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- Reissner-Mindlin Equations.
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Why do we need to use 2D models it 3D
elasticity can be solved by FE?

3D ELASTICITY EQUATIONS

D C IR3 Initial configuration of elastic solid.

u = (uy,u9,u3) Displacement.

 Qus |
gij(u) = %(gg; + 822 ) Strain tensor.

2,u/Ds(u):5(v)+>\/Ddivudivv:/Df-er/Fg-v

Yo eV Cc HY(D)?

Coercivity of this bilinear form follows from
“Korn’s inequality”:

lullr < Kle(u)llo
Under appropriate boundary conditions.



Remark 1. : The constant K depends on
the geometry of D.

RECALL CEA’S LEMMA:

If u is the exact solution and wuj, the FE
approximation then,

M
Ju —upll1 < EHU —vpllt Yop €V

where M and « are the continuity and coer-
civity constants of the bilinear form.

In our problem a depends on the Korn'’s con-
stant K. If K is too large then « is too small
and the constant in Cea’s Lemma is large.



Consider a PLATE of thickness t:

D=Qx(—t/2,t/2)
where Q € R? and ¢ > 0, with ¢ small in
comparison with the dimensions of 2.

In this case:

K=0("Y
CONSEQUENCE:

THE METHOD IS NOT EFFICIENT: VERY
SMALL MESH SIZE WILL BE NEEDED!

This is a serious computational drawback spe-
cially in 3D.

SOLUTION: USE 2D MODELS!



REISSNER-MINDLIN EQUATIONS
QCcR®> D=Qx(-t/2,t/2)

Displacements are approximated by

U1<CC, Y, Z) ™~ _291@37 y)
u2<x7 Y, Z) ™~ —2(92<£C, y)
U3(CI?, Y, Z) ~ w('xv y)
61, 0> “rotations” .
w “transverse displacement”.

Assuming a transverse load of the form

tf(z, y)
and a that the plate is clamped,

0 =(01,65) and w

satisty the system of equations:



a(0,n) + Kt A(Vw — 0, Vv —n) = (f,v)
Vi € Hi(Q)% v e HY(Q).

b
S L= e
+vdiv fdivn),

E Young modulus,
v Poisson ratio,

k= Fk/2(1 + v) shear modulus,
k correction factor usually taken as 5/6.

a(f,n) =

We change notation and keep only the pa-
rameter t. So, our equations are

a(0,n) +t*(Vw —0,Vo —n) = (f,v)

For our purposes, the only important fact
about a is that it is coercive in H& (which
follows from the 2D Korn inequality). We
will not make other use of the explicit form
0 a.



The deformation energy is given by

—a@@ +—/\Vw 0|° — /fw

It can be shown that the second term re-
mains bounded when ¢ — 0. In particular,

t—0 = |Vw—-0—0
For the limit problem:

Vw =60 “Kirchkoff constraint”

THISIS A PROBLEM FOR THE NUMER-
ICAL SOLUTION!

If ¢ is small the problem is close to a con-
strained minimization problem.

FOR EXAMPLE: If we use standard Py fi-
nite elements for 6 and w, the restriction of
the limit problem is too strong.



Indeed, if

th — Qh
then, Vwy;, piecewise constant and continu-
OUS

= Vwj, constant
But

)

@hEH6<Q)2 = Vwy, =0 =0
CONSEQUENCE: For t small 8, wy ~ 0.
This is called “LOCKING”

Remark 2. : Indeed, now the continuity
constant of the bilinear form is too large.
It seems that we have a problem simailar to
the original 3D problem!

AND SO, WHAT IS THE ADVANTAGE
OF USING THE 2D MODEL?



SOLUTION: Mixed Interpolation or Reduced

Integration.

IDEA: Relax the restriction of the limit prob-
lem.

Vw—60 =0 replaced by II(Vw—0)=0
II is some interpolation or projection onto
some space ['p,.
So, in the discrete problem, the restriction
is verified only at some points or in some av-
erage sense.

