FINITE ELEMENT TECHNIQUES FOR LOCAL ACTIVE CONTROL OF NOISE IN ENCLOSURES

ALFREDO BERMÚDEZ, PABLO GAMALLO Departamento de Matemática Aplicada Universidade de Santiago de Compostela, Spain

and RODOLFO RODRÍGUEZ

GI²MA, Departamento de Ingeniería Matemática Universidad de Concepción, Chile

FINITE ELEMENT TECHNIQUES FOR ACTIVE CONTROL OF NOISE IN ENCLOSURES

INDEX

- **1.** The acoustical model for enclosures.
- 2. Resonances.
- **3.** Active control: the optimal control problem.
 - **3.1.** Optimal source amplitudes.
 - **3.2.** Optimal source positions.
- 4. Numerical approximation of the state equation.
- 5. Numerical approximation of the optimal source amplitudes.
- 6. Some numerical results.

1. THE ACOUSTICAL MODEL FOR ENCLOSURES

1) We consider the acoustic wave equation in a bounded domain $\Omega_{\rm F}$ (enclosure):

$$\left\{ \begin{array}{ll} \frac{\partial^2 \hat{p}(\boldsymbol{x},t)}{\partial t^2} = c^2 \Delta \hat{p}(\boldsymbol{x},t) + \hat{f}(\boldsymbol{x},t) & \mbox{ in } \Omega_{\rm F}, \\ \mbox{ boundary conditions } + \mbox{ initial conditions}, \end{array} \right.$$

where \hat{p} is the pressure, c the sound velocity and \hat{f} is a sound source (which will be the control variable in our case).

2) We are going to study the steady state harmonic problem arising when the source is time-harmonic with angular frequency ω :

$$\hat{f}(\boldsymbol{x},t) := \operatorname{Re}\left[f(\mathbf{x})e^{-i\omega t}\right]$$

(We do not take account of the transient response.)

3) This leads to the following Helmholtz problem:

$$egin{array}{rll} -c^2\Delta p-\omega^2 p&=&f& ext{in}&\Omega_{
m F},\ &&rac{\partial p}{\partialm{n}}&=&rac{i\omega
ho}{Z(\omega)}p& ext{on}&\Gamma_{
m Z}\subset\partial\Omega_{
m F},\ &&rac{\partial p}{\partialm{n}}&=&g& ext{on}&\Gamma_{
m N}\subset\partial\Omega_{
m F}. \end{array}$$

 Z(ω) ∈ C is the wall impedance (Robin boundary condition). It models the behavior of thin layers of viscoelastic materials (for example, glass-wool),

$$Z(\omega) := \beta(\omega) + \frac{\alpha(\omega)}{\omega}i$$
 (dashpot - spring system).

- $\hat{g}(\boldsymbol{x},t) := \operatorname{Re}\left[g(\boldsymbol{x})e^{-i\omega t}\right]$ is the time-harmonic boundary excitation, that is, the noise source (for example, the vibrations coming from an engine).
- In general $g(\boldsymbol{x})$ is a complex function, which allows delays between different points on the boundary $\Gamma_{\rm N}$ (Neumann boundary condition).

2. RESONANCES

• For an enclosure $\Omega_{\rm F}$ subject to a harmonic acoustic field pressure $p({\bm x}),$ the L^2 norm

$$\|p\|_{\mathcal{L}^{2}(\Omega_{\mathcal{F}})}^{2} := \int_{\Omega_{\mathcal{F}}} |p|^{2} dx$$

is a measure of the inside global noise level.

- The frequency response curve of the system is obtained by solving the source problem in a range of frequencies and plotting $\|p\|_{L^2(\Omega_F)}$ versus ω .
- The "peaks" in the curve determine the so called resonance frequencies.

Frequency response curve.

• The active control is carried out for low frequencies (range where the passive systems are not efficient) in a band around the resonance frequencies, because the inside noise level is high in such bands.

• For the sake of simplicity, in our case, we consider that the source of noise is a pure tone.

 These resonance frequencies are close to the real part of the eigenvalues ω with a small imaginary part of the following non linear spectral problem:

Find $\omega \in \mathbb{C}$ and p such that

$$egin{array}{rcl} -c^2\Delta p &=& \omega^2 p & ext{ in } \Omega_{ ext{F}}, \ & rac{\partial p}{\partial oldsymbol{n}} &=& rac{i\omega
ho}{Z(\omega)} p & ext{ on } \Gamma_{ ext{Z}}, \ & rac{\partial p}{\partial oldsymbol{n}} &=& 0 & ext{ on } \Gamma_{ ext{N}}. \end{array}$$

- If β(ω) = Re(Z) > 0 (viscous part of the wall impedance), then the eigenvalues of the above spectral problem have non zero negative imaginary part.
- This means that the corresponding eigenfunctions show an exponential decay in time.
- On the other hand, since the eigenvalues are not real, the corresponding Helmholtz problem is well-posed (existence and uniqueness of solution) for all ω ∈ ℝ.

