tF

0

m∑
i=1

SA(tF−α) [(I− PK)[βSiui(α)]] dα.

As a result,

Tθ[u]− T Kθ [u] =

∫ tF

0

m∑
i=1

SA(tF − α) [PK [βSiui(α)]] dα + EK
T [u]− T Kθ [u]

⇒ (in the light of (A.2)) Tθ[u]− T Kθ [u] = EK
S [u] + EK

T [u].

To conclude the proof of Auxiliary Proposition 1, it remains to prove that (A.1)) holds.

To this effect let θ̂K(t) , SK(t)[PK(θ)] and θ̂aK(t) = PK [θ̂K(t)] and note that:

(i) θ̂K(0) = PK [θ] and θ̂aK(0) = PK [θ̂K(0)] = PK [PK [θ]] = PK [θ] = θ̂K(0),

(ii) ∀t ∈ (0, tF ),
˙̂
θK(t) = AK ◦ PK [SK(t)[PK(θ)]] = AK [θ̂K(t)] and

θ̇aK(t) = PK [
˙̂
θK(t)] = PK [AK [θ̂K(t)]] = AK [θ̂(t)] (since AK = PK ◦ A|XK

◦ PK and, hence,

PK ◦ AK = AK).

Thus, in the light of (i) and (ii), ∀t ∈ [0, t], θ̂K(t)=θ̂aK(t). �

Proof of Auxiliary Proposition 2: Note first that

‖EK
T [u]‖L2(U) ≤

m∑
i=1

∫ tF

0

‖SA(tF − α) [(I − PK)[βSi]]ui(α)‖L2(U)dα⇒
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‖EK
T [u]‖L2(U) ≤

m∑
i=1

∫ tF

0

fKi (tF − α)|ui(α)|dα ≤
m∑
i=1

‖fKi (tF − ·)‖L2(0,tF )‖ui‖L2(0,tF ),

where fKi (tF − α) , ‖SA(tF − α) [(I− PK)[βSi] ‖L2(U) ⇒

‖EK
T [u]‖L2(U) ≤

{
m∑
i=1

‖fKi (tF − ·)‖2L2(0,tF )

}1/2

‖u‖L2(0,tF )m .

Proceeding along the same lines, it follows that

‖EK
S [u]‖L2(U) ≤

{
m∑
i=1

‖gKi (tF − ·)‖2L2(0,tF )

}1/2

‖u‖L2(0,tF )m .

�

Proof of Proposition 4.1(b): Note first that ‖SA(t)‖ ≤ µAe
σAt and, hence,

fKi (tF − α) ≤ µAe
σA(tF−α)‖(I − PK)[βSi]‖L2(U) ⇒

‖fKi (tF − α)‖L2(0,tF ) = µA‖(I − PK)[βSi]‖L2(U)‖eσA(tF−·)‖L2(0,tF ).

Thus it follows from (16) that ‖fKi (tF − ·)‖L2(0,tF ) → 0 as K →∞ and, hence, ηKT f → 0

as K →∞.

With respect to {ηKT g} note that under the “assumption” that B[φ, ψ] satisfies Garding’s

inequality (cf; Theorem 2, Evans (1998), pp.300), it follows from (5) and Theorem 5.2

(Morris, 1994) that

∀θ ∈ L2(U), ‖SK(t)[θ]− SA(t)[θ]‖L2(U)

converges uniformly on [0, tF ] to zero as K →∞. Hence,

‖gKi (tF − ·)‖2L2(0,tF ) → 0⇒ ηKT g → 0 as K →∞.

It then follows that ηKT = ηKT f + ηKT g → 0 as K →∞. �
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Proof of Proposition 5.1: Once it is established that SuF is convex and closed the argu-

ment employed in the proof of Proposition 3.1 also proves Proposition 5.1.

To show that SuF is convex let ui ∈ SuF , i = 1, 2 and define u(t;σ) = σu1(t) + (1 −

σ)u2(t), σ ∈ [0, 1]. Then ∀i = 1, . . . ,m, ∀t ∈ [0, tF ] a.e ui(t, σ) = σu1i(t) + (1 − σ)u2i(t) ∈

IFi(t) (since u1i(t) ∈ IFi(t) , u2i(t) ∈ IFi(t) and IFi(t) is an interval).

To show that SuF is closed, let u` ∈ SuF be such that u` → u in the sense of the

L2(0, tF )m–norm. Then ∀i = 1, . . .m, ‖ui − u`i‖L2(0,tF ) → 0 and, hence,

∀t a.e. in [0, tF ] , |ui(t)− u`i(t)| → 0. (A.3)

Now let mi(t) , (1/2)(ai(t) + bi(t)) and γi(t) , (1/2)(bi(t)− ai(t)). Then

∀i, ∀`, u` ∈ SuF ⇒ ∀t a.e. in [0, tF ], |u`i(t)−mi(t)| ≤ γi(t) and

|ui(t)− u`i(t)| = |(ui(t)−mi(t))− (u`i(t)−mi(t))| ⇒

≥ |ui(t)−mi(t)| − |u`1(t)−mi(t)|.

