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Passive-active control system of noise.
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1. THE ACOUSTICAL MODEL FOR ENCLOSURES

1) We consider the acoustic wave equation in a bounded domain

ΩF (enclosure):






∂2p̂(x, t)

∂t2
= c2∆p̂(x, t) + f̂(x, t) in ΩF,

boundary conditions + initial conditions,

where p̂ is the pressure, c the sound velocity and f̂ is a sound source

(which will be the control variable in our case).
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2) We are going to study the steady state harmonic problem

arising when the source is time-harmonic with angular frequency ω:

f̂(x, t) := Re
[

f(x)e−iωt
]

.

(We do not take account of the transient response.)

3) This leads to the following Helmholtz problem:


























−c2∆p− ω2p = f in ΩF,

∂p

∂n
=

iωρ

Z(ω)
p on ΓZ ⊂ ∂ΩF,

∂p

∂n
= g on ΓN ⊂ ∂ΩF.
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• Z(ω) ∈ C is the wall impedance (Robin boundary condition). It

models the behavior of thin layers of viscoelastic materials (for

example, glass-wool),

Z(ω) := β(ω) +
α(ω)

ω
i (dashpot - spring system).

• ĝ(x, t) := Re
[

g(x)e−iωt
]

is the time-harmonic boundary ex-

citation, that is, the noise source (for example, the vibrations

coming from an engine).

• In general g(x) is a complex function, which allows delays be-

tween different points on the boundary ΓN (Neumann boundary

condition).
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Acoustic impedance of a Manville glass-wool layer (1 inch).
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2. RESONANCES

• For an enclosure ΩF subject to a harmonic acoustic field pressure

p(x), the L2 norm

‖p‖2L2(ΩF)
:=

∫

ΩF

|p|2 dx

is a measure of the inside global noise level.

• The frequency response curve of the system is obtained by

solving the source problem in a range of frequencies and plotting

‖p‖L2(ΩF) versus ω.

• The “peaks” in the curve determine the so called resonance

frequencies.
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• The active control is carried out for low frequencies (range where

the passive systems are not efficient) in a band around the reso-

nance frequencies, because the inside noise level is high in such

bands.

• For the sake of simplicity, in our case, we consider that the source

of noise is a pure tone.
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• These resonance frequencies are close to the real part of the

eigenvalues ω with a small imaginary part of the following non

linear spectral problem:

Find ω ∈ C and p such that



























−c2∆p = ω2p in ΩF,

∂p

∂n
=

iωρ

Z(ω)
p on ΓZ,

∂p

∂n
= 0 on ΓN.
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• If β(ω) = Re(Z) > 0 (viscous part of the wall impedance), then

the eigenvalues of the above spectral problem have non zero

negative imaginary part.

• This means that the corresponding eigenfunctions show an ex-

ponential decay in time.

• On the other hand, since the eigenvalues are not real, the corre-

sponding Helmholtz problem is well-posed (existence and unique-

ness of solution) for all ω ∈ R.
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3. ACTIVE CONTROL:

THE OPTIMAL CONTROL PROBLEM
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3.1 Optimal source amplitudes

1) The Active Control of Sound in an enclosure can be posed in

the framework of the Optimal Control Theory (J.L. Lions).

2) In a first step, the control variable u ∈ C
Na are the com-

plex amplitudes of the secondary sources (Na loudspeakers),

modeled as Dirac measures (monopoles) and placed at fixed points

x
a
1, . . . ,x

a
Na

:

f(x) =

Na
∑

i=1

ui δ(x− x
a
i ), u := (u1, . . . , uNa

) ∈ C
Na.

The set of admissible controls will be a convex subset U of C
Na,

v.g., U =
{

u ∈ C
Na : |ui| ≤ umax , i = 1, . . . , Na

}

⊂ C
Na.



FINITE ELEMENT TECHNIQUES FOR ACTIVE CONTROL OF NOISE IN ENCLOSURES 15'

&

$

%

3) Let p(u) be the solution of the Helmholtz problem with Dirac

measures sources of amplitudes u = (u1, . . . , uNa
):



































−c2∆p− ω2p =

Na
∑

i=1

ui δ(x− x
a
i ) in ΩF,

∂p

∂n
=

iωρ

Z(ω)
p on ΓZ,

∂p

∂n
= g on ΓN.

The solution p(u) belongs to L2(ΩF) and, moreover, it is continuous

in ΩF except at the points x
a
1, . . . ,x

a
Na

where the Dirac measures

are supported (Lions and Magenes).



FINITE ELEMENT TECHNIQUES FOR ACTIVE CONTROL OF NOISE IN ENCLOSURES 16'

&

$

%

4) The observation z is the vector of pressure values at certain

points x
s
1, . . . ,x

s
Ns

∈ ΩF (Ns number of sensors):

z :=
(

p(u)(xs
1), . . . , p(u)(x

s
Ns

)
)

∈ C
Ns.