3. ACTIVE CONTROL: THE OPTIMAL CONTROL PROBLEM

3.1 Optimal source amplitudes

1) The Active Control of Sound in an enclosure can be posed in the framework of the Optimal Control Theory (J.L. LIONS).

2) In a first step, the control variable $u \in \mathbb{C}^{N_a}$ are the complex amplitudes of the secondary sources (N_a loudspeakers), modeled as Dirac measures (monopoles) and placed at fixed points $x_1^a, \ldots, x_{N_a}^a$:

$$f(\boldsymbol{x}) = \sum_{i=1}^{N_a} u_i \, \delta(\boldsymbol{x} - \boldsymbol{x}_i^a), \qquad \boldsymbol{u} := (u_1, \dots, u_{N_a}) \in \mathbb{C}^{N_a}.$$

The set of admissible controls will be a convex subset U of \mathbb{C}^{N_a} , v.g., $U = \{ \boldsymbol{u} \in \mathbb{C}^{N_a} : |u_i| \leq u_{\max} , i = 1, \dots, N_a \} \subset \mathbb{C}^{N_a}$.

3) Let $p(\boldsymbol{u})$ be the solution of the Helmholtz problem with Dirac measures sources of amplitudes $\boldsymbol{u} = (u_1, \dots, u_{N_a})$:

$$egin{aligned} & -c^2\Delta p - \omega^2 p \;\; = \;\; \sum_{i=1}^{N_a} u_i \, \delta(oldsymbol{x} - oldsymbol{x}_i^a) \;\; ext{in} \;\; \Omega_{ ext{F}}, \ & rac{\partial p}{\partial oldsymbol{n}} \;\; = \;\; rac{i\omega
ho}{Z(\omega)} p \;\;\; ext{on} \;\; \Gamma_{ ext{Z}}, \ & rac{\partial p}{\partial oldsymbol{n}} \;\; = \;\; g \;\;\; ext{on} \;\; \Gamma_{ ext{N}}. \end{aligned}$$

The solution $p(\boldsymbol{u})$ belongs to $L^2(\Omega_F)$ and, moreover, it is continuous in Ω_F except at the points $\boldsymbol{x}_1^a, \ldots, \boldsymbol{x}_{N_a}^a$ where the Dirac measures are supported (LIONS AND MAGENES). 4) The observation z is the vector of pressure values at certain points $x_1^s, \ldots, x_{N_s}^s \in \Omega_F$ (N_s number of sensors):

$$\boldsymbol{z} := \left(p(\boldsymbol{u})(\boldsymbol{x}_1^s), \dots, p(\boldsymbol{u})(\boldsymbol{x}_{N_s}^s) \right) \in \mathbb{C}^{N_s}.$$

5) In our case, the goal is to reduce the noise level only at the sensors location (local control) and, therefore, the **cost function** will be

$$J(\boldsymbol{u}) := \Phi(\boldsymbol{z}(\boldsymbol{u}), \boldsymbol{u}) = rac{1}{2} \sum_{i=1}^{N_s} |p(\boldsymbol{u})(\boldsymbol{x}_i^s)|^2 + rac{
u}{2} \sum_{i=1}^{N_a} |u_i|^2,$$

where $\nu \ge 0$ is the so called control cost term.

Quadratic programming problem.

1) Since

- the set of admissible controls U belongs to a finite dimensional space,
- \bullet the application between the control \boldsymbol{u} and the observation \boldsymbol{z} is affine,
- \bullet and the function J is quadratic,

then, the optimal control problem turns out a finite quadratic programming problem.

