MIXED FINITE ELEMENTS FOR PLATES

Ricardo G. Durán
Universidad de Buenos Aires

- Necessity of $2 D$ models.
- Reissner-Mindlin Equations.
- Finite Element Approximations.
- Locking.
- Mixed interpolation or reduced integration.
- General Error Analysis.
- L^{2} Error estimates
- Examples.

Why do we need to use 2D models if $3 \mathrm{D}^{2}$ elasticity can be solved by FE?

3D ELASTICITY EQUATIONS

$D \subset \mathbb{R}^{3}$ Initial configuration of elastic solid. $u=\left(u_{1}, u_{2}, u_{3}\right) \quad$ Displacement.
$\varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \quad$ Strain tensor.

$$
\begin{gathered}
2 \mu \int_{D} \varepsilon(u): \varepsilon(v)+\lambda \int_{D} \operatorname{div} u \operatorname{div} v=\int_{D} f \cdot v+\int_{\Gamma} g \cdot v \\
\forall v \in V \subset H^{1}(D)^{3}
\end{gathered}
$$

Coercivity of this bilinear form follows from "Korn's inequality":

$$
\|u\|_{1} \leq K\|\varepsilon(u)\|_{0}
$$

Under appropriate boundary conditions.

Remark 1.: The constant K depends on the geometry of D.

RECALL CEA'S LEMMA:
If u is the exact solution and u_{h} the FE approximation then,

$$
\left\|u-u_{h}\right\|_{1} \leq \frac{M}{\alpha}\left\|u-v_{h}\right\|_{1} \quad \forall v_{h} \in V_{h}
$$

where M and α are the continuity and coercivity constants of the bilinear form.

In our problem α depends on the Korn's constant K. If K is too large then α is too small and the constant in Cea's Lemma is large.

Consider a PLATE of thickness t :

$$
D=\Omega \times(-t / 2, t / 2)
$$

where $\Omega \subset \mathbb{R}^{2}$ and $t>0$, with t small in comparison with the dimensions of Ω.
In this case:

$$
K=O\left(t^{-1}\right)
$$

CONSEQUENCE:
THE METHOD IS NOT EFFICIENT: VERY SMALL MESH SIZE WILL BE NEEDED!

This is a serious computational drawback specially in 3D.

SOLUTION: USE 2D MODELS!

$$
\Omega \subset \mathbb{R}^{2} \quad D=\Omega \times(-t / 2, t / 2)
$$

Displacements are approximated by

$$
\begin{gathered}
u_{1}(x, y, z) \sim-z \theta_{1}(x, y) \\
u_{2}(x, y, z) \sim-z \theta_{2}(x, y) \\
u_{3}(x, y, z) \sim w(x, y)
\end{gathered}
$$

θ_{1}, θ_{2} "rotations",
w "transverse displacement".
Assuming a transverse load of the form

$$
t^{3} f(x, y)
$$

and a that the plate is clamped,

$$
\theta=\left(\theta_{1}, \theta_{2}\right) \quad \text { and } \quad w
$$

satisfy the system of equations:

$$
\begin{aligned}
a(\theta, \eta)+\kappa t^{-2}(\nabla w-\theta, \nabla v-\eta)=(f, v) \\
\forall \eta \in H_{0}^{1}(\Omega)^{2}, v \in H_{0}^{1}(\Omega) \\
a(\theta, \eta):=\frac{E}{12\left(1-\nu^{2}\right)} \int_{\Omega}[(1-\nu) \varepsilon(\theta) \varepsilon(\eta) \\
\quad+\nu \operatorname{div} \theta \operatorname{div} \eta]
\end{aligned}
$$

E Young modulus,
ν Poisson ratio,
$\kappa:=E k / 2(1+\nu)$ shear modulus,
k correction factor usually taken as $5 / 6$.
We change notation and keep only the parameter t. So, our equations are

$$
a(\theta, \eta)+t^{-2}(\nabla w-\theta, \nabla v-\eta)=(f, v)
$$

For our purposes, the only important fact about a is that it is coercive in H_{0}^{1} (which follows from the 2D Korn inequality). We will not make other use of the explicit form ○ a.

