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The Domain

Ω

P ε

2ε
·

x = (x
∼
, x3)

Middle surface: Ω ⊂ R2,

3D Domain: P ε = Ω× (−ε, ε),

Lateral Boundary: ∂P εL = ∂Ω× (−ε, ε),

Top and bottom boundaries: ∂P ε± = Ω× {−ε, ε}.
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Bending of Linearly Elastic Plate

Find uε : P ε → R3 and σε : P ε → R3×3
sym such that

−div σε = 0, σε = Ce(uε), in P ε,

σεn = gε on ∂P ε±, uε = 0 on ∂P εL,

where gε = (0, 0, g3) : ∂P ε± → R3 is the traction load.

Also, e(uε) =
1
2

(∇uε +∇T uε) and

Cτ = 2ντ + λ tr(τ)δ,

where µ and λ are the Lamé coeff., and δ is the 3× 3 ident. matrix.

Assume g3(x
∼
, ε) = g3(x

∼
,−ε).
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Dimension Reduction

The goal of dimension reduction is to pose a system of equations in

the middle surface Ω that is “easy” to solve and which solution

approximates the original 3D solution.

The most popular models are

• variants of Reissner–Mindlin

• Kirchhoff–Love (also known as biharmonic model)

• formal higher order models
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Notation:

u =





u
∼

u3



 ∈





R2

R



 , σ =





σ
∼∼

σ
∼

σ
∼
t σ33



 ∈





R2×2 R2

R2t R



 ,
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Hellinger–Reissner Principle

Let Sg(P ε) = { τ ∈ H(div, P ε) : τn = g on ∂P ε± }.

Hellinger-Reissner Principle: (σε, uε) is critical point of

L(τ , v) =
1
2

∫

P ε
C−1τ : τ dx+

∫

P ε
div τ · v dx

on Sg(P ε)× L2(P ε).

So σε ∈ Sg(P ε) and uε ∈ L2(P ε) satisfy
∫

P ε
C−1σε : τ dx+

∫

P ε
uε · div τ dx = 0 for all τ ∈ S0(P ε),

∫

P ε
div σε · v dx = 0 for all v ∈ L2(P ε).
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We now derive a model of Reissner–Mindlin type by looking for

critical points of L within subspaces of Sg(P ε)× L2(P ε).

Consider subspaces composed of functions which are polynomial in

the transverse direction, with the following degrees:




1

2



 ,





1 2

2 3



 .

Then our solution will be of the form

uR =





−θ
∼

(x
∼

)x3

ω(x
∼

) + ω2(x
∼

)r(x3)



 , σR =





σ
∼∼

(x
∼

)x3 σ
∼

(x
∼

)q(x3)

× g3x3/ε+ σ33s(x3)



 ,

where r(z) = 3(z2/ε2 − 1/5)/2, q(z) = 3(1− z2/ε2)/2, and

s(z) = 5(z/ε− z3/ε3)/4.
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Consider the eqtn
∫

P ε
div σ · v dx = 0, where v is a test function.

Choose v = (ψ
∼

(x
∼

)x3, 0), with ψ
∼
∈ L
∼

2(Ω) arbitrary, to obtain

−ε
2

3

∫

Ω

div
∼
σ
∼∼
· ψ
∼
dx
∼

+ 2ε
∫

Ω

σ
∼
· ψ
∼
dx
∼

= 0 for all ψ
∼
∈ L
∼

2(Ω).

Choosing v = (0, 0, w(x
∼

)), with w ∈ L2(Ω) arbitrary, it follows that

ε

∫

Ω

div σ
∼
w dx
∼

=
∫

Ω

g3w dx∼, for all w ∈ L2(Ω)

Finally, with v = (0, 0, w2(x
∼

)r(x3)), and w2 ∈ L2(Ω) arbitrary,
∫

Ω

σ33w2 dx∼ =
2
5

∫

Ω

g3w2 dx∼, for all w2 ∈ L2(Ω)
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Hence

−ε
2

3

∫

Ω

div
∼
σ
∼∼
· ψ
∼
dx
∼

+ 2ε
∫

Ω

σ
∼
· ψ
∼
dx
∼

= 0 for all ψ
∼
∈ L2(Ω)

ε

∫

Ω

div σ
∼
w dx
∼

=
∫

Ω

g3w dx∼, for all w ∈ L2(Ω)
∫

Ω

σ33w2 dx∼ =
2
5

∫

Ω

g3w2 dx∼, for all w2 ∈ L2(Ω)
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Similarly for the stresses, choosing arbitrary test functions with

polynomial profile, we gather that
∫

Ω

A
∼∼∼∼
σ
∼∼

: τ
∼∼
− 2εθ

∼
· div
∼
τ
∼∼
dx
∼

=
ν

E

∫

Ω

(σ33 + 2g3) tr(τ
∼∼

) dx
∼

for all τ
∼∼
∈ H1(Ω),

∫

Ω

(

1
2µ

6
5
σ
∼

+ θ
∼

)

· τ
∼

+ ω div τ
∼
dx
∼

= 0 for all τ
∼
∈ H1(Ω),

∫

Ω

ω2τ33 dx∼ =
ε

E

∫

Ω

(

1
3
g3 +

5
21
σ33 −

ν

6
tr(σ
∼∼

)
)

τ33 dx∼

for all τ33 ∈ H1(Ω).