5) In our case, the goal is to reduce the noise level only at the

sensors location (local control) and, therefore, the cost function

will be

J(u) := Φ(z(u),u) =
1

2

Ns
∑

i=1

|p(u)(xs
i )|

2 +
ν

2

Na
∑

i=1

|ui|
2,

where ν ≥ 0 is the so called control cost term.
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Quadratic programming problem.

1) Since

• the set of admissible controls U belongs to a finite dimensional

space,

• the application between the control u and the observation z is

affine,

• and the function J is quadratic,

then, the optimal control problem turns out a finite quadratic

programming problem.
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2) To see this, we introduce the following definitions:

• The set of observations:

z0 :=
(

p(e0)(x
s
1), . . . , p(e0)(x

s
Ns

)
)

, where e0 := 0,

zi :=
(

p(ei)(x
s
1), . . . , p(ei)(x

s
Ns

)
)

− z0, where (ei)j := δij,

i, j = 1, . . . , Na.

Then, the affine map between control and observations reads:

z(u) = z0 +

Na
∑

i=1

uizi.

• The Hermitian matrix Z and the vector b0 of entries

(Z)ij := 〈zj, zi〉 , i, j = 1, . . . , Na,

(b0)i := 〈z0, zi〉 , i = 1, . . . , Na.
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3) Then, the optimal control problem reads:

Find uopt ∈ U ⊂ C
Na such that

J(uopt) = min
u∈U

[

1

2

(

(Z + νI)u,u
)

+Re (b0,u)

]

.

4) The following variational inequality (optimality condition) deter-

mines the optimal control uopt:

Re
(

J ′(uopt) , v − uopt

)

= Re
(

(Z + νI)uopt + b0,v − uopt

)

≥ 0

∀v ∈ U.
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5) It is easy to show that the optimal control problem attains a

unique solution if:

• either ν > 0

• or ν = 0 and Z is non singular.

6) If U is a subspace of C
Na (v.g., if no constraint like |ui| ≤ umax

must be satisfied), under any of the above assumptions, uopt is just

the solution of the linear system of equations

(Z + νI)uopt = −b0.

If ν = 0 and Z is singular, then uopt is not uniquely determined,

but a minimum of the cost function can be obtained by solving a

rank-deficient least-squares algebraic problem.
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3.2. Optimal source positions

1) In this case, the control variable are the amplitudes and posi-

tions of the secondary sources (modeled as Dirac measures again):

(u,Xa) :=
(

u1, . . . , uNa
,xa

1, . . . ,x
a
Na

)

.

2) The set of admissible controls is

Uad := U × Ω̄Na

a ,

where Ω̄a is a convex closed subset of ΩF.

3) The observation z is the pressure values at points x
s
1, . . . ,x

s
Ns

again (Ns number of sensors).
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4) We consider the same cost function as in the above case,

J(u,Xa) := Φ
(

z(u,Xa),u
)

=
1

2

Ns
∑

i=1

|p(u,Xa)(xs
i )|

2 +
ν

2

Na
∑

i=1

|ui|
2 ,

where, now, the state p depends on the source amplitudes and po-

sitions.

5) The relation between the state p and the source positions is non

linear.
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6) Then, the optimal control problem reads:

Find (uopt,X
a
opt) ∈ Uad = U × Ω̄Na

a such that

J(uopt,X
a
opt) = min

(u,Xa)∈Uad

[

1

2

Ns
∑

i=1

|p(u,Xa)(xs
i )|

2 +
ν

2

Na
∑

i=1

|ui|
2

]

.

7) In general, the solution is not unique and there could be

local minima.

8) Therefore, the gradient like methods are not suitable in this case.
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Optimization on a finite set of “available” positions.

• From the practical point of view, we pose the optimization prob-

lem on a finite set which consists of Np “available” positions

for the Na secondary sources (Na ≤ Np).

• The number of possible configurations will be

(

Np

Na

)

.

• For each configuration (fixed positions for the secondary sources)

we minimize J with respect to the amplitudes as described

above.
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• Then, the optimal configuration will be the configuration

for which the value of J is minimum.

• Simulated annealing and/or genetic algorithms methods are used

to look for the optimal configuration instead of an exhaustive

search, when the number of configurations is large (Baek and

Elliot).
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4. NUMERICAL APPROXIMATION

OF THE STATE EQUATION

1) Before studying the optimal control approximation we must an-

alyze the approximation of the state equation.

