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Why do we need to use 2D models if 3D
elasticity can be solved by FE?

3D ELASTICITY EQUATIONS

D ⊂ IR3 Initial configuration of elastic solid.

u = (u1, u2, u3) Displacement.

εij(u) = 1
2

(

∂ui
∂xj

+
∂uj
∂xi

)

Strain tensor.

2µ

∫

D

ε(u) : ε(v)+λ

∫

D

divudiv v =

∫

D

f ·v+

∫

Γ

g ·v

∀v ∈ V ⊂ H1(D)3

Coercivity of this bilinear form follows from
“Korn’s inequality”:

‖u‖1 ≤ K‖ε(u)‖0
Under appropriate boundary conditions.
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Remark 1. : The constant K depends on
the geometry of D.

RECALL CEA’S LEMMA:

If u is the exact solution and uh the FE
approximation then,

‖u− uh‖1 ≤
M

α
‖u− vh‖1 ∀vh ∈ Vh

where M and α are the continuity and coer-
civity constants of the bilinear form.

In our problem α depends on the Korn’s con-
stant K. If K is too large then α is too small
and the constant in Cea’s Lemma is large.
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Consider a PLATE of thickness t:

D = Ω× (−t/2 , t/2)

where Ω ⊂ IR2 and t > 0, with t small in
comparison with the dimensions of Ω.

In this case:

K = O(t−1)

CONSEQUENCE:

THE METHOD IS NOT EFFICIENT: VERY
SMALL MESH SIZE WILL BE NEEDED!

This is a serious computational drawback spe-
cially in 3D.

SOLUTION: USE 2D MODELS!
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REISSNER-MINDLIN EQUATIONS

Ω ⊂ IR2 D = Ω× (−t/2 , t/2)

Displacements are approximated by

u1(x, y, z) ∼ −zθ1(x, y)

u2(x, y, z) ∼ −zθ2(x, y)

u3(x, y, z) ∼ w(x, y)

θ1, θ2 “rotations” ,
w “transverse displacement”.

Assuming a transverse load of the form

t3f (x, y)

and a that the plate is clamped,

θ = (θ1, θ2) and w

satisfy the system of equations:
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a(θ, η) + κt−2(∇w − θ,∇v − η) = (f, v)

∀η ∈ H1
0(Ω)2, v ∈ H1

0(Ω).

a(θ, η) :=
E

12(1− ν2)

∫

Ω
[(1− ν)ε(θ)ε(η)

+νdiv θdiv η],

E Young modulus,
ν Poisson ratio,
κ := Ek/2(1 + ν) shear modulus,
k correction factor usually taken as 5/6.

We change notation and keep only the pa-
rameter t. So, our equations are

a(θ, η) + t−2(∇w − θ,∇v − η) = (f, v)

For our purposes, the only important fact
about a is that it is coercive in H1

0 (which
follows from the 2D Korn inequality). We
will not make other use of the explicit form
o a.
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The deformation energy is given by

1

2
a(θ, θ) +

t−2

2

∫

Ω
|∇w − θ|2 −

∫

Ω
fw

It can be shown that the second term re-
mains bounded when t→ 0. In particular,

t→ 0 ⇒ |∇w − θ| → 0

For the limit problem:

∇w = θ “Kirchkoff constraint”

THIS IS A PROBLEM FOR THE NUMER-
ICAL SOLUTION!
If t is small the problem is close to a con-

strained minimization problem.
FOR EXAMPLE: If we use standard P1 fi-

nite elements for θ and w, the restriction of
the limit problem is too strong.
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Indeed, if

∇wh = θh
then, ∇wh piecewise constant and continu-
ous

⇒ ∇wh constant

But,

θh ∈ H1
0(Ω)2 ⇒ ∇wh = θh = 0

CONSEQUENCE: For t small θh, wh ∼ 0.

This is called “LOCKING”

Remark 2. : Indeed, now the continuity
constant of the bilinear form is too large.
It seems that we have a problem similar to
the original 3D problem!

AND SO, WHAT IS THE ADVANTAGE
OF USING THE 2D MODEL?
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SOLUTION: Mixed Interpolation or Reduced
Integration.

IDEA: Relax the restriction of the limit prob-
lem.

∇w− θ = 0 replaced by Π(∇w− θ) = 0

Π is some interpolation or projection onto
some space Γh.
So, in the discrete problem, the restriction

is verified only at some points or in some av-
erage sense.
FINITE ELEMENT APPROXIMATION:

θh ∈ Hh ⊂ H1
0(Ω)2, wh ∈ Wh ⊂ H1

0(Ω)

are such that

a(θh, η)+t−2(Π(∇wh−θh),Π(∇v−η)) = (f, v)

∀η ∈ Hh, v ∈ Wh
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In the usual methods

∇Wh ⊂ Γh
So,

a(θh, η)+t−2(∇wh−Πθh,∇v−Πη) = (f, v)

∀η ∈ Hh, v ∈ Wh

MIXED FORM:

Introducing the shear stress

γ = t−2(∇w − θ)

{

a(θh, η) + (γh,∇v − Πη) = (f, v)

γh = t−2(∇wh − Πθh)

∀η ∈ Hh, v ∈ Wh
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MAIN PROBLEM: How to choose the spaces
Hh, Wh, Γh and the operator Π?

EXAMPLE: The Bathe-Dvorkin MITC4 rect-
angular elements (Mixed Interpolation Ten-
sorial Components).

Hh and Wh are the standard Q1 elements
and Γh is locally defined by (a+ by, c + dx)
(is a rotated Raviart-Thomas space).

The operator Π is defined by
∫

`
Πη · t` =

∫

`
η · t`

for all side ` of an element, where t` is the
unit tangent vector on `.
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GENERAL ERROR ANALYSIS
Continuous problem:

{

a(θ, η) + (γ,∇v − Πη) = (f, v) + (γ, η − Πη)

γ = t−2(∇w − θ)

∀η ∈ H1
0(Ω)2, v ∈ H1