The deformation energy is given by

$$
\frac{1}{2} a(\theta, \theta)+\frac{t^{-2}}{2} \int_{\Omega}|\nabla w-\theta|^{2}-\int_{\Omega} f w
$$

It can be shown that the second term remains bounded when $t \rightarrow 0$. In particular,

$$
t \rightarrow 0 \Rightarrow|\nabla w-\theta| \rightarrow 0
$$

For the limit problem:

$$
\nabla w=\theta \quad \text { "Kirchkoff constraint" }
$$

THIS IS A PROBLEM FOR THE NUMERICAL SOLUTION!
If t is small the problem is close to a constrained minimization problem.
FOR EXAMPLE: If we use standard \mathcal{P}_{1} finite elements for θ and w, the restriction of the limit problem is too strong.

Indeed, if

$$
\nabla w_{h}=\theta_{h}
$$

then, ∇w_{h} piecewise constant and continuous

$$
\Rightarrow \quad \nabla w_{h} \quad \text { constant }
$$

But,

$$
\theta_{h} \in H_{0}^{1}(\Omega)^{2} \quad \Rightarrow \nabla w_{h}=\theta_{h}=0
$$

CONSEQUENCE: For t small $\theta_{h}, w_{h} \sim 0$.
This is called "LOCKING"
Remark 2.: Indeed, now the continuity constant of the bilinear form is too large. It seems that we have a problem similar to the original 3D problem!

AND SO, WHAT IS THE ADVANTAGE OF USING THE 2D MODEL?

SOLUTION: Mixed Interpolation or Reduced Integration.
IDEA: Relax the restriction of the limit problem.
$\nabla w-\theta=0 \quad$ replaced by $\quad \Pi(\nabla w-\theta)=0$
Π is some interpolation or projection onto some space Γ_{h}.
So, in the discrete problem, the restriction is verified only at some points or in some average sense.

FINITE ELEMENT APPROXIMATION:

$$
\theta_{h} \in H_{h} \subset H_{0}^{1}(\Omega)^{2}, \quad w_{h} \in W_{h} \subset H_{0}^{1}(\Omega)
$$

are such that

$$
\begin{gathered}
a\left(\theta_{h}, \eta\right)+t^{-2}\left(\Pi\left(\nabla w_{h}-\theta_{h}\right), \Pi(\nabla v-\eta)\right)=(f, v) \\
\forall \eta \in H_{h}, v \in W_{h}
\end{gathered}
$$

In the usual methods

$\nabla W_{h} \subset \Gamma_{h}$

So,

$$
\begin{gathered}
a\left(\theta_{h}, \eta\right)+t^{-2}\left(\nabla w_{h}-\Pi \theta_{h}, \nabla v-\Pi \eta\right)=(f, v) \\
\forall \eta \in H_{h}, v \in W_{h}
\end{gathered}
$$

MIXED FORM:
Introducing the shear stress

$$
\begin{gathered}
\gamma=t^{-2}(\nabla w-\theta) \\
\left\{\begin{array}{l}
a\left(\theta_{h}, \eta\right)+\left(\gamma_{h}, \nabla v-\Pi \eta\right)=(f, v) \\
\gamma_{h}=t^{-2}\left(\nabla w_{h}-\Pi \theta_{h}\right)
\end{array}\right. \\
\forall \eta \in H_{h}, v \in W_{h}
\end{gathered}
$$

MAIN PROBLEM: How to choose the spaces H_{h}, W_{h}, Γ_{h} and the operator Π ?
EXAMPLE: The Bathe-Dvorkin MITC4 rectangular elements (Mixed Interpolation Tensorial Components).
H_{h} and W_{h} are the standard \mathcal{Q}_{1} elements and Γ_{h} is locally defined by $(a+b y, c+d x)$ (is a rotated Raviart-Thomas space).

The operator Π is defined by

$$
\int_{\ell} \Pi \eta \cdot t_{\ell}=\int_{\ell} \eta \cdot t_{\ell}
$$

for all side ℓ of an element, where t_{ℓ} is the unit tangent vector on ℓ.