Integrating by parts, we can write the above equations in terms of

the displacement unknowns only.
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Reissner–Mindlin Model: Find θ
∼

and ω such that

−2ε3

3α
div
∼
e
∼∼

(θ
∼

) + 4εµ
5
6

(θ
∼
−∇
∼
ω) = −ε2 4

5
β

α
∇
∼
g3 in Ω,

4εµ
5
6

div(θ
∼
−∇
∼
ω) = 2g3 in Ω,

θ
∼

= 0, ω = 0 on Ω.

After that we can perform the following computations.

σ
∼∼

= −2εA
∼∼∼∼
−1e
∼∼

(θ
∼

) +
12
5

λ

2µ+ λ
g3δ∼∼

, σ33 =
2
5
g3,

σ
∼

= 2µ
5
6

(−θ
∼

+∇
∼
ω),

ω2 =
ε

E

(

1
3
g3 +

5
21
σ33 −

ν

6
tr(σ
∼∼

)
)

.
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Convergence of Reissner–Mindlin

Theorem 1 Assume g3 = εαĝ3, where ĝ3 is ε-independent and

smooth, and α is a nonnegative number. Then

‖uε − uR‖E(P ε)

‖uε‖E(P ε)
+
‖σε − σR‖L2(P ε)

‖σε‖L2(P ε)
≤ Cε1/2.

The constant C depends on Ω, and ĝ3 only.
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The proof of this theorem relies on the two-energies principle. This

principle says that if, given a stress that is statically admissible,

and a displacement that is kinematically admissible, then the sum

of the squared energy and complementary energy norms is equal to

the complementary energy norm of the constitutive residual.

The complementary energy norm is simply

‖σ‖Cε =
[∫

P ε
(C−1σ) : σ dx

]1/2
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Theorem 2 (The two energies principle.) Suppose that

σ ∈ H(div, P ε), is statically admissible, i.e.

divσ = 0 in P ε, σn = gε on ∂P ε±,

and suppose u ∈ H1(P ε) is kinematically admissible, i.e.

u = 0 on ∂P εL.

Then

‖uε − u‖2Eε + ‖σε − σ‖2Cε = ‖σ − Ce(u)‖2Cε .
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Our derivation of the Reissner–Mindlin system yields an statically

admissible stress field. Also, we add a boundary layer to make the

displacement field kinematically admissible.
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The constitutive residual ρ = C−1σR − e(uR) is given by

ρ
∼∼

= 0, ρ
∼

=
5

8µ
(
x2

3

ε2
− 1

5
)[µ(θ

∼
−∇
∼
w)],

ρ33 =
x3

2µ+ λ
(λ div θ

∼
+ g3).

We shall need the following a priori estimates:

Lemma 3 Let γ
∼

= µ(θ
∼
−∇
∼
w). Then there exists a constant C

only dependent on Ω such that

‖θ
∼
‖H
∼

1 + ‖w‖H1 + ε−1‖γ
∼
‖L
∼

2 ≤ C‖g3‖L2 .
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Consider the beam (2D elasticity) problem of finding

u
∼
ε =





u1

u2



 and σ
∼∼
ε =





σ1,1 σ1,2

σ1,2 σ2,2





such that

−div
∼
σ
∼∼
ε = 0, σ

∼∼
ε = C

∼∼∼∼
e
∼∼

(u
∼
ε), in (−1, 1)× (−ε, ε),

σ
∼∼
εn
∼

= g
∼
ε on (−1, 1)× {−ε, ε}, u

∼
ε = 0 on {−1, 1} × (−ε, ε),

where g
∼
ε = (0, g2) is the traction , and e

∼∼
(u
∼
ε) =

1
2

(∇
∼∼
u
∼
ε +∇

∼∼
T u
∼
ε).
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Hellinger-Reissner Principle: (σ
∼∼
ε, u
∼
ε) is critical point of

L(τ
∼∼
, v
∼

) =
1
2

∫

P ε
C
∼∼∼∼
−1τ
∼∼

: τ
∼∼
dx
∼

+
∫

P ε
div
∼
τ
∼∼
· v
∼
dx
∼

on S
∼∼g∼

(P ε)× L
∼

2(P ε).

