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Abstract. We investigate the problem of deriving provably good two-dimensional models for
fiber reinforced plates. For simplicity we deal with the (scalar) steady state heat problem. The
difficulty when dealing with such problems is the presence of two small parameters, the param-
eter related to the heterogeneity, and the plate thickness. The usual asymptotic based methods
yield models that are reliable only when the two parameters hold a certain relation. Here we
consider another venue, using a hierarchical approach to perform the dimension reduction.
This leads to a multiscale two-dimensional problem that approximates well the original three-
dimensional problem, regardless of the relative size of the parameters.
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1. INTRODUCTION

We consider here problems posed in thin three-dimensional heterogeneous and thin plate.
The interest in this problem comes from the fact that it is not clear what is a “reasonable” two-
dimensional model that approximates in some sense the original problem. Our final goal is to
investigate the elastic case, but for simplicity, and as a first step, we restrict ourselves to the
steady state heat (Poisson) equation.

We consider here the presence of two distinct “small” parameters, the plate half-thickness
δ, and the heterogeneity characteristic lenght ε. Depending whether ε ¿ δ or δ ¿ ε, different
two-dimensional models can be used. Of course this represents a drawback, since it would be
nicer to have a single model that approximates both case. That is our goal.

Let the plate P δ = Ω × (−δ, δ), where Ω is a two-dimensional “nice” domain. A typical
point in P δ is denoted by x = (x∼, x3), where x∼ ∈ Ω, and x3 ∈ (−δ, δ). Let P δ

± = Ω× {−δ, δ}
be the plate’s top and bottom, and P δ

L = ∂Ω× [−δ, δ] its lateral side.
Let uδε

3D be the solution of the problem

− div
[
aε∇uδε

3D

]
= f δ in P δ,(

aε∇uδε
3D

)
· n = 0 on ∂P δ

±, uδε
3D = 0 on ∂P δ

L.
(1)

The 3× 3 matrix aε is symmetric positive definite, and is given by

aε(x∼, x3) =

(
a∼∼

ε(x∼) a∼
ε(x∼)

a∼
ε(x∼)T aε

33(x∼)

)
.

The 2 × 2 submatrix a∼∼
ε is also symmetric postive definite, and a∼

ε is a vector in R2. Note that
we assume that aε is constant in the transverse direction but varies in the horizontal direction.
That represents the case of a material reinforced with vertical fibers.

An usual way to deal with the small parameters ε and δ is to get rid of them via asymptotic
methods, i.e., by taking the limits ε → 0 and δ → 0 in an appropriate fashion. The former
is the homogenization procedure (Cioranescu and Donato, 1999), that works under convenient
asumptions (for instance periodicity). The latter is a kind of dimension reduction procedure,
where the original three-dimensional problem is described by its “two-dimensional limit.”

One can expect that for quite small parameters, the asymptotic limits are good approxima-
tions of the original problems. The issue here is that in the presence of two parameters, it is not
clear which limit to take first, and the order matters. Or simply put, under certain assumptions
(Caillerie, 1981),

if u2D
def
= lim

ε→0
lim
δ→0

uδε
3D, u2D

def
= lim

δ→0
lim
ε→0

uδε
3D, then u2D 6= u2D.

Indeed, if a(x∼, x3)
def
= aε(εx∼, x3) is periodic with period one in both horizontal directions, and

ε-independent, and f(x∼, ε−1x3)
def
= f δ(x∼, x3) is ε-independent, then

− div
[
B∼∼
∇∼ u2D

]
=

1

2

∫ 1

−1

f dx̂3, − div
[
B∼∼
∇∼ u2D

]
=

1

2

∫ 1

−1

fdx̂3 in Ω,

u2D = u2D = 0 on ∂Ω,

(2)



where B∼∼
and B∼∼

are constant, symmetric positive definite, different tensors:

