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Hierarchical Modeling of Heterogeneous Plates1
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Abstract. We describe here the modeling of highly heterogeneous plates, when

three different lenght scales are present: the area of the middle surface, the plate

thickness, and the heterogeneity scale. We derive a two-dimensional PDE model for

such problem, which turns out to have rough coefficients. We employ asymptotic

techniques to estimate the modeling error with respect to the thickness. To tame

the numerical troubles of the resulting model we use finite elements methods of

multiscale type.

1. Introduction

The first step to model plate problems is to perform some sort of dimension reduc-
tion, and approximate a three-dimensional problem with a two-dimensional one.
Most likely the most common arguments to obtain plate models are based on phys-
ical properties of the underlying problem, often combined with some mathematical
reasoning. It is also possible to derive the models using asymptotic techniques,
usually with a sound mathematical basis. The asymptotic arguments consist in
taking the plate thickness to zero and finding “limit problems.” For instance,
linearly elastic plates have as limit biharmonic equations [8]. For heterogeneous
materials however, an extra issue arises. There are situations when the attempts of
homogenizing the material may lead to different models, depending on which limit
is considered first, i.e., homogenization first and then dimension reduction, or the
other way around [9].

To avoid such undesirable peculiarity, we shall use hierarchical modeling. In
such approach, the solution can defined as critical points of certain functionals, in
the subspace of functions that are polynomials in the transverse direction.

In this work we consider the Poisson equation in a heterogeneous plate of
thickness 2δ given by P δ = Ω × (−δ, δ), where Ω ⊂ R

2 is a bounded open do-
main with Lipschitz boundary ∂Ω. Let ∂P δ

L = ∂Ω × (−δ, δ) be the lateral side
of the plate, and ∂P δ

± = Ω × {−δ, δ} its top and bottom. We denote a typi-
cal point of P δ by x = (x

∼
, x3), where x

∼
= (x1, x2) ∈ Ω. Accordingly, we write
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∇ = (∇
∼
, ∂3) = (∂1, ∂2, ∂3), where ∂i indicates the partial derivative with respect to

xi. Also, ∂ij = ∂i∂j .
Let uδ ∈ H1(P δ) be the weak solution of

−div
(

A∇uδ
)

= fδ in P δ,

uδ = 0 in ∂P δ
L,

∂uδ

∂n
= gδ in ∂P δ

±,
(1.1)

where fδ : P δ → R and gδ : ∂P δ
± → R. The matrix A : P δ → R

3×3
SYM is such that

A(x) =

(

a
∼∼
(x
∼
) 0

0 a33(x
∼
)

)

,

where a
∼∼

: Ω → R
2×2
SYM, and a33 : Ω → R. We also assume that aij , f

δ, and gδ are

C∞ functions, and that there exist constants α and β such that

α‖ξ‖2 ≤ ξ ·A(x)ξ, ξ ·A(x)η ≤ β‖ξ‖‖η‖, (1.2)

for all ξ, η ∈ R
3, and for all x ∈ P δ. The norm ‖ · ‖ is the Euclidian norm in R

3.
Note that the heterogeneity is in the horizontal direction. This model mimics a
plate with transverse inclusions.

We next describe the contents of this paper. In Section 2., we derive our hi-
erarchical model. The resulting equations depend on two small parameters, the
thickness and the length scale of the heterogeneity, and pose nontrivial numerical
challenges [2, 3, 4]. Next, in Section 3., we state that our model is asymptotically

consistent, i.e., it converges in a proper sense to the solution of the original prob-
lem as the plate thickness goes to zero. Modeling error estimates come by after a
somewhat lengthy asymptotic analysis of both the exact and approximate solution.
We present only the results, without proofs. We describe finite elements methods
of multiscale type in Section 4., and perform computational experiments using the
Residual Free Bubbles (RFB) Method and the Multiscale Finite Element Method
in Section 5..