FINITE ELEMENT APPROXIMATION:

0, € Hy, C HY(Q)?, wy, € W, C Hj(Q)

are such that

a(Bp, n)+t > (I1(Vwy—0;), I1(Vo—n)) = (f,v)
Vn e Hy,v e W,



In the usual methods

VWh C Fh
S0,

a(Bp, )+t~ (Vwy,—116,, Vo—IIn) = (f,v)
Vne Hy,ve W,

MIXED FORM:

Introducing the shear stress

v =t"3(Vw — 6)

{ a(Op,n) + (vp, Vo —1In) = (f,v)
Y =t (Vwy, — 116)
Vn e Hy,ve W,
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MAIN PROBLEM: How to choose the spaces
Hy, Wy, T';, and the operator 117

EXAMPLE: The Bathe-Dvorkin MITC4 rect-
angular elements (Mixed Interpolation Ten-
sorial Components).

Hj, and Wy, are the standard Q; elements
and I'y, is locally defined by (a + by, ¢ + dx)
(is a rotated Raviart-Thomas space).

The operator II is defined by

/HU'W:/U‘W
0 ¢

for all side £ of an element, where ¢, is the
unit tangent vector on /.



GENERAL ERROR ANALY®SIS

Continuous problem:

{M&m+%%Vv—Hm—%ﬁw+%%n—Hm
v =t"2(Vw — 0)

Vn € H} Q)% v e Hi(Q)
Discrete Problem:

{ a(0p,n) + (vh, Vo — ) = (f,v)
Y =t (Vwy, — 116,)

Vn e Hy,ve W,
Error equation:

CL<9 o 9h777> T (W—Whavv _ HU)
=(v,n—1IIn)  Vne Hp,veW,



Lemma 1. Let 07 € Hy, w; € Wy, and
= t_Q(Vw] — H@j) cly,.
Suppose

v — TIv]lo < Ch||y|I1
and

(y=Tly,m) =0 VneP;_,
Let P be the L? projection into 73]%_2. Then,

10— 0p111 + tllv — Yo
< C(|0r =01 +tlvr—~llo+hllv—Pvllo

Proof.
a(0r — Op,m) + (v — v, Vo —1In)

= a(07—0,1)+(y7—7, Vo—IIn)+(v, n—l1ln)
Vne Hy,ve W,
Take n =07 — 05, and v = wy; — wy,. So,

—2
v ==t (Vo —1IIn)
Using the coercivity of a we obtain

> 9 5
107 — OplIT + 2Ny — vllo



= a(f7 — 0,07 — 0;) + (v — .71 — )
+(y — P, 0 — 0, — (07 — 0,))

and the lemma follows. =

To apply the Lemma we need to find ap-
proximations 67 and wj such that the asso-
ciated 7 be also a good approximation. This
will follow from the existence of approxima-
tions satisfying the following property

Vw] — H@I = H(Vw — 9)

and
10 — 07]|1 < Ch¥|0))111
Iy — Tyl < CR¥ |1k

This property can be seen as a generaliza-
tion of the known Fortin property basic in
the analysis of mixed methods. In fact, in-
troducing the operators

10, w) = (07, wy)
B#,w)=YVw —0
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and

Bh(eh, wh) — th — 116
the property can be summarized by the fol-
lowing commutative diagram:

(HH? x HY 25 (L2)?

% ln

B
Hy x W, =% T,

When TT is an L? projection, this is ex-
actly the Fortin property, which is known to
be equivalent to the inf-sup condition. This
will be the case in one of our examples (the
Arnold-Falk elements). In that case error es-
timates for the shear stress v can also be ob-
tained.

Remark 3. Indeed it is enough to have
the commutative diagram with 11 replaced
by some operator with good approximation
properties.
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If approximations satisfying the properties
above (i.e, commutative diagram + approxi-
mation properties) exist, then it follows from
the Lemma:

ERROR ESTIMATES

16 = Opll1 + tlly = vallo + [[w — wplh
k
< L (|00l g1 + VI + lvlle—1)
With constant C' independent of h and t.