Bαβ =

∫
Y

Aαβ +
2∑

γ=1

Aαγ
∂χβ

∂yγ

dy1dy2, Aαβ = aαβ −
aα3a3β

a33

,

Bαβ = Aαβ −
Aα3A3β

A33

, Aij =

∫
Y

aij +
2∑

γ=1

aiγ

∂χj

∂yγ

dy1dy2,

(3)

for Y = (0, 1)× (0, 1), and α, β = 1, 2 and i, j = 1, 2, 3. The above tensors depend on the cell
problems

div
[
A∼∼
∇∼ χβ

]
= −

2∑
α=1

∂Aαβ

∂ŷα

, div
[
a∼∼
∇∼ χj

]
= −

2∑
α=1

∂aαj

∂yα

in Y, (4)

with periodic boundary conditions, for β = 1, 2 and j = 1, 2, 3. Note that if a∼
ε = 0 then

B∼∼
= B∼∼

, and the asymptotic limits commute.

To completely avoid such issue, we propose here the use of hierarchical modeling to derive
provably good two-dimensional models for (1) (Alessandrini et al., 1999). The whole idea is
to recast (1) in a variational form, defining uδε

3D as the argument that minimizes the potential
energy, i.e.,

uδε
3D = arg min

v∈V (P δ)

(
1

2

∫
P δ

aε∇v · ∇ vdx−
∫

P δ

f δvdx

)
,

where V (P δ) = {v ∈ H1(P δ) : v = 0 in ∂P δ
L}. Our model comes from minimizing the

potential energy not in V (P δ), but in the subspace

V1(P
δ) = {v ∈ V (P δ) : v(x∼, x3) = v0(x∼) + v1(x∼)x3, for v0, v1 ∈ H1

0 (Ω)} (5)

containing functions that vary linearly in the transverse direction. Finally, we define ũδε
3D ∈

V1(P
δ) from

ũδε
3D = arg min

v∈V1(P δ)

(
1

2

∫
P δ

aε∇v · ∇ vdx−
∫

P δ

f δvdx

)
. (6)

It is a cumbersome but otherwise straightforward procedure to show that if we write

ũδε
3D(x∼, x3) = wε

0(x∼) + wε
1(x∼)x3, (7)

then

−2δ divx
∼

[
a∼∼

ε∇x
∼
wε

0 + a∼
εwε

1

]
=

∫ δ

−δ

fdx3 in Ω,

−2δ3

3
divx̂

∼

[
a∼∼

ε∇x̂
∼
wε

1

]
+ 2δa∼

εT∇x̂
∼
wε

0 + 2δaε
33w

ε
1 =

∫ δ

−δ

fx3dx3 in Ω,

wε
0 = wε

1 = 0 on ∂Ω.

(8)

Thus, to obtain our approximation for the original three-dimensional solution, one has to solve
the coupled two-dimensional system (8), and then compute (7).



We remark that on our model derivation, there are no special assumptions (like periodicity
or stochastic properties) on how the tensor aε behaves with respect to ε. The model is simply
the Ritz–Galerkin projection of the original solution in the space of functions that are linear in
the transverse direction. If the plate is thin, it is reasonable to expect that not much is lost from
such approximation. Moreover, if one is interested in more accurate models, it is enough to
consider polynomial dependance in the transverse direction. In the present case, the polynomial
dependance is of order one.

The system (8) is not easy to solve since it still depends in a nontrivial way on ε and δ.
Such dependance, that we perfer to call “richness,” reflects the fact that the original problem
also depends in a nontrivial fashion on the same parameters. Important information is lost if
asymptotic limits are taken.

A nice feature of the new model is that it “captures” the correct asymptotic limits, i.e., the
model is asymptotically consistent. In mathematical terms,

lim
ε→0

lim
δ→0

ũδε
3D = lim

ε→0
lim
δ→0

uδε
3D, lim

δ→0
lim
ε→0

ũδε
3D = lim

δ→0
lim
ε→0

uδε
3D.

So, no matter the characteristics of the material and the relative sizes of ε and δ, the two-
dimensional model (7), (8) can be used. If one wants, under certain conditions it is possible
to take a step further and homogenize the model (7). Otherwise, it is also possible to solve (8)
directly. Note that this system is not trivial to solve since it combines singular perturbation fea-
tures with the presence of the small parameter δ in front of the higher order derivatives (second
equation), and highly oscillatory coefficients given by a∼∼

ε, a∼
ε, and aε

33. Naive numerical schemes
are bound to fail, but there are alternatives like the Multiscale Finite Element Method (MsFEM),
Heterogeneous Multiscale Method (HMM), and Residual Free Bubble Methods (RFB).