2. Derivation of the Model

To derive our model we first note that if V (P δ) = {v ∈ H1(P δ) : v|∂P δ
L

= 0}, then

uδ = arg min
v∈V (P δ)

I(v), where I(v) =
1

2

∫

P δ

∇ v ·A∇ v dx−

∫

P δ

fδv dx+

∫

∂P δ
±

gδv dx.

Our model solution ũδ, which approximates uδ, is defined as the minimizer of the
potential energy in the space of functions of V (P δ) which are linear in the transverse
direction, i.e.,

ũδ = arg min
v∈V1(P

δ)

I(v),
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and V1(P
δ) = {v ∈ V (P δ) : v(x

∼
, x3) = v0(x

∼
) + x3v1(x

∼
), v0, v1 ∈ H1

0 (Ω)}.
If we write

ũδ(x
∼
, x3) = w0(x

∼
) + x3w1(x

∼
), (2.1)

then w0, w1 ∈ H1
0 (Ω) solve

−2δ div
[

a
∼∼
(x
∼
)∇
∼
w0

]

=

∫ δ

−δ

fδ(x
∼
, x3) dx3 + gδ(x

∼
, δ) + gδ(x

∼
,−δ) in Ω,

−
2δ3

3
div
[

a
∼∼
(x
∼
)∇
∼
w1

]

+ 2δa33(x
∼
)w1

=

∫ δ

−δ

fδ(x
∼
, x3)x3 dx3 + δ[gδ(x

∼
, δ) − gδ(x

∼
,−δ)] in Ω,

w0 = w1 = 0 on ∂Ω.

(2.2)

3. Modeling Error Estimate

In this section we estimate the modeling error with respect to the thickness δ.
This becomes nontrivial since the domain itself depends on δ. Thus we scale the
domain to remove such dependence, and compare the solutions in a plate with fixed
thickness. Let P = Ω × (−1, 1). Making the change of coordinates x̂ = (x

∼
, δ−1x3),

and defining

u(δ)(x̂) = uδ(x), f(x̂) = fδ(x), g(x̂) = δ−1gδ(x),

it follows that

div
[

a
∼∼
(x̂
∼
)∇
∼
u(δ)

]

+ δ−2∂3

[

a33(x̂
∼
)∂3u(δ)

]

= −f in P,

u(δ) = 0 on ∂PL, δ−1a33(x̂
∼
)∂3u(δ) = δx̂3g in ∂P±.

(3.1)

Assuming that f and g are δ-independent, it is possible to show [14] that

u(δ) ∼ ω0 + δ2u2 − δ2U2 + δ4u4 − δ4U4 + · · · ,

where
∂3

[

a33(x̂
∼
)∂3u2

]

= −f − div
[

a
∼∼
(x̂
∼
)∇
∼
ω0

]

,

∂3

[

a33(x̂
∼
)∂3u2k

]

= −div
[

a
∼∼
(x̂
∼
)∇
∼
u2k−2

]

for all k ≥ 2.

The boundary conditions on ∂P± are

a33(x̂
∼
)∂3ω0 = 0, a33(x̂

∼
)∂3u2 = x̂3g, a33(x̂

∼
)∂3u2k = 0 for all k ≥ 2. (3.2)

and the following compatibility conditions holds

∫ 1

−1

u2k(x̂
∼
, x̂3) dx̂3 = 0.

Note that the first term in the asymptotic expansion matches w0, solution of (2.2).
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The above equations define a sequence of Neumann problems with respect to x̂3

in (−1, 1), parameterized by x̂
∼
∈ Ω. From the Dirichlet condition in (3.1), we would

like to have uk = 0 on ∂PL, but note that this does not hold in general, making
necessary the introduction of correctors

U ∼ δ2U2 + δ4U4 + · · · ,

where U2k ∈ H1(P ) solves

−δ2 div
[

a
∼∼
(x̂
∼
)∇
∼
U2k

]

− a33(x̂
∼
)∂33U2k = 0 in P,

∂U2k

∂n
= 0 on ∂P±, U2k = u2k on ∂PL.

(3.3)

Next we state some results that are necessary to estimate the modeling error.
The constants are generally denoted by c, even if they are not the same in different
occurrences. These are independent of δ but might depend on α, β, Ω and also on
Sobolev norms of f and g. We have then the following classical regularity estimates.
See [7] for complete proofs.