Helmholtz problem:


























−c2∆p− ω2p = f in ΩF,

∂p

∂n
=

iωρ

Z(ω)
p on ΓZ,

∂p

∂n
= g on ΓN.
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2) First, we write a variational formulation of the Helmholtz prob-

lem:

Find p ∈ H1(ΩF) such that

∫

ΩF

∇p · ∇q̄ dx−
iωρ

Z(ω)

∫

ΓZ

pq̄ dΓ−
ω2

c2

∫

ΩF

pq̄ dx

=

∫

ΩF

f q̄ dx+

∫

ΓN

gq̄ dΓ ∀q ∈ H1(ΩF).
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3) Then, as usual, we consider a regular family of triangulations

{Th}h>0 in ΩF to build a sequence of discrete spaces Vh ⊂ H1(ΩF)

(finite element spaces). We denote by h the mesh-size.

4) The finite element spaces Vh are made up of global continuous

functions in ΩF, linear in each element of the mesh (a triangle if

ΩF ⊂ R
2 or a tetrahedron if ΩF ⊂ R

3).
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5) For each finite element space Vh ⊂ H1(ΩF), the following vari-

ational discrete problem is obtained:

Find ph ∈ Vh such that

∫

ΩF

∇ph · ∇q̄h dx−
iωρ

Z(ω)

∫

ΓZ

phq̄h dΓ−
ω2

c2

∫

ΩF

phq̄h dx

=

∫

ΩF

f q̄h dx+

∫

ΓN

gq̄h dΓ ∀qh ∈ Vh ⊂ H1(ΩF).

The solution ph of this discrete problem is an approximation of the

exact solution p.
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Convergence results.

The following results have been proved for a polygonal (polyhedral)

convex domain ΩF and h small enough:

• If f(x) ∈ L2(ΩF),

‖p− ph‖L2(ΩF) ≤ C h2, for ΩF ⊂ R
2 or ΩF ⊂ R

3.

(Mikhlin, discrete LBB condition).

• If f(x) is a Dirac measure supported at x0,

‖p− ph‖L2(ΩF) ≤







C(x0)h, for ΩF ⊂ R
2,

C(x0)h
1

2 , for ΩF ⊂ R
3,

where C(x0)→∞ as x0 gets close to ∂ΩF (Casas, Scott).
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5. NUMERICAL APPROXIMATION OF THE

OPTIMAL SOURCE AMPLITUDES

Let us now consider the optimization problem with respect to the

source amplitudes (their positions being fixed):

• From the FEM approximation of the state equation, we obtain

the approximated observations z0h, . . . , zNah:

z0h :=
(

ph(e0)(x
s
1), . . . , ph(e0)(x

s
Ns

)
)

,

zih :=
(

ph(ei)(x
s
1), . . . , ph(ei)(x

s
Ns

)
)

, i = 1, . . . , Na.

where ph(u) is the solution of the discrete Helmholtz problem

with Dirac measures sources of amplitudes u = (u1, . . . , uNa
).
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• We define Zh and b0h analogously to their continuous counter-

parts:

(Zh)ij := 〈zjh, zih〉 , i, j = 1, . . . , Na;

(b0)i := 〈z0h, zih〉 , i = 1, . . . , Na;

• This leads to an approximated quadratic programming

problem:

Find u
h
opt ∈ U ⊂ C

Na such that

Jh(u
h
opt) = min

u∈U

[

1

2

(

(Zh + νI)u,u
)

+ Re (b0h,u)

]

.

Its solution u
h
opt is an approximation of the optimal con-

trol uopt.
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• To obtain an error bound for the optimal control, we need point-

wise error estimates, since the observations consist of point val-

ues of the pressure.

• Hypothesis. We suppose that the following pointwise estimate

holds for the Helmholtz problem with Dirac measures:

|p(x)− ph(x)| ≤ Ch2
log (|x− x0|/h)

|x− x0|n
,

for x,x0 ∈ Ω̃F ⊂⊂ ΩF ⊂ R
n (n = 2 or 3), with |x−x0| ≥ Ch.

(A similar estimate is proved byWahlbin for the Poisson prob-

lem.)



FINITE ELEMENT TECHNIQUES FOR ACTIVE CONTROL OF NOISE IN ENCLOSURES 34'

&

$

%

• Under the above assumption, the following error estimate

holds:

There exists h0 > 0 such that, ∀h < h0,

‖uopt − u
h
opt‖∞

‖uopt‖∞
≤ C cond∞(Z + νI)

(

‖Z −Zh‖∞
‖Z + νI‖∞

+
‖b0 − b0h‖∞
‖b0‖∞

)

≤ C log

(

1

h

)

h2.
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6. SOME NUMERICAL RESULTS

Problem data.
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Geometry and vertical section of the mesh.
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%Results: optimal configuration and source amplitudes.
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%Pressure field without control.
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%Pressure field with control.
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Horizontal sections of the enclosure.
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without control

with control
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without control

with control
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without control

with control