Thus ∀t a.e. in [0, tF ], |ui(t)− u`i(t)| ≥ |ui(t)−mi(t)| − γi(t) ⇒ ∀i = 1, · · · ,m, ∀` ∈ Z+

|ui(t)−mi(t)| ≤ γi(t) + |ui(t)− u`i(t)|.

Thus in the light of (A.2), ∀t a.e. in [0, tF ], ∀i = 1, · · · ,m, |ui(t)−mi(t)| ≤ γi(t)⇒ u ∈ SuF .

With respect to the optimality condition, note that

J (u+ ∆u) = J (u) + 2ρu〈u,∆u〉+ ρu‖∆u‖2L2(0,tF )m + 2〈Tθ[u]− θro, Tθ[∆u]〉+ ‖Tθ[∆u]‖22

⇐⇒ J (u+ ∆u) = J (u) + 2〈ρuu+ Za[u],∆u〉+ (ρu‖∆u‖22 + ‖Tθ[∆u]‖2L2(0,tF )m),

where Za[u] , T ∗θ [Tθ[u]− θro].

Thus uc ∈ SuF is optimal if and only if ∀∆u ∈ L2(0, tF )m such that (uc + ∆u) ∈ SuF ,

〈ρuuc + Za[uc],∆u〉 ≥ 0.
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Note now that since

〈ρuu+ Za[u],∆u〉 =

∫ tF

0

(ρuu(t) + Za[u](t))T∆u(t)dt ,

the condition

“∀∆u such that (uc + ∆u) ∈ SuF , ∀t a.e. in [0, tF ], (ρuuc(t) + Za[uc](t))
T∆u(t) ≥ 0”

is sufficient for uc to be optimal. To see that it is also necessary, suppose that there exists

∆u ∈ L2(0, tF )m such that (uc + ∆u) ∈ SuF and for some subset Sa of [0, tF ] with non-zero

measure, (ρuuc(t) + Za[uc](t))
T∆u(t) < 0 for any t ∈ Sa. Then, defining ∆̂u(t) = ∆u(t)

for t ∈ Sa and ∆̂u(t) = 0 otherwise,

(uc + ∆̂u) ∈ SuF and 〈ρuuc + Za[uc], ∆̂u〉 =

∫
Sa

(ρuuc(t) + Za[uc](t))
T∆u(t)dt < 0

so that uc cannot be optimal. �

Proof of Proposition 5.2: Consider the following optimization problem for t ∈ [0, tF ] :

min
v∈Rm

‖ρuv + Za[uc](t)‖22 subject to ∀i = 1, · · · ,m vi ∈ IFi(t).

As ‖ρu(v+∆v)+Za[uc](t)‖22 = ‖ρuv+Za[uc](t)‖22+2〈ρuv+Za[uc](t), ρu∆v〉+‖ρu∆v‖22
vt is optimal if and only if vti ∈ IFi(t) and ∀∆v such that vti + ∆vi ∈ IFi(t)

〈ρuvt + Za[uc](t), ρu∆v〉 ≥ 0⇔ 〈ρuvt + Za[uc](t),∆v〉 ≥ 0. (A.4)

As the solution of both this problem and of Prob. II are unique it follows from (A.3)

and (A.4) that ∀t a.e. in [0, tF ], uc(t) = vt(t).

Now, the problem above is equivalent to the problem

min
vi∈R,i=1,··· ,m

m∑
i=1

(ρuvi + {Za[uc](t)}i)
2 subject to ∀i = 1, · · · ,m, vi ∈ IFi(t)

which breaks down into m problems (for i = 1, · · ·m)

min
vi∈R

(vi − (1/ρu) {−Za[uc](t)}i)
2 subject to vi ∈ IFi(t)
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the solution of which is given by

vi = −(1/ρu) {Za[uc(t)]}i if − (1/ρu) {Za[uc(t)]}i ∈ IFi(t)

vi = ubi(t) if − (1/ρu) {Za[uc(t)]}i > ubi(t)

vi = uai(t) if − (1/ρu) {Za[uc(t)]}i < uai(t).