The result below follows from classical estimates.

Lemma 3.1. Let ω0 and u2k be defined as above, for k ∈ N. Then there exists a

constant c such that

‖ω0‖H1(Ω) + ‖u2k‖H1(P ) ≤ c.

From the following result, we obtain an estimate for problem (3.4) in the ‖·‖H1(P )

norm.

Lemma 3.2. Let F ∈ L2(P ) and Θ ∈ H1(P ) weak solution of

−δ2 div
[

a
∼∼
(x̂
∼
)∇
∼

Θ
]

− a33(x̂
∼
)∂33Θ = F in P,

∂Θ

∂n
= 0 on ∂P±, Θ = 0 on ∂PL.

(3.4)

Then there exists a constant c such that

‖Θ‖H1(P ) ≤ cδ−2‖F‖L2(P ).

To estimate (3.3), we consider now the problem of finding Ψ ∈ H1(P ) such that

−δ2 div
[

a
∼∼
(x̂
∼
)∇
∼

Ψ
]

− a33(x̂
∼
)∂33Ψ = 0 in P,

∂Ψ

∂n
= 0 on ∂P±, Ψ = w on ∂PL,

(3.5)

Lemma 3.3. Let Ψ as in (3.5). Assume also that
∫ 1

−1
w(x̂

∼
, x̂3) dx̂3 = 0 on ∂PL.

Then there exists a constant c such that

‖Ψ‖L2(P ) ≤ c‖∂3Ψ‖L2(P ).
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Lemma 3.4. Let Ψ be the solution of (3.5), where w ∈ W 1,∞(P ). Then there

exists a constant c such that

‖∇Ψ‖L2(P ) ≤ cδ−1/2‖w‖W 1,∞ .

Using Lemmas 3.3 and 3.4, we have that if U2k, k ∈ N, solve (3.3), then

‖U2k‖H1(P ) ≤ cδ−1/2.

We next estimate the residue r = uδ − (ω0 + δ2u2). We first note that

−δ2 div
[

a
∼∼
(x̂
∼
)∇
∼
r
]

− a33(x̂
∼
)∂33r = δ4a33(x̂

∼
)∂33u4 in P,

∂r

∂n
= 0 on ∂P±, r = −δ2u2 on ∂PL.

The following result holds.

Theorem 3.1. Let r as above. Then there exists a constant c such that

‖r‖H1(P ) ≤ cδ3/2.

The following result presents and estimate for the difference between uδ and the
first term of the asymptotic expansion.

Lemma 3.5. Let uδ be the solution of (1.1), and ω0 be the solution of (2.2). Then

‖uδ − ω0‖H1(P ) ≤ cδ3/2.

To estimate the modeling error, we need the following result [1].

Lemma 3.6. Let w1 ∈ H1
0 (Ω) be the solution of (2.2). Then

‖w1‖H1(Ω) ≤ cδ1/2.

Note that it is also possible to show the above result by modifying the proofs of
Theorem 3.2 and Lemma 3.4.

From Lemma 3.6, we have that ‖δx̂3w1‖H1(P ) ≤ cδ3/2. Let

ũ(δ)(x̂) = ũδ(x) = ω0(x̂
∼
) + δx̂3w1(x̂

∼
).

Thus

‖ũ(δ)− u(δ)‖H1(P ) ≤ ‖ũ(δ)−ω0‖H1(P ) + ‖u(δ)−ω0‖H1(P ) ≤ cδ3/2 + cδ3/2 ≤ cδ3/2.

We then have the following result.

Theorem 3.2. Let u(δ) be the solution for (3.1) and ũ(δ) the model solution. Then

there exists a constant c such that

‖ũ(δ) − u(δ)‖H1(P ) ≤ cδ3/2.
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4. Multiscale Numerical Schemes

The plate problem we consider here has rough coefficients, and the reduced model
inherits such characteristic. Thus, although the PDEs in (2.2) are much easier to
solve than their original three-dimensional counterparts, they still pose a tough
computational challenge. In fact, for highly heterogeneous materials, the coeffi-
cients a

∼∼
(·) and a33(·) can be oscillatory, making the traditional finite element and

difference methods almost useless. In the second problem in (2.2) a new difficulty
arises since the PDE is singularly perturbed with respect to δ.