In the sections that follow, we perform the mathematical operations to obtain the results and
equations we just presented. When dealing with the limits with respect to ε and δ, we proceed
formally, i.e., we simply consider develop formal asymptic series with respect to ε and δ, and
define the limit as the first terms of the expansions. We do so in Section 2. and 3.. In Section 4.
we consider the hierarchical modeling.

2. Asymptotic limits: first δ → 0 and then ε → 0

In the present section, we reduce the dimension from a three-dimensional domain to a two-
dimensional domain by considering δ → 0. We then homogenize the resulting problem by
considering ε → 0.

2.1 Dimension reduction: δ → 0

The first step is to change coordinates and redefine (1) in an ε-independent domain. Let
P = Ω× (−1, 1), and the change of coordinates from P δ to P given by

x̂ = (x̂∼, x̂3) = (x∼, δ−1x3). (9)

We also define

uε
3D(x̂) = uδε

3D(x̂∼, δx̂3) = uδε
3D(x), f(x̂) = f δ(x). (10)

Using (9), we rewrite (1) as

− div
[
a∼∼

ε∇∼ uε
3D

]
− δ−1 div

(
a∼

ε ∂uε
3D

∂x̂3

)
− δ−1∂3

(
a∼

ε · ∇∼ uε
3D

)
− δ−2∂3 (aε

33∂3u
ε
3D)

= f in P,

a∼
εT · ∇∼ uε

3D + δ−1aε
33

∂uε
3D

∂x̂3

= 0 on Ω× {−1, 1}.



(11)

Consider the asymptotic expansion of uε
3D with respect to δ,

uε
3D ∼ uε,0 + δuε,1 + δ2uε,2 + . . . . (12)

Substituting (12) in (11), we gather that

− div
[
a∼∼

ε∇∼ uε,0
]
− δ div

[
a∼∼

ε∇∼ uε,1
]
− δ2 div

[
a∼∼

ε∇∼ uε,2
]

− δ−1

[
div

(
a∼
∂uε,0

∂x̂3

)
+

∂

∂x̂3

(
a∼ · ∇∼ uε,0

)]
− div

(
a∼
∂uε,1

∂x̂3

)
− ∂

∂x̂3

(
a∼ · ∇∼ uε,1

)
− δ−2 ∂

∂x̂3

(
aε

33

∂uε,0

∂x̂3

)
− δ−1 ∂

∂x̂3

(
aε

33

∂uε,1

∂x̂3

)
− ∂

∂x̂3

(
aε

33

∂uε,2

∂x̂3

)
+ · · · = f,

in P , and

a∼
ε ·∇∼ uε,0 + δa∼

ε ·∇∼ uε,1 + δ2a∼
ε ·∇∼ uε,2 + δ−1aε

33

∂uε,0

∂x̂3

+aε
33

∂uε,1

∂x̂3

+ δaε
33

∂uε2

∂x̂3

+ · · · = 0,

on the top and bottom Ω× {−1, 1} of the stretched plate. Grouping the terms with power δ−2,
and using that aε

33 does not depend on x̂3, we gather that

∂2uε,0

∂x̂2
3

= 0 in P, (13)

and the boundary terms with power δ−1,

aε
33

∂uε0

∂x̂3

= 0 on Ω× {−1, 1}. (14)

From (13) (14) we gather that uε,0 does not depend on x̂3.
Proceeding with the computation, now with terms with power δ−1,

∂

∂x̂3

(
a∼

ε · ∇∼ uε,0
)

+
∂

∂x̂3

(
aε

33

∂uε1

∂x̂3

)
= 0 in P, (15)

and boundary terms with power δ0,

a∼
ε · ∇∼ uε,0 + aε

33

∂uε,1

∂x̂3

= 0 on Ω× {−1, 1}. (16)

It follows from (15), (16) that

∂uε,1

∂x̂3

= − 1

aε
33

(
a∼

ε · ∇∼ uε,0
)