�

Proof of Proposition 5.3: Proceeding as in the proof of Proposition 4.2, write

J (uKc ) = J (uc + (uKc − uc)) = J (uc) + 2〈ρuuc + Za[uc], (u
K
c − uc)〉

+‖ρu(uKc − uc)‖22 + Tθ[uKc − uc]‖ (A.5)

and note that (as in the derivation of (24))

JK(uKc ) ≤ JK(uc) = J (uc)− EK
J (uc)⇔

J (uKc ) − EK
J (uKc ) ≤ J (uc)− EK

J (uc)⇒ (A.6)

J (uKc ) ≤ J (uc)− EK
J (uc) + EK

J (uKc )⇒ (A.7)

J (uKc ) ≤ J (uc) + |EK
J (uc)|+ |EK

J (uKc )|. (A.8)

Combining (A.5) and (A.8) leads to

‖ρu(uKc − uc)‖22 + ‖Tθ[uKc − uc]‖22 + 2〈ρuuc + Za[uc], (u
K
c − uc)〉

≤ |EK
J (uc)|+ |EK

J (uKc )|

⇒ (in the light of the optimality condition of Proposition 5.1)

ρu‖uKc − uc‖22 ≤ |EK
J (uc) + |EK

J (uKc )|.

With the same argument used in the proof of Proposition 4.2, the right hand side of the last

inequality above is shown to go to zero as K → 0. Hence, ‖uKc − uc‖2 → as K →∞. �

45



Proof of Proposition 5.5:: The optimality condition satisfied by uKc (λ) is given by

ρuu+ (T Kθ )∗[T Kθ [u]− θro] + (λb − λa) = 0 (A.9)

or, equivalently, taking orthogonal projections u1 and u2 of u on (T Kθ )∗[L2(U)] and on its

orthogonal complement,

ρuu
1 + (T Kθ )∗[T Kθ [u1 + u2]]− (T Kθ )∗[θro]− λ1

ab = 0

and ρuu
2 − λ2

ab = 0 where λab , λa − λb, λ1
ab and λ2

ab are the corresponding projections of

λab.

Noting further that T Kθ [u2] = 0 (u2 is orthogonal to the range space of (T Kθ )∗ and hence

is in the null space of T Kθ ) the equations above can be rewritten as

ρuu
1 + (T Kθ )∗[T Kθ [u1]]− (T Kθ )∗[θro]− λ1

ab = 0

and ρuu
2 = λab − λ1

ab.

Now, T Kθ [u] =
K∑
k=1

ck(tF ;u)φk and (T Kθ )∗[w](τ) = HT
K(tF − τ)w̄K ,

where {φk; k = 1, · · ·n(K)} is an orthogonal basis for XK ,

ck(tF ;u) , ek(n(K))T
∫ tF

0

HK(tF − τ)u(τ)dτ , HK(t) , φK(t)β̄SK ,

w̄K , [〈w, φ1, 〉 · · · 〈w, φn(K)〉] and

β̄SK ,

 〈(βT
S)1, φ1〉 · · · 〈(βT

S)m, φ1〉

〈(βT
S)1, φn(K)〉 · · · 〈(βT

S)m, φn(K)〉

 ∈ Rn(K)×m.

It follows that u1 = HT
K(tF − ·)αKc and λ1

ab = HT
K(tF − ·)αKλ and, hence, the equation

involving u1 above can be written as

HT
K(tF − ·)

{
ρuα

K
c + w̄K

a [αKc ]− θ̄Kro −αKλ
}

= 0, (A.10)
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where θ̄
K
ro , [〈θro, θ1〉 · · · 〈θro, θn(K)〉]T and

w̄K
a [αKc ] ,

[
〈T Kθ [u1], φ1〉 · · · 〈T Kθ [u1], φn(K)〉

]T
i.e., w̄[αKc ] = [c1(tF ;u1) · · · cn(K)(tF ;u1)]T =

∫ tF
0

HK(t− τ)HT
K(tF − τ)u1(τ)dτ

⇔ w̄K
a [αKc ] = GKα

K
c and GK ,

∫ tF

0

HK(tF − τ)HT
K(tF − τ)dτ .

A sufficient condition for (A.10) to be satisfied is then given by

ρuα
K
c + GKα

K
c = θ̄

K
ro +αKλ ⇔ αKc = (ρuI + GK)−1(θ̄

K
ro +αKλ )

It then follows that uKc [λ] is given by (since ρuu
2 = λ2

ab )

uKc [λ] = HT
K(tF − ·)αKc + ρ−1u (λab −HT

K(tF − ·)αKλ )⇔

uKc [λ](τ) = HT
K(tF − τ)(αKc − ρ−1u αKλ ) + ρ−1u λab(τ)⇔

uKc [λ](τ) = uK(τ) + HT
K(t− τ)

{
(ρuI + GK)−1 − ρ−1u I

}
αKλ + ρ−1u λab(τ).