2) To see this, we introduce the following definitions:

• The set of observations:

$$\begin{split} \boldsymbol{z}_0 &:= \left(p(\boldsymbol{e}_0)(\boldsymbol{x}_1^s), \dots, p(\boldsymbol{e}_0)(\boldsymbol{x}_{N_s}^s) \right), & \text{where } \boldsymbol{e}_0 := \boldsymbol{0}, \\ \boldsymbol{z}_i &:= \left(p(\boldsymbol{e}_i)(\boldsymbol{x}_1^s), \dots, p(\boldsymbol{e}_i)(\boldsymbol{x}_{N_s}^s) \right) - \boldsymbol{z}_0, & \text{where } (\boldsymbol{e}_i)_j := \delta_{ij}, \\ & i, j = 1, \dots, N_a. \end{split}$$

Then, the affine map between control and observations reads:

$$oldsymbol{z}(oldsymbol{u}) = oldsymbol{z}_0 + \sum_{i=1}^{N_a} u_i oldsymbol{z}_i.$$

• The Hermitian matrix $oldsymbol{Z}$ and the vector $oldsymbol{b}_0$ of entries

$$egin{aligned} & (oldsymbol{Z})_{ij} := \langle oldsymbol{z}_j, oldsymbol{z}_i
angle, & i, j = 1, \dots, N_a, \ & (oldsymbol{b}_0)_i := \langle oldsymbol{z}_0, oldsymbol{z}_i
angle, & i = 1, \dots, N_a. \end{aligned}$$

3) Then, the optimal control problem reads:

Find $u_{\text{opt}} \in U \subset \mathbb{C}^{N_a}$ such that

$$J(\boldsymbol{u}_{\text{opt}}) = \min_{\boldsymbol{u} \in U} \left[\frac{1}{2} ((\boldsymbol{Z} + \nu \boldsymbol{I}) \boldsymbol{u}, \boldsymbol{u}) + \operatorname{Re}(\boldsymbol{b}_{0}, \boldsymbol{u}) \right]$$

4) The following variational inequality (optimality condition) determines the optimal control u_{opt} :

$$\operatorname{Re}\left(J'(\boldsymbol{u}_{\mathrm{opt}}),\,\boldsymbol{v}-\boldsymbol{u}_{\mathrm{opt}}\right) = \operatorname{Re}\left((\boldsymbol{Z}+\nu\boldsymbol{I})\boldsymbol{u}_{\mathrm{opt}}+\boldsymbol{b}_{0},\boldsymbol{v}-\boldsymbol{u}_{\mathrm{opt}}\right) \geq 0$$
$$\forall \boldsymbol{v} \in U.$$

5) It is easy to show that the optimal control problem attains a unique solution if:

- \bullet either $\nu>0$
- or $\nu = 0$ and \boldsymbol{Z} is non singular.

6) If U is a subspace of \mathbb{C}^{N_a} (v.g., if no constraint like $|u_i| \leq u_{\max}$ must be satisfied), under any of the above assumptions, u_{opt} is just the solution of the linear system of equations

$$(\boldsymbol{Z} + \nu \boldsymbol{I})\boldsymbol{u}_{\text{opt}} = -\boldsymbol{b}_0.$$

If $\nu = 0$ and Z is singular, then u_{opt} is not uniquely determined, but a minimum of the cost function can be obtained by solving a rank-deficient least-squares algebraic problem.

3.2. Optimal source positions

1) In this case, the control variable are the **amplitudes** and **positions** of the secondary sources (modeled as Dirac measures again):

$$(\boldsymbol{u}, \boldsymbol{X}^a) := \left(u_1, \ldots, u_{N_a}, \boldsymbol{x}_1^a, \ldots, \boldsymbol{x}_{N_a}^a\right)$$

2) The set of admissible controls is

$$U_{\mathrm{ad}} := U \times \bar{\Omega}_a^{N_a},$$

where $\overline{\Omega}_a$ is a convex closed subset of $\Omega_{\rm F}$.

3) The observation z is the pressure values at points $x_1^s, \ldots, x_{N_s}^s$ again (N_s number of sensors).

4) We consider the same cost function as in the above case,

$$egin{aligned} J(m{u},m{X}^a) &:= & \Phiig(m{z}(m{u},m{X}^a),m{u}ig) \ &= & rac{1}{2}\sum_{i=1}^{N_s}|p(m{u},m{X}^a)(m{x}^s_i)|^2 \,+ rac{
u}{2}\sum_{i=1}^{N_a}|u_i|^2\,, \end{aligned}$$

where, now, the state p depends on the source amplitudes and positions.

5) The relation between the state p and the source positions is non linear.

6) Then, the optimal control problem reads:

Find
$$(\boldsymbol{u}_{opt}, \boldsymbol{X}_{opt}^{a}) \in U_{ad} = U \times \bar{\Omega}_{a}^{N_{a}}$$
 such that

$$J(\boldsymbol{u}_{\text{opt}}, \boldsymbol{X}_{\text{opt}}^{a}) = \min_{(\boldsymbol{u}, \boldsymbol{X}^{a}) \in U_{\text{ad}}} \left[\frac{1}{2} \sum_{i=1}^{N_{s}} |p(\boldsymbol{u}, \boldsymbol{X}^{a})(\boldsymbol{x}_{i}^{s})|^{2} + \frac{\nu}{2} \sum_{i=1}^{N_{a}} |u_{i}|^{2} \right]$$

7) In general, the solution is not unique and there could be local minima.