EXAMPLES
Example 1: MITC3 or DL element:
Hy, : P? ® {\o)st1, Aghita, Mot} CU
Degrees of freedom: 8(V}), |, 0,01
w,: P CY
Iy, : (a — by, c + bx) c't. c.
Degrees of freedom: | 0.7 t;
II defined by
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/ 14

Example 2: Arnold-Falk element:
Hy, - PP @ {\ oAz}, C
Degrees of freedom: 6(V;), [0

Wi, Py Non Conforming
Degrees of freedom: |, p W

[y 773

I1 defined by

[ [

L2-projection!

Error estimates for Examples 1 and 2:

10 — Opll1 + [[w —wp|l1 < Ch

Example 3: Bathe-Brezzi second order rect-
angular elements:
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Hh . QQ, CO
Wy Qb {1, z,y, zy, 2%, y°, vy, 2y*}, C

L {2,y 2y, 97} x {1, 2,9, 2y, 2°}
II defined by

{hﬂwmn—&vim
fRH”V: fR’Y

Error estimates:

10 — Opll1 + lw — wy ) < CR?

Remark 4. Here the constant C' i1s NOT
independent of t because the right hand
side tnvolves higher order norms of the so-
lution which depend on t.



L?- ERROR ESTIMATES

10 — 0|0 + |lw — wpllg < Ch?

Recall the error equation

a(0—05, n)+(y—7p, Vo—Rn) = (v,n—Rn)
V(n,v) € Hp x Wy,

Duality argument: (p,u) € Hg(Q)*x H3(Q)
solution of

A priori estimate (we assume €2 is convex)

[iplla + llull2 + 11610 + ¢ [81]
< (10 = Opllo + 1w = whllo),



Take v = w —wp and n = 0 — 05, in the
dual problem and use the error equation with

(1n,v) = (pr,ur):

lw — wp, || + ug—ehua
= a(t) — Oy, — 1) + (v — Y4, 0 — 110)
-+ (eh _ Reha 5) -+ (77 I — H@])a

where we have used the commutative dia-
gram property I1o = t_Q(Vu[ — [lpg).

PROBLEM: The last two terms.
For the MIT(C3 elements we have:
Lemma 2. If v € H(div,(2), ¥ € Hol(Q)

and V4 1S a piecewise-linear average in-
terpolant:

(74 = )| < CR?|[divryllo]|¢ s
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[SOPARAMETRIC ELEMENTS

Frr: K — K
K = (0,1) x (0,1): reference element
K: shape regular quadrilateral

Fr: Q% transformation

W, - Standard isoparametric Q7 elements:

vo Fi = (a+bx+ cy+ dzy)

['3, : Rotated Raviart-Thomas elements:

noFK:DF[}T(a—FbQ,C—Fdﬁ:)

The operator II is defined by

/Hn-tz—/n'tz
¢ ¢

for all side ¢ of an element, where ¢, is the
unit tangent vector on £.
For H;, we consider two cases:
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MITC4: Standard Q% isoparametric elements

DL4: Q5 & (p1,p2, p3, Pa)

pi = (Bi o Fie )t

p; 1s a cubic polynomial vanishing on lfj)
J # 1.

ERROR ESTIMATES

16 = Opll1 + tlly — allo + lw — wylls
< Ch([|0]l2 + tll¥[[1 + [[7llo)
ASSUMPTIONS: For DL4 general shape reg-
ular meshes. For MITC4 the mesh 7j, is a
refinement of a coarser 7y;, obtained by join-

ing the edge midpoints and 7y, is obtained
in the same way from Zyj,.

L?*- ERROR ESTIMATES

10— llo + lw — wyllo < K7
ASSUMPTION: Asymptotically parallelogram

meshes.