With respect to the dual functional ϕDK(λ), rewrite LagK as

LagK(u,λ) = 〈ρuu+ (T Kθ )∗[T Kθ [u]− θro] + (λb − λa),u〉+ 〈T Kθ [u]− θro,−θro〉

+ 〈λb − λa,u〉+ 2〈λa,ua〉 − 2〈λb,ub〉. (A.11)

Thus, as ϕDK(λ) = LagK(uKc [λ],λ), it follows from (A.9) and (A.11) that

ϕDK(λ) = 〈T Kθ [uKc [λ]]− θro,−θro〉+ 〈λb − λa,uKc [λ]〉+ 2〈λa, ua〉 − 2〈λb, ub〉

or equivalently, since uKc [λ] = uK − uξK + ρ−1u λab,

ϕDK(λ) = ‖θro‖22 + 〈T Kθ [uK ],−θro〉+ ϕ̂DK(λ),

where

ϕ̂DK(λ) , 〈T Kθ [ρ−1u λab − u
ξ
K ],−θro〉 − 〈λab,uK − uξK + ρ−1u λab〉+ 2〈λa,ua〉 − 2〈λb,ub〉
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i.e,

ϕ̂DK(λ) = −ρ−1u 〈λab,λab〉+ 〈λab,uξK − uK − ρ
−1
u (T Kθ )∗[θro]〉+ 〈uξK , (T

K
θ )∗[θro]〉

+ 2〈λa,ua〉 − 2〈λb,ub〉,

and uξK [λ] , HT
K(tF − ·) {ρ−1u I− (ρuI + GK)−1}αKλ or, equivalently

(as ρ−1u I− (ρuI + GK)−1 = ρ−1u
{
I− ρu(ρuI + GK)−1

}
= ρ−1u

{
I− (I + ρ−1u GK)−1

}
= ρ−1u

{
ρ−1u GK(I + ρ−1u GK)−1

}
= ρ−1u (I + ρ−1u GK)−1ρ−1u GK)

uξK [λ] = HT
K(tF − ·)ρ−1u (ρuI + GK)−1GKα

K
λ .

Finally, as (T Kθ )∗[θro] = HT
K(tF − ·)θ̄

K
ro and uK = HT

K(tF − ·)αK ,

〈uξK [λ], (T Kθ )∗[θro]〉 = 〈ρ−1u (ρuI + GK)−1GKα
K
λ ,GK θ̄

K
ro〉E and

〈λab,uξK − uK − ρ−1u (T Kθ )∗[θro]〉 = 〈ξKλ , ρ−1u (ρuI + GK)−1GKα
K
λ −αK − ρ−1u θ̄

K
ro〉E,

where αK = (ρuI + GK)−1θ̄
K
ro, ξKλ ,

∫ tF

0

HK(tF − τ)λab(τ)dτ (ξKλ = GKα
K
λ ).

As a result, ϕ̂DK(λ) is given by

ϕ̂DK(λ) = −ρ−1u 〈λab,λab〉+ ρ−1u 〈ξKλ , (ρuI + GK)−1GKα
K
λ 〉 − 〈ξKλ ,αK + ρ−1u θ̄

K
ro〉

+ρ−1u 〈(ρuI + GK)−1αKλ ,GK θ̄
K
ro〉+ 2〈λa,ua〉 − 2〈λb,ub〉.

Now, 〈(ρuI + GK)−1GKα
K
λ ,GK θ̄

K
ro〉 = 〈ξKλ , (ρuI + GK)−1GK θ̄

K
ro〉 ⇒

ϕ̂DK(λ) = −ρ−1u 〈λab,λab〉+ ρ−1u 〈ξKλ , (ρuI + GK)−1ξKλ 〉 − 〈ξKλ ,αK〉

+ρ−1u 〈ξKλ ,
{

(ρuI + GK)−1GK − I
}
θ̄
K
ro〉+ 2〈λa,ua〉 − 2〈λb,ub〉.

Moreover, as (ρuI + GK)−1GK = (I + ρ−1u GK)−1ρ−1u GK = I− (I + ρ−1u GK)−1

so that

ϕ̂DK(λ) = −ρ−1u 〈λab,λab〉+ ρ−1u 〈ξKλ , (ρuI + GK)−1ξKλ 〉 − 〈ξKλ ,αK〉

−ρ−1u 〈ξKλ , (I + ρ−1u GK)−1θ̄
K
ro〉+ 2〈λa,ua〉 − 2〈λb,ub〉.
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Note now that ρ−1u (I + ρ−1u GK)−1θ̄
K
ro = (ρuI + GK)−1θ̄

K
ro = αK . Thus,

ϕ̂DK(λ) = −ρ−1u 〈λab,λab〉+ ρ−1u 〈ξKλ , (ρuI + GK)−1ξKλ 〉 − 2〈ξKλ ,αK〉

+2〈λa,ua〉 − 2〈λb,ub〉.

�
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