Continuous problem:

$$
\left\{\begin{array}{l}
a(\theta, \eta)+(\gamma, \nabla v-\Pi \eta)=(f, v)+(\gamma, \eta-\Pi \eta) \\
\gamma=t^{-2}(\nabla w-\theta) \\
\forall \eta \in H_{0}^{1}(\Omega)^{2}, v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Discrete Problem:

$$
\left\{\begin{array}{c}
a\left(\theta_{h}, \eta\right)+\left(\gamma_{h}, \nabla v-\Pi \eta\right)=(f, v) \\
\gamma_{h}=t^{-2}\left(\nabla w_{h}-\Pi \theta_{h}\right) \\
\forall \eta \in H_{h}, v \in W_{h}
\end{array}\right.
$$

Error equation:

$$
\begin{aligned}
& a\left(\theta-\theta_{h}, \eta\right)+\left(\gamma-\gamma_{h}, \nabla v-\Pi \eta\right) \\
= & (\gamma, \eta-\Pi \eta) \quad \forall \eta \in H_{h}, v \in W_{h}
\end{aligned}
$$

Lemma 1. Let $\theta_{I} \in H_{h}, w_{I} \in W_{h}$ and $\gamma_{I}=t^{-2}\left(\nabla w_{I}-\Pi \theta_{I}\right) \in \Gamma_{h}$.
Suppose

$$
\|\gamma-\Pi \gamma\|_{0} \leq C h\|\gamma\|_{1}
$$

and

$$
(\gamma-\Pi \gamma, \eta)=0 \quad \forall \eta \in \mathcal{P}_{k-2}^{2}
$$

Let P be the L^{2} projection into \mathcal{P}_{k-2}^{2}. Then,

$$
\begin{gathered}
\left\|\theta-\theta_{h}\right\|_{1}+t\left\|\gamma-\gamma_{h}\right\|_{0} \\
\leq C\left(\left\|\theta_{I}-\theta\right\|_{1}+t\left\|\gamma_{I}-\gamma\right\|_{0}+h\|\gamma-P \gamma\|_{0}\right.
\end{gathered}
$$

Proof.

$$
\begin{gathered}
a\left(\theta_{I}-\theta_{h}, \eta\right)+\left(\gamma_{I}-\gamma_{h}, \nabla v-\Pi \eta\right) \\
=a\left(\theta_{I}-\theta, \eta\right)+\left(\gamma_{I}-\gamma, \nabla v-\Pi \eta\right)+(\gamma, \eta-\Pi \eta) \\
\forall \eta \in H_{h}, v \in W_{h}
\end{gathered}
$$

Take $\eta=\theta_{I}-\theta_{h}$ and $v=w_{I}-w_{h}$. So,

$$
\gamma_{I}-\gamma_{h}=t^{-2}(\nabla v-\Pi \eta)
$$

Using the coercivity of a we obtain

$$
\left\|\theta_{I}-\theta_{h}\right\|_{1}^{2}+t^{2}\left\|\gamma_{I}-\gamma_{h}\right\|_{0}^{2}
$$

$$
\begin{array}{rl}
=a & a\left(\theta_{I}-\theta, \theta_{I}-\theta_{h}\right)+t^{2}\left(\gamma_{I}-\gamma, \gamma_{I}-\gamma_{h}\right) \\
& +\left(\gamma-P \gamma, \theta_{I}-\theta_{h}-\Pi\left(\theta_{I}-\theta_{h}\right)\right)
\end{array}
$$

and the lemma follows.
To apply the Lemma we need to find approximations θ_{I} and w_{I} such that the associated γ_{I} be also a good approximation. This will follow from the existence of approximations satisfying the following property

$$
\nabla w_{I}-\Pi \theta_{I}=\Pi(\nabla w-\theta)
$$

and

$$
\begin{gathered}
\left\|\theta-\theta_{I}\right\|_{1} \leq C h^{k}\|\theta\|_{k+1} \\
\|\gamma-\Pi \gamma\|_{0} \leq C h^{k}\|\gamma\|_{k}
\end{gathered}
$$

This property can be seen as a generalization of the known Fortin property basic in the analysis of mixed methods. In fact, introducing the operators

$$
\begin{aligned}
& I(\theta, w)=\left(\theta_{I}, w_{I}\right) \\
& B(\theta, w)=\nabla w-\theta
\end{aligned}
$$

and

$$
B_{h}\left(\theta_{h}, w_{h}\right)=\nabla w_{h}-\Pi \theta
$$

the property can be summarized by the following commutative diagram:

$$
\begin{array}{ccc}
\left(H_{0}^{1}\right)^{2} \times H_{0}^{1} & B \\
I \downarrow & & \left(L^{2}\right)^{2} \\
& & \downarrow \Pi \\
H_{h} \times W_{h} & \xrightarrow{B_{h}} & \Gamma_{h}
\end{array}
$$

When Π is an L^{2} projection, this is exactly the Fortin property, which is known to be equivalent to the inf-sup condition. This will be the case in one of our examples (the Arnold-Falk elements). In that case error estimates for the shear stress γ can also be obtained.