. (17)

From the terms with δ0,

− div
(
a∼∼

ε∇∼ uε,0
)
− div

(
a∼
∂uε,1

∂x̂3

)
− ∂

∂x̂3

(
a∼ · ∇∼ uε,1

)
− ∂

∂x̂3

(
aε

33

∂uε,2

∂x̂3

)
= f, (18)

and boundary with power δ

a∼
ε · ∇∼ uε,1 + aε

33

∂uε,2

∂x̂3

= 0. (19)



Integrating (18) in the vertical direction, and using the boundary conditions (19), we gather that

div
(
a∼∼

ε∇∼ uε,0
)
− div

(
a∼

ε 1

aε
33

a∼
ε · ∇∼ uε,0

)
= −1

2

∫ 1

−1

fdx̂3 in Ω,

i.e.,

− div
(
A∼∼

ε∇∼ uε,0
)

=
1

2

∫ 1

−1

fdx̂3 in Ω,

uε,0 = 0 on ∂Ω,

(20)

where A∼∼
ε = a∼∼

ε − 1
aε
33

a∼
εaε
∼

T , compare with (3).

2.2 Homogenization: ε → 0

We next “formally” homogenize problem (20). The arguments are standard, and we repeat
then here for the convenience of the reader. Assuming that aε is ε-periodic with “period” Y , then
so is A∼∼

ε. Let ŷ∼ = ε−1x̂∼ and define A∼∼
(ŷ∼) = A∼∼

ε(x̂∼) (see (3)). We assume that A∼∼
is ε-independent.

Let

uε,0(x∼) ∼ u0
2D(x∼, ε−1x̂∼) + εu1

2D(x∼, ε−1x̂∼) + ε2u2
2D(x∼, ε−1x̂∼) + . . . , (21)

where we assume that each term of the expansion is periodic with respect to ŷ∼.
Using the chain rule, substituting (21) in (20), and formally grouping terms with same

power of ε, we have

− ε−2 div ŷ
∼

[
A∼∼
∇ ŷ
∼
u0

2D

]
− ε−1

(
divx̂

∼

[
A∼∼
∇ ŷ
∼
u0

2D

]
+ div ŷ

∼

[
A∼∼
∇x̂
∼
u0

2D

])
− divx̂

∼

[
A∼∼
∇x̂
∼
u0

2D

]
− ε−1 div ŷ

∼

[
A∼∼

(ŷ∼)∇ ŷ
∼
u1

2D

]
−divx̂

∼

[
A∼∼
∇ ŷ
∼
u1

2D

]
−div ŷ

∼

[
A∼∼

(ŷ∼)∇x̂
∼
u1

2D

]
− ε divx̂

∼

[
A∼∼
∇x̂
∼
u1

2D

]
− div ŷ

∼

[
A∼∼
∇ ŷ
∼
u2

2D

]
− . . . | ŷ

∼
=ε−1 x̂

∼
=

1

2

∫ 1

−1

fdx̂3.

Grouping the terms with power ε−2,

div ŷ
∼

[
A∼∼
∇ ŷ
∼
u0

2D

]
= 0 in Ω× Y.

Thus, u0
2D does not depend on ŷ∼, i.e.,

u0
2D(x̂∼, ŷ∼) = u2D(x̂∼),

for some u2D. Working now with the power ε−1,

div ŷ
∼

[
A∼∼
∇ ŷ
∼
u1

2D

]
= −

2∑
α=1

2∑
β=1

∂Aαβ

∂ŷα

∂u2D

∂x̂β

, (22)

and power ε0,

− divx̂
∼

[
A∼∼
∇x̂
∼
u2D

]
−divx̂

∼

[
A∼∼
∇ ŷ
∼
u1

2D

]
−div ŷ

∼

[
A∼∼
∇x̂
∼
u1

2D

]
−div ŷ

∼

[
A∼∼
∇ ŷ
∼
u2

2D

]
=

∫ 1

−1

fdx̂3.

(23)



Note that∫
Y

div ŷ
∼

[
A∼∼
∇x̂
∼
u1

2D + A∼∼
∇ ŷ
∼
u2

2D

]
dŷ1dŷ2 = 0.