Full discretization by choosing

σ
∼∼

=





σ11 σ12

σ12 σ22



 ∈





P 2
0 (−1, 1)⊗ x2 P 1

0 (−1, 1)⊗ q(x2)

× P 0
−1(−1, 1)⊗ s(x2)





u
∼

=





u1

u2



 ∈





P 1
−1(−1, 1)⊗ x2

P 0
−1(−1, 1)⊗ {1, r(x2)}





P k0 (−1, 1): continuous piecewise polynomials of degree k in (−1, 1)

P k−1(−1, 1): discontinuous polynomials of degree k in (−1, 1)
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Our (Timoshenko Beam Model) solution will be of the form

σT (x1, x2) =





σ11(x1)x2 σ12(x1)q(x2)

× g3x3/ε+ σ22s(x2)



 ,

uT (x1, x2) =





−θ(x1)x2

ω(x1) + ω2(x1)r(x2)



 ,

where σ11 ∈ P 2
0 (−1, 1), σ12 ∈ P 1

0 (−1, 1), σ22 ∈ P 0
−1(−1, 1),

θ ∈ P 1
−1(−1, 1), ω ∈ P 0

−1(−1, 1)
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−ε
2

3

∫ 1

−1

dσ11

dx1
ψ dx1 + 2ε

∫ 1

−1

σ12ψ dx1 = 0 ∀ψ ∈ P 1
−1(−1, 1),

ε

∫ 1

−1

dσ12

dx1
w dx1 =

∫ 1

−1

g2w dx1 ∀w ∈ P 0
−1(−1, 1),

∫ 1

−1

σ22w2 dx1 =
2
5

∫ 1

−1

g2w2 dx1 ∀w2 ∈ P 0
−1(−1, 1),

∫ 1

−1

ασ11τ11 − βσ22τ11 − 2εθ
dτ11

dx1
dx1 = 2β

∫ 1

−1

g2τ11 dx1,

∫ 1

−1

(

1
2µ

6
5
σ12 + θ

)

τ12 + ω
dτ12

dx1
dx1 = 0,

∫ 1

−1

ω2τ22 dx1 =
∫ 1

−1

ε

(

1
2µ
− β

)[

1
3
g2 +

5
21
σ22

]

τ22 − β
ε

6
σ11τ22 dx1,

for all τ11 ∈ P 2
0 (−1, 1), τ12 ∈ P 1

0 (−1, 1), τ22 ∈ P 0
−1(−1, 1).
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Assume g2 constant by parts. It is possible to solve for the stresses

using the equations above:

σh11 =
6
ε2
P2 +

6
ε
c0x1 + c1, σh12 =

P

ε
+ c0, σh22 =

2
5
g2,

where P (x) =
∫ x

−1
g2(ξ) dξ, P2(x) =

∫ x

−1
P (ξ) dξ, and we compute c0

and c1 from

(1+
5µα
3ε2

)c0 = − 1
2ε

∫ 1

−1

P dx1−
5µα
2ε3

∫ 1

−1

P2x1 dx1−βµ
∫ 1

−1

g2x1 dx1.

2αc1 = β
6
5

∫ 1

−1

g2 dx1 −
6α
ε2

∫ 1

−1

P2 dx1.
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Hence, we have to solve for θ ∈ P 1
−1(−1, 1) and ω ∈ P 0

−1(−1, 1),

where

−
∫ 1

−1

2εθ
dτ11

dx1
dx1 =

∫ 1

−1

(

βσ22 − ασ11 + 2βg2

)

τ11 dx1,

∫ 1

−1

ω
dτ12

dx1
dx1 = −

∫ 1

−1

(

1
2µ

6
5
σ12 + θ

)

τ12 dx1,

for all τ11 ∈ P 2
0 (−1, 1), τ12 ∈ P 1

0 (−1, 1).
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• For the plate problem, things are not that easy. Indeed, the

planar stress is no longer a scalar, but a 2× 2 symmetric

matrix with rows in H(div, P ε). It then becomes nontrivial to

find stable elements for stresses and displacements.

• An option is to solve for the planar stress in terms of the

displacement and shear stress. This is the same as start with

Reissner–Mindlin, and include shear stress, and it’s

traditionally considered to develop stable elements.
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Conclusions

• The derivation of the Reissner–Mindlin Model using

Hellinger–Reissner Principle is “mathematically” consistent.

The model obtained is actually the first in a hierarchical

sequence.

• It also makes the derivation of the modeling error through the

two energies principle easier, since it yields statically admissible

stress field.

• Reissner–Mindlin is better than the biharmonic: if there is

shear, the biharmonic fails to deliver a meaningful result.
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Example: General load

• Domain: (0, 1)× (−ε, ε), with ε = 1/40

• Traction: gε = (1, 10−3) on the top and gε = (−1, 10−3) on the

bottom

• Clamped lateral boundary conditions
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Planar elasticity, Reissner–Mindlin and Kirchhoff–Love solutions:
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0 0.2 0.4 0.6 0.8 1
−0.4
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−0.2

0
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• Reissner–Mindlin is the same as the biharmonic: for purely

transverse load, both models converge at the same rate. I now

of no proof indicating that one is better than the other in this

case.

• Both suffer from a quite low convergence rate: O(ε1/2) in

relative energy norm. Is there a way to improve this rate?
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Thank You!
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