Remark 3. Indeed it is enough to have the commutative diagram with Π replaced by some operator with good approximation properties.

If approximations satisfying the properties above (i.e, commutative diagram + approximation properties) exist, then it follows from the Lemma:

ERROR ESTIMATES

$$
\begin{gathered}
\left\|\theta-\theta_{h}\right\|_{1}+t\left\|\gamma-\gamma_{h}\right\|_{0}+\left\|w-w_{h}\right\|_{1} \\
\leq C h^{k}\left(\|\theta\|_{k+1}+t\|\gamma\|_{k}+\|\gamma\|_{k-1}\right)
\end{gathered}
$$

With constant C independent of h and t.

EXAMPLES

Example 1: MITC3 or DL element:
$H_{h}: \mathcal{P}_{1}^{2} \oplus\left\{\lambda_{2} \lambda_{3} t_{1}, \lambda_{3} \lambda_{1} t_{2}, \lambda_{1} \lambda_{2} t_{3}\right\}, \mathcal{C}^{0}$
Degrees of freedom: $\theta\left(V_{i}\right), \int_{\ell_{i}} \theta \cdot t_{i}$
$W_{h}: \quad \mathcal{P}_{1} \quad \mathcal{C}^{0}$
$\Gamma_{h}: \quad(a-b y, c+b x) \quad \mathcal{C}^{0}$ t. c.
Degrees of freedom: $\int_{\ell_{i}} \gamma \cdot t_{i}$
Π defined by

$$
\int_{\ell} \Pi \gamma \cdot t=\int_{\ell} \gamma \cdot t
$$

Example 2: Arnold-Falk element:
$H_{h}: \mathcal{P}_{1}^{2} \oplus\left\{\lambda_{1} \lambda_{2} \lambda_{3}\right\}, \mathcal{C}^{0}$
Degrees of freedom: $\theta\left(V_{i}\right), \int_{T} \theta$
$W_{h}: \quad \mathcal{P}_{1} \quad$ Non Conforming
Degrees of freedom: $\int_{\ell} w$
$\Gamma_{h}: \quad \mathcal{P}_{0}^{2}$
Π defined by

$$
\int_{T} \Pi \gamma=\int_{T} \gamma
$$

L^{2}-projection!
Error estimates for Examples 1 and 2:

$$
\left\|\theta-\theta_{h}\right\|_{1}+\left\|w-w_{h}\right\|_{1} \leq C h
$$

Example 3: Bathe-Brezzi second order rectangular elements:

$$
\begin{aligned}
& H_{h}: \mathcal{Q}_{2}, \mathcal{C}^{0} \\
& W_{h}: \mathcal{Q}_{2}^{r}:\left\{1, x, y, x y, x^{2}, y^{2}, x^{2} y, x y^{2}\right\}, \mathcal{C}^{0}
\end{aligned}
$$

$\Gamma_{h}:\left\{1, x, y, x y, y^{2}\right\} \times\left\{1, x, y, x y, x^{2}\right\}$
Π defined by

$$
\left\{\begin{array}{l}
\int_{\ell} \Pi \gamma \cdot t p_{1}=\int_{\ell} \gamma \cdot t p_{1} \\
\int_{R} \Pi \gamma=\int_{R} \gamma
\end{array}\right.
$$

Error estimates:

$$
\left\|\theta-\theta_{h}\right\|_{1}+\left\|w-w_{h}\right\|_{1} \leq C h^{2}
$$

Remark 4. Here the constant C is NOT independent of t because the right hand side involves higher order norms of the solution which depend on t.

L^{2} - ERROR ESTIMATES

$$
\left\|\theta-\theta_{h}\right\|_{0}+\left\|w-w_{h}\right\|_{0} \leq C h^{2}
$$

Recall the error equation

$$
\begin{gathered}
a\left(\theta-\theta_{h}, \eta\right)+\left(\gamma-\gamma_{h}, \nabla v-R \eta\right)=(\gamma, \eta-R \eta) \\
\forall(\eta, v) \in H_{h} \times W_{h},
\end{gathered}
$$