Thus, integrating (23) in Y it follows that

− divx̂
∼

[
A∼∼
∇x̂
∼
u2D + A∼∼

∇ ŷ
∼
u1

2D

]
=

∫ 1

−1

fdx̂3. (24)

From the first set of cell problems (4), it follows from pure substitution that u1
2D(x̂∼, ŷ∼) =∑2

β=1 χβ(ŷ∼)∂u2D(x̂∼)/∂x̂β solves (22). Using (24), we obtain the first problem of (2).

3. Asymptotic limits: first ε → 0 and then δ → 0

We now consider asymtptotic limits as in Section 2., but in the reverse order. Most argu-
ments here are not only pretty standard, but are already pressented in the previous scetion. We
skip then most of the details.

3.1 Homogenization: ε → 0

Consider the usual periodicity assumptions, i.e., aε(x∼) = a(ε−1x∼), where a is periodic with
respect to Y , and

uδε
3D(x) ∼ uδ0

3D(x, ε−1x∼, 0) + εuδ1
3D(x, ε−1x∼, 0) + ε2uδ2

3D(x, ε−1x∼, 0) + . . . . (25)

Substituting the above expansion in (1), and proceeding as before, we gather that uδ0
3D does not

depend of y. Thus, there is a function uδ
3D : P δ → R such that

uδ0
3D(x, y) = uδ

3D(x).

Again, proceeding as before, we gather that

− div
[
A∇∼ uδ

3D

]
= f δ in P δ,

uδ
3D = 0 on ∂P δ

L,
(
A∇uδ

3D

)
· n = 0 on ∂P δ

±,
(26)

where A is as in (3).
Problem (26) is the three-dimensional limit problem as of (1) as ε → 0. Next, we take

δ → 0 to reduce the dimension of (26).

3.2 Dimension reduction: δ → 0

The procedure to take δ → 0 in (26) is exactly the same as the considered in Subsection 2.1,
just replacing aε by A. Thus, if we consider the expansion

uδ
3D ∼ u0 + δu1 + δ2u2 + . . . , (27)

and arguing as in Subsection 2.1, we gather that u0 = u2D, defined in (2).

4. Dimension reduction via Hierarchical Modeling

In this section we reduce the dimension of the original problem using hierarchical mod-
eling. In such approach, as we already mentioned, the solution is projected in a subspace of



functions that are polynomials in the transverse direction. After we find our two-dimensional
model, we take asumptotic limits as before, and obtain the same problems as described in (2).

Considering the definition (6) we gather that∫
P δ

aε∇ ũδε
3D · ∇ ṽ dx =

∫
P δ

f δṽdx for all ṽ ∈ V1(P
δ). (28)

To obtain the system (8), it is enough to consider (7), i.e., ũδε
3D(x) = wε

0(x∼) + wε
1(x∼)x3, and

use (28) with ṽ(x∼, x3) = v0(x∼) and ṽ(x∼, x3) = x3v1(x∼), for arbitrary v0, v1 ∈ H1
0 (Ω). The final

step is to integrate in the transverse direction to obtain weak versions of the system (8).

4.1 Asymptotic limits: first δ → 0 and then ε → 0

We consider now the asymptotic limits of the problem (8). Formally taking the limit δ → 0
in (8), and denoting wε,0

0 = limδ→0 wε
0 and wε,0

1 = limδ→0 wε
1, we get

− div
(
a∼∼

ε∇∼ wε,0
0 + a∼

εwε,0
1

)
=

1

2

∫ 1

−1

f dx̂3,

a∼
ε · ∇∼ wε,0

0 + aε
33w

ε,0
1 = 0,

(29)

in Ω. Thus

wε,0
1 = − 1

aε
33

a∼
ε · ∇∼ wε,0

0 . (30)

Using (30) in the first equation of (29), and comparing to (20), we see that wε,0
0 = uε,0. Thus

limδ→0 ũε,δ = limδ→0 uε,δ. It is trivial then to conclude that

lim
ε→0

lim
δ→0

ũε,δ = lim
ε→0

lim
δ→0

uε,δ.