To overcome such troubles we employ two finite element methods of multiscale
type. We first briefly describe the Residual Free Bubbles (RFB) Method [5, 6,
10], which consists in enriching the usual finite element space of polynomials with
bubbles, functions that vanish on the border of each element.

Consider the second order elliptic problem

Lu = f in Ω,

u = 0 on ∂Ω,
(4.1)

where the differential operator L is defined as below:

Lv = −div
[

a
∼∼
(x
∼
)∇
∼
v
]

, Lv = −
2δ3

3
div
[

a
∼∼
(x
∼
)∇
∼
v
]

+ 2δa33(x
∼
),

cf. (2.2). Let a : H1
0 (Ω) ×H1

0 (Ω) → R, be the bilinear form associated with (4.1).
Let Th be a regular partition of Ω into finite elements K. Associated with such

partition, let V1 ⊂ H1
0 (Ω) be the space of continuous piecewise linear functions, and

the bubble space

VB = {v ∈ H1
0 (Ω) : v|∂K = 0 for all K ∈ Th}.

The residual free bubble method consists in applying the Galerkin method in V1 ⊕
VB , i.e, we search for u1 + ub, where u1 ∈ V1, ub ∈ VB , and

a(u1 + ub, v1 + vb) = (f, vh), for all v1 + vb ∈ VP ⊕ VB . (4.2)

The basic idea now is to apply a static condensation trick and write ub in terms of
u1. Testing (4.2) with functions in VP only, we gather that ub = L−1

∗ f − L−1
∗ Lu1,

where L−1
∗ : L2(Ω) → VB is such that if v = L−1

∗ g, for g ∈ L2(Ω), then

Lv = g in K,

v = 0 on ∂K,
(4.3)

for all K ∈ Th. Thus

a(u1 − L−1
∗ Lu1, v1) = (f, v1) − a(L−1

∗ f, v1), for all v1 ∈ V1.

In terms of finite element implementation, if {ψi}
N
i=1 is a basis of V1, where ψi are

the usual hat functions, we define λi such that

Lλi = 0 in K,

λi = ψi on ∂K.
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Next, if u1 =
∑N

i=1 uiψi, then

N
∑

i=1

a(λi, ψj)ui = (f, ψj) − a(L−1
∗ f, ψj), j = 1, . . . , N.

The other method that we used to discretize our model is the Multiscale Finite
Element Method (MsFEM) [11, 12, 13]. The MsFEM consists simply in using
Galerkin method with the subspace generated by functions {λi}

N
i=1.

5. Numerical Tests

We assume here that a
∼∼

is periodic with respect to ε. We use both the RFB and

MsFEM for the operator −div
[

a
∼∼
(x
∼
)∇
∼

(·)
]

, and both yield indistinguishable results.

We follow [15] and assume Ω = (0, 1) × (0, 1), and

a
∼∼
(x1, x2) =

9

2
sin(2πǫ−1x1) cos(2πǫ−1x2) +

11

2
, f(x

∼
) = 1.

We start by computing the basis functions. Figure 1 shows ψ−λ for a fixed element
K = [0, 1/16]× [0, 1/16], and a subgrid of 128×128 elements. Then, Figure 2 shows
λ, and Figure 3 shows its level curves.

Next, Figure 4 display the profile at x = y of various approximation solutions,
and also an “exact” solution, obtained using a over-refined mesh.

Resumo. Desenvolvemos neste trabalho a derivação de modelos bidimensionais

para placas heterogêneas. Além disto, estimamos o erro de modelagem, e resolve-

mos as equações diferenciais resultantes usando métodos de elementos finitos mul-

tiescala.
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Figure 1: Plot for ψ − λ.
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Figure 2: Basis function λ.
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