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1. ACCURACY OF MODELS

How good is a mathematical model? To answer this question, it is necessary to
define “good” and to have in mind what the object being modeled is. Good models
yield solutions that approximate well “reality”, in the sense that the model and
exact solutions or data are close to each other and important qualitative properties
are preserved. Models might approximate real-life phenomena or other equations.
In fact, the Stokes equations are simultaneously a model for “real” fluids and for
the Navier-Stokes equations. Whether it is an accurate model depends on how
approximations are measured and on the fluid regime itself: OK for slow moving
viscous flows, not OK for turbulence.

To narrow down the discussion and secure ourselves on comfortable mathemat-
ical grounds, let us consider a model as an approximation of some complicated
mathematical problem. And to stay in the realm of problems under consideration
in the book, consider partial differential equations (PDEs). Actually, most of the
book discusses only steady state problems—a wise decision, given the breadth of
the topic.

The subtitle of the book hints at some modeling techniques: Dimension reduc-
tion, homogenization, and simplification. In the present context, a typical example
of dimension reduction is given by elastic shells, thin three-dimensional domains un-
der elastic deformation. It is only natural to replace shells by their two-dimensional
middle surfaces, reducing the dimension from three to two (note that dimensional
reduction has other meanings in mathematics, especially when reducing the dimen-
sion of ODE models; in neuroscience for instance, it is convenient to reduce the
Hodgkin—Huxley four-dimensional ODE model to two dimensions [8,10]). Homog-
enization may likely be a better-known field of research, and refers to the idea that
it is possible to replace an oscillatory coefficient by a “smooth” one. Finally, “sim-
plification” may be a less clear term that fits everything else (dimension reduction
and homogenization are simplifications, after all). The idea is to “simplify” parts of
the problem—for example replacing the rugose surface of a golf ball with a smooth
one when modeling flow dynamics.
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Of course, it not possible to change the geometry, coeflicients, or data of a com-
plicated differential equation without causing harm, and the book goes to great
lengths to develop abstract tools, mostly based in functional analysis, to measure
how solutions may change under such modifications. It is no surprise that asymp-
totic analysis tools are also important, since models are often based on considering
the effects of small parameters—the famous € < 1 becomes the shell thickness, the
period of oscillatory coefficients, or the characteristic length of the golf ball dimples.

One of the most interesting topics among the above, included in the book, is
dimension reduction. When considering PDEs posed in slender domains (beams,
rods, plates, or shells), it might be advantageous to pose new equations in the
middle surface. Of course, one must be careful here since it is not clear which
equations yield solutions that are close to the original three-dimensional problem.
It is reasonable to expect that the model solution and the original solution are close
to each other if the thickness is small. We consider the plate problem next and show
how these concepts hold.

Let P¢ = Q x (—¢,e) C R3 be a homogeneous and isotropic plate of thickness
2 > 0, where Q C R? is an open bounded domain with Lipschitz boundary 0.
Consider the linearized elasticity problem of finding the stress ¢ : P — Rg’yxn?{, and
the displacement u® : P — R3 of a plate clamped along its lateral boundary and
under transverse traction load density g3, where g3 is constant and independent
of ¢, for simplicity. Thus

Ao = e(u®), —dive® =0 in P®,

u® =0 ondNx (—¢,¢), o°n = (0,0,e93)7 on Qx {—¢,¢}.

(1)

Above, A is the usual compliance tensor, and e(u®) is the infinitesimal strain tensor
given by the symmetric part of the gradient of u®.

Although () defines the equation of the “real” plate P¢, when mentioning plate
model I believe most mathematicians think about the biharmonic model
(2) DA*w=g3 inQ, w:a—“’:o on 012,

on
where the flexural rigidity D depends on the plate’s Lamé coefficients. Such a
model is often associated with Marie-Sophie Germain and Joseph-Louis Lagrange
and is also called the Kirchhoff-Love model.

At this point it is not clear how the two-dimensional solution w : 2 — R is
related to the three-dimensional w®. It is even less clear how one can possibly
derive (@) from (). But before discussing that, we note that (2)) is easier to solve
than (), being more amenable to complex analysis or Fourier expansion techniques,
for instance. It is also easier to design numerical methods for ([2) than for (), in
particular for small thicknesses (¢ < 1).