4.2 Asymptotic limits: first ε → 0 and then δ → 0

As in Subsection 4.1, we consider the asymptotic limits for the hierarchical model, but in
the reverse order. Let

wε
0 ∼ w0

0 + εw1
0 + ε2w2

0 + . . . , wε
1 ∼ w0

1 + εw1
1 + ε2w2

1 + . . . ,

where again each term of the expansion depend on x∼ and ŷ∼ = ε−1. Using the chain rule, and
substituting in the first equation of (8), we gather that

− ε−2 div ŷ
∼

[
a∼∼

ε∇ ŷ
∼
wε

0

]
− ε−1 divx̂

∼

[
a∼∼

ε∇ ŷ
∼
wε

0

]
− ε−1 div ŷ

∼

[
a∼∼

ε∇x̂
∼
wε

0

]
− divx̂

∼

[
a∼∼

ε∇x̂
∼
wε

0

]
− ε−1 div ŷ

∼

[
a∼

εwε
1

]
− divx̂

∼

[
a∼

εwε
1

]
=

1

2

∫ 1

−1

f dx̂3.

Substituting the asymptotic expansions,

− ε−2 div ŷ
∼

[
a∼∼
∇ ŷ
∼
w0

0

]
− ε−1 divx̂

∼

[
a∼∼
∇ ŷ
∼
w0

0

]
− ε−1 div ŷ

∼

[
a∼∼
∇x̂
∼
w0

0

]
− divx̂

∼

[
a∼∼
∇x̂
∼
w0

0

]
− ε−1 div ŷ

∼

[
a∼∼
∇ ŷ
∼
w1

0

]
− divx̂

∼

[
a∼∼
∇ ŷ
∼
w1

0

]
− div ŷ

∼

[
a∼∼
∇x̂
∼
w1

0

]
− ε divx̂

∼

[
a∼∼
∇x̂
∼
w1

0

]
− div ŷ

∼

[
a∼∼
∇ ŷ
∼
w2

0

]
− ε−1 div ŷ

∼

[
a∼w0

1

]
− divx̂

∼

[
a∼w0

1

]
− div ŷ

∼

[
a∼w1

1

]
− ε divx̂

∼

[
a∼w1

1

]
− · · · =

1

2

∫ 1

−1

fdx̂3.



Putting together the terms with ε−2,

div ŷ
∼

[
a∼∼
∇ ŷ
∼
w0

0

]
= 0,

thus w0
0 does not depend on ŷ∼, i.e., w0

0(x̂∼, ŷ∼) = w0(x̂∼) for some function w0.
Consider now the second equation of (8). Then

− 2δ2

3
ε−2 div ŷ

∼

[
a∼∼

ε∇ ŷ
∼
wε

1

]
− 2δ2

3
ε−1 divx̂

∼

[
a∼∼

ε∇ ŷ
∼
wε

1

]
− 2δ2

3
ε−1 div ŷ

∼

[
a∼∼

ε∇x̂
∼
wε

1

]
−

− 2δ2

3
divx̂

∼

[
a∼∼

ε∇x̂
∼
wε

1

]
+ 2ε−1a∼

εT∇ ŷ
∼
wε

0 + 2a∼
εT∇x̂

∼
wε

0 + 2aε
33w

ε
1 = δ

∫ 1

−1

fx̂3dx̂3.