8) Therefore, the gradient like methods are not suitable in this case.

Optimization on a finite set of "available" positions.

- From the practical point of view, we pose the optimization problem on a finite set which consists of N_p "available" positions for the N_a secondary sources (N_a ≤ N_p).
- The number of possible configurations will be $\binom{N_p}{N_a}$.
- For each configuration (fixed positions for the secondary sources) we minimize J with respect to the amplitudes as described above.

- Then, the **optimal configuration** will be the configuration for which the value of J is minimum.
- Simulated annealing and/or genetic algorithms methods are used to look for the optimal configuration instead of an exhaustive search, when the number of configurations is large (BAEK AND ELLIOT).

4. NUMERICAL APPROXIMATION OF THE STATE EQUATION

1) Before studying the optimal control approximation we must analyze the approximation of the state equation.

Helmholtz problem:

$$egin{aligned} -c^2\Delta p - \omega^2 p &= f & ext{in} & \Omega_{ ext{F}}, \ & rac{\partial p}{\partial oldsymbol{n}} &= rac{i\omega
ho}{Z(\omega)}p & ext{on} & \Gamma_{ ext{Z}}, \ & rac{\partial p}{\partial oldsymbol{n}} &= g & ext{on} & \Gamma_{ ext{N}}. \end{aligned}$$

2) First, we write a variational formulation of the Helmholtz problem:

Find $p \in \mathrm{H}^{1}(\Omega_{\mathrm{F}})$ such that $\int_{\Omega_{\mathrm{F}}} \nabla p \cdot \nabla \bar{q} \, dx - \frac{i\omega\rho}{Z(\omega)} \int_{\Gamma_{\mathrm{Z}}} p \bar{q} \, d\Gamma - \frac{\omega^{2}}{c^{2}} \int_{\Omega_{\mathrm{F}}} p \bar{q} \, dx$ $= \int_{\Omega_{\mathrm{F}}} f \bar{q} \, dx + \int_{\Gamma_{\mathrm{N}}} g \bar{q} \, d\Gamma \qquad \forall q \in \mathrm{H}^{1}(\Omega_{\mathrm{F}}).$ **3)** Then, as usual, we consider a regular family of triangulations $\{\mathcal{T}_h\}_{h>0}$ in Ω_F to build a sequence of discrete spaces $V_h \subset H^1(\Omega_F)$ (finite element spaces). We denote by h the mesh-size.

4) The finite element spaces V_h are made up of global continuous functions in Ω_F , linear in each element of the mesh (a triangle if $\Omega_F \subset \mathbb{R}^2$ or a tetrahedron if $\Omega_F \subset \mathbb{R}^3$).

5) For each finite element space $V_h \subset H^1(\Omega_F)$, the following variational discrete problem is obtained:

Find $p_h \in V_h$ such that $\int_{\Omega_{\rm F}} \nabla p_h \cdot \nabla \bar{q}_h \, dx - \frac{i\omega\rho}{Z(\omega)} \int_{\Gamma_{\rm Z}} p_h \bar{q}_h \, d\Gamma - \frac{\omega^2}{c^2} \int_{\Omega_{\rm F}} p_h \bar{q}_h \, dx$ $= \int_{\Omega_{\rm F}} f \bar{q}_h \, dx + \int_{\Gamma_{\rm N}} g \bar{q}_h \, d\Gamma \qquad \forall q_h \in V_h \subset {\rm H}^1(\Omega_{\rm F}).$

The solution p_h of this discrete problem is an approximation of the exact solution p.

Convergence results.

The following results have been proved for a polygonal (polyhedral) convex domain $\Omega_{\rm F}$ and h small enough:

- If $f(\boldsymbol{x}) \in L^2(\Omega_F)$, $\|p - p_h\|_{L^2(\Omega_F)} \leq C h^2$, for $\Omega_F \subset \mathbb{R}^2$ or $\Omega_F \subset \mathbb{R}^3$. (MIKHLIN, discrete LBB condition).
- If $f(\boldsymbol{x})$ is a Dirac measure supported at \boldsymbol{x}_0 ,

$$\|p - p_h\|_{\mathrm{L}^2(\Omega_{\mathrm{F}})} \leq \begin{cases} C(\boldsymbol{x}_0) h, & \text{for } \Omega_{\mathrm{F}} \subset \mathbb{R}^2, \\ C(\boldsymbol{x}_0) h^{\frac{1}{2}}, & \text{for } \Omega_{\mathrm{F}} \subset \mathbb{R}^3, \end{cases}$$

where $C(\boldsymbol{x}_0) \to \infty$ as \boldsymbol{x}_0 gets close to $\partial \Omega_{\mathrm{F}}$ (CASAS, SCOTT).