Now, given the biharmonic solution w, we define the biharmonic approximation

—x radw T1,T
u’ (21, 29, 73) = ( Sgw(xl 33(2)1 2)>

for (x1,22) € Q and x3 € (—¢,¢). Also, the gradient operator above acts on (1, z2)
only. The biharmonic model is accurate in the sense that

lu® —u’|lg

[uslle

< Cy/e,
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where C depends on € and g3 only, but not on ¢, and || - ||g is the energy norm.
We can thus conclude that the biharmonic model is a good one, in the sense that
its solution converges to the original solution as the plate thickness goes to zero. A
proof that the biharmonic model converges was derived by Morgenstern [I5] using
the two energies principle, and the rate of convergence can be derived as in [].

The question of how to obtain the biharmonic model remains, and there are
different ways to do so. The most most popular is based on physical (“reasonable”)
arguments. It is possible however to derive the model using functional analysis or
asymptotic expansions [5H7]. One concludes that the biharmonic approximation is
simply the asymptotic limit of the solution of ().

Taking asymptotic limits is not the only modeling technique. A mathematically
sound way to obtain models is by characterizing exact solutions as critical points
of variational formulations in functional spaces and search for critical points in
carefully chosen subspaces (aka the Galerkin method). There are myriad ways
to do so, sometimes, but not always, leading to provably good models. In plate
theory, this yields Reissner-Mindlin plate models, which have better approximation
properties than the biharmonic model [IL[2].

Models based on asymptotic limits are not always useful. That is the case when
considering PDEs posed on domains with “periodic” rough boundaries, where the
asymptotic limit is given by the same PDE posed on a domain with smooth bound-
aries. However, that might lead to a poor description of reality, since the geometry
of the wrinkles play a surprising and nontrivial role on the solution’s behavior.
For example, dimples of a golf ball are designed to enhance its aerodynamics — a
smooth golf ball would travel around a 100-130 yards when hit by a skilled golfer,
while a “real” golf ball travels around 250-290 yards [I4,[17]. So, modeling the
flight of a golf ball using asymptotic limits yields a deceivingly nice solution.

A neat way to incorporate the geometry of wrinkles is to impose new Robin
boundary conditions on the smooth underlying surface, the so-called effective bound-
ary condition or “wall-law”. The new conditions involve constants that show up
when developing asymptotic expansions and are related to the geometry of the wrin-
kles. The resulting model is able to capture the behavior of the original solutions
in the interior of the domain [3}[11].

The book considers PDE problems posed in domains with complicated but not
necessarily periodic boundaries, and it proposes geometric simplifications, replacing
the troublesome domain by a larger one. The authors show how to estimate the
modeling error. By completely disregarding the geometric details of the complicated
boundary, there is a significant loss of information, but this should not come as a
surprise when considering such a general case. Modeling is rarely a walk in the
park.

The book discusses in detail the effect of replacing coefficients of PDEs to simplify
its computation. For instance, consider the single pore case, when the coefficient
jumps at a single ball of radius €. Is it possible to pretend that the jump does
not exist? Yes, but at a price. What about if the domain has a small hole in its
interior? That is related to topological derivatives, which computes the asymptotic
change of functionals if one pokes “infinitesimal” holes in the domain [12/[16].
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2. THE BOOK

When mathematical problems are too computationally expensive, it is a good
idea to model the original problem by changing the geometry and data. How
accurate are the models? The book under review has a laudable goal: to discuss and
establish estimates. To a large extent, the goal is achieved. Of course, many cases
and details were not considered, but that is alleviated by the extensive bibliography.
Also, there is an extensive list of books that deal with related topics, including the
ones already cited and [4,[9,[I3], to mention only a few books published by the
American Mathematical Society.

The authors chose to present, at the begining of the book, a number of interesting
functional analysis results that are useful elsewhere. That was probably a wise
decision, but it comes with a price. It is not always easy nor seamless to jump into
a latter section or example and understand some of its arguments. Also, I feel that
the notation is somewhat heavy and not intuitive at some points.

The theory developed in Chapter 2 (“Distance to exact solutions”) is very in-
teresting and broad enough to be useful in several applications. The applications
developed in Chapters 3, 4, and 5 are illuminating. And the topics considered in
Chapter 6, which are closer to actual numerical techniques, open doors for further
explorations by interested readers.

I believe that the book is a significant contribution to the mathematical literature
and, in particular, is of great importance for those interested in numerical analysis
of PDEs. Every good mathematical library should have a copy of this book on its
shelves.
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