Using the asymptotics for wε
0 and wε

1,

− 2δ2

3
ε−2 div ŷ

∼

[
a∼∼
∇ ŷ
∼
w0

1

]
− 2δ2

3
ε−1 divx̂

∼

[
a∼∼
∇ ŷ
∼
w0

1

]
− 2δ2

3
ε−1 div ŷ

∼

[
a∼∼
∇x̂
∼
w0

1

]
− 2δ2

3
divx̂

∼

[
a∼∼
∇x̂
∼
w0

1

]
− 2δ2

3
ε−1 div ŷ

∼

[
a∼∼
∇ ŷ
∼
w1

1

]
− 2δ2

3
divx̂

∼

[
a∼∼
∇ ŷ
∼
w1

1

]
− 2δ2

3
div ŷ

∼

[
a∼∼
∇x̂
∼
w0

1

]
− 2δ2

3
ε divx̂

∼

[
a∼∼
∇x̂
∼
w1

1

]
− 2δ2

3
div ŷ

∼

[
a∼∼
∇ ŷ
∼
w2

1

]
+ 2ε−1a∼

T∇ ŷ
∼
w0

0

+ 2a∼
T∇x̂

∼
w0

0 + 2a∼
T∇ ŷ

∼
w1

0 + 2εa∼∇x̂
∼
w1

0 + 2a33w
0
1 + 2εa33w

1
1 + · · · = δ

∫ 1

−1

fx̂3dx̂3.

From the terms with power ε−2,

div ŷ
∼

[
a∼∼
∇ ŷ
∼
w0

1

]
= 0,

and it follows then that w0
1 is independent of ŷ∼, i.e., w0

1(x̂∼, ŷ∼) = w1(x̂∼) for some w1.
From the ε−1 terms in both equations,

div ŷ
∼

[
a∼∼
∇ ŷ
∼
w1

0

]
= − div ŷ

∼

[
a∼∼
∇x̂
∼
w0

]
− div ŷ

∼

[
a∼w1

]
, (31)

div ŷ
∼

[
a∼∼
∇ ŷ
∼
w1

1

]
= − div ŷ

∼

[
a∼∼
∇x̂
∼
w1

]
= −

2∑
β=1

∂aαβ

∂ŷα

∂w1

∂xβ

. (32)

From the ε0 terms in both equations, and from the periodicity,

− divx̂
∼

∫
Y

a∼∼
∇ ŷ
∼
w1

0 + a∼∼
∇x̂
∼
w0 + a∼w1 dŷ∼ =

1

2

∫ 1

−1

f dx̂3, (33)

−2δ2

3
divx̂

∼

∫
Y

a∼∼
∇x̂
∼
w1 + a∼∼

∇ ŷ
∼
w1

1dŷ∼ + 2

∫
Y

a∼
T∇ ŷ

∼
w1

0 + a∼
T∇x̂

∼
w0+a33w1 dŷ∼

= δ

∫ 1

−1

fx̂3 dx̂3.

(34)

Recalling the definition (4) of χj for j = 1, 2, 3, we define

w1
1(x̂∼, ŷ∼) =

2∑
β=1

χβ
∂w1

∂xβ

. (35)



which solves (32). Rewriting (31),

div ŷ
∼

[
a∼∼
∇ ŷ
∼
w1

0

]
= −

2∑
α,β=1

∂aαβ

∂ŷα

∂w0

∂xβ

−
2∑

α=1

∂aαβ

∂ŷα

w1.

Thus,

w1
0(x̂∼, ŷ∼) =

2∑
β=1

χβ
∂w0

∂xβ

+ χ3w1. (36)

solves (31).
Replacing (36) in (33), we get

−2 divx̂
∼

[
A∼∼
∇x̂
∼
w0

]
− 2 divx̂

∼

[
A∼w1

]
=

∫ 1

−1

fdx̂3, (37)

where

Aij =
1

Y1Y2

∫
Y

aij +
2∑

β=1

aiβ
∂χj

∂ŷβ

dŷ∼ for i, j = 1, 2,

Ai =
1

Y1Y2

∫
Y

ai3 +
2∑

β=1

aiβ
∂χ3

∂ŷβ

dŷ∼ for i = 1, 2.

(38)

Replacing (36), (35) in (34),

−2δ2

3
divx̂

∼

[
A∼∼
∇x̂
∼
w1

]
+ 2A∼

T∇x̂
∼
w0 + 2A33w1 = δ

∫ 1

−1

fx̂3dx̂3. (39)

Taking δ → 0,

2A∼
T∇x̂

∼
w0 + 2A33w1 = 0.

Thus

w1 = − 1

A33

A∼
T∇x̂

∼
w0. (40)

Substituting in (37), we get that w0 = u2D, defined by (2). In other words,

lim
ε→0

lim
δ→0

ũδε
3D = lim

ε→0
lim
δ→0

uδε
3D,

and the limits for the exact solution and our model behaves in the exactly same way.
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