Duality argument: $(\varphi, u) \in H_{0}^{1}(\Omega)^{2} \times H_{0}^{1}(\Omega)$ solution of

$$
\begin{aligned}
& \left\{\begin{array}{l}
a(\eta, \varphi)+(\nabla v-\eta, \delta) \\
=\left(v, w-w_{h}\right)+\left(\eta, \theta-\theta_{h}\right) \\
\delta=t^{-2}(\nabla u-\varphi) .
\end{array}\right. \\
& \forall(\eta, v) \in H_{0}^{1}(\Omega)^{2} \times H_{0}^{1}(\Omega),
\end{aligned}
$$

A priori estimate (we assume Ω is convex)

$$
\begin{array}{r}
\|\varphi\|_{2}+\|u\|_{2}+\|\delta\|_{0}+t\|\delta\|_{1} \\
\leq C\left(\left\|\theta-\theta_{h}\right\|_{0}+\left\|w-w_{h}\right\|_{0}\right),
\end{array}
$$

Take $v=w-w_{h}$ and $\eta=\theta-\theta_{h}$ in the dual problem and use the error equation with $(\eta, v)=\left(\varphi_{I}, u_{I}\right):$

$$
\begin{gathered}
\left\|w-w_{h}\right\|_{0}^{2}+\left\|\theta-\theta_{h}\right\|_{0}^{2} \\
=a\left(\theta-\theta_{h}, \varphi-\varphi_{I}\right)+t^{2}\left(\gamma-\gamma_{h}, \delta-\Pi \delta\right) \\
+\left(\theta_{h}-R \theta_{h}, \delta\right)+\left(\gamma, \varphi_{I}-\Pi \varphi_{I}\right),
\end{gathered}
$$

where we have used the commutative diagram property $\Pi \delta=t^{-2}\left(\nabla u_{I}-\Pi \varphi_{I}\right)$.
PROBLEM: The last two terms.
For the MITC3 elements we have:
Lemma 2. If $\gamma \in H(\operatorname{div}, \Omega), \psi \in H_{0}^{1}(\Omega)$ and ψ_{A} is a piecewise-linear average interpolant:

$$
\left|\left(\gamma, \psi_{A}-\Pi \psi_{A}\right)\right| \leq C h^{2}\|\operatorname{div} \gamma\|_{0}\|\psi\|_{1}
$$

$$
F_{K}: \hat{K} \longrightarrow K
$$

$\hat{K}=(0,1) \times(0,1):$ reference element
K : shape regular quadrilateral
$F_{K}: \mathcal{Q}_{1}^{2}$ transformation
W_{h} : Standard isoparametric \mathcal{Q}_{1} elements:

$$
v \circ F_{K}=(a+b \hat{x}+c \hat{y}+d \hat{x} \hat{y})
$$

Γ_{h} : Rotated Raviart-Thomas elements:

$$
\eta \circ F_{K}=D F_{K}^{-T}(a+b \hat{y}, c+d \hat{x})
$$

The operator Π is defined by

$$
\int_{\ell} \Pi \eta \cdot t_{\ell}=\int_{\ell} \eta \cdot t_{\ell}
$$

for all side ℓ of an element, where t_{ℓ} is the unit tangent vector on ℓ.
For H_{h} we consider two cases:

MITC4: Standard \mathcal{Q}_{1}^{2} isoparametric elements
DL4: $\mathcal{Q}_{1}^{2} \oplus\left\langle p_{1}, p_{2}, p_{3}, p_{4}\right\rangle$
$p_{i}=\left(\hat{p}_{i} \circ F_{K}^{-1}\right) t_{i}$
\hat{p}_{i} is a cubic polynomial vanishing on $\hat{\ell}_{j}$, $j \neq i$.

ERROR ESTIMATES

$$
\begin{gathered}
\left\|\theta-\theta_{h}\right\|_{1}+t\left\|\gamma-\gamma_{h}\right\|_{0}+\left\|w-w_{h}\right\|_{1} \\
\leq C h\left(\|\theta\|_{2}+t\|\gamma\|_{1}+\|\gamma\|_{0}\right)
\end{gathered}
$$

ASSUMPTIONS: For DL4 general shape regular meshes. For MITC4 the mesh \mathcal{T}_{h} is a refinement of a coarser $\mathcal{T}_{2 h}$ obtained by joining the edge midpoints and $\mathcal{T}_{2 h}$ is obtained in the same way from $\mathcal{T}_{4 h}$. L^{2} - ERROR ESTIMATES

$$
\left\|\theta-\theta_{h}\right\|_{0}+\left\|w-w_{h}\right\|_{0} \leq C h^{2}
$$

ASSUMPTION: Asymptotically parallelogram meshes.