5. NUMERICAL APPROXIMATION OF THE OPTIMAL SOURCE AMPLITUDES

Let us now consider the optimization problem with respect to the source amplitudes (their positions being fixed):

 From the FEM approximation of the state equation, we obtain the approximated observations z_{0h},..., z_{N_ah}:

$$oldsymbol{z}_{0h} := \left(p_h(oldsymbol{e}_0)(oldsymbol{x}_1^s), \dots, p_h(oldsymbol{e}_0)(oldsymbol{x}_{N_s}^s)
ight),$$

 $oldsymbol{z}_{ih} := \left(p_h(oldsymbol{e}_i)(oldsymbol{x}_1^s), \dots, p_h(oldsymbol{e}_i)(oldsymbol{x}_{N_s}^s)
ight), \qquad i = 1, \dots, N_a.$
where $p_h(oldsymbol{u})$ is the solution of the discrete Helmholtz problem

with Dirac measures sources of amplitudes $\boldsymbol{u} = (u_1, \ldots, u_{N_a})$.

• We define Z_h and b_{0h} analogously to their continuous counterparts:

$$(\boldsymbol{Z}_h)_{ij} := \langle \boldsymbol{z}_j h, \boldsymbol{z}_i h \rangle, \quad i, j = 1, \dots, N_a;$$

 $(\boldsymbol{b}_0)_i := \langle \boldsymbol{z}_0 h, \boldsymbol{z}_i h \rangle, \quad i = 1, \dots, N_a;$

• This leads to an approximated quadratic programming problem:

Find
$$\boldsymbol{u}_{\text{opt}}^{h} \in U \subset \mathbb{C}^{N_{a}}$$
 such that

$$J_{h}(\boldsymbol{u}_{\text{opt}}^{h}) = \min_{\boldsymbol{u} \in U} \left[\frac{1}{2} \left(\left(\boldsymbol{Z}_{h} + \nu \boldsymbol{I} \right) \boldsymbol{u}, \boldsymbol{u} \right) + \operatorname{Re} \left(\boldsymbol{b}_{0h}, \boldsymbol{u} \right) \right].$$

Its solution u_{opt}^h is an approximation of the optimal control u_{opt} . • To obtain an error bound for the optimal control, we need pointwise error estimates, since the observations consist of point values of the pressure.

• Hypothesis. We suppose that the following pointwise estimate holds for the Helmholtz problem with Dirac measures:

$$|p(\boldsymbol{x}) - p_h(\boldsymbol{x})| \le Ch^2 \frac{\log\left(|\boldsymbol{x} - \boldsymbol{x}_0|/h\right)}{|\boldsymbol{x} - \boldsymbol{x}_0|^n},$$

for $\boldsymbol{x}, \boldsymbol{x}_0 \in \tilde{\Omega}_F \subset \subset \Omega_F \subset \mathbb{R}^n$ (n = 2 or 3), with $|\boldsymbol{x} - \boldsymbol{x}_0| \geq Ch$. (A similar estimate is proved by WAHLBIN for the Poisson problem.) • Under the above assumption, the following **error** estimate holds:

There exists $h_0 > 0$ such that, $\forall h < h_0$,

$$\begin{aligned} \frac{\|\boldsymbol{u}_{\text{opt}} - \boldsymbol{u}_{\text{opt}}^{h}\|_{\infty}}{\|\boldsymbol{u}_{\text{opt}}\|_{\infty}} &\leq C \operatorname{cond}_{\infty}(\boldsymbol{Z} + \nu \boldsymbol{I}) \left(\frac{\|\boldsymbol{Z} - \boldsymbol{Z}_{h}\|_{\infty}}{\|\boldsymbol{Z} + \nu \boldsymbol{I}\|_{\infty}} + \frac{\|\boldsymbol{b}_{0} - \boldsymbol{b}_{0h}\|_{\infty}}{\|\boldsymbol{b}_{0}\|_{\infty}} \right) \\ &\leq C \log\left(\frac{1}{h}\right) h^{2}. \end{aligned}$$

6. SOME NUMERICAL RESULTS

Results: optimal configuration and source amplitudes.

Pressure field without control.

Pressure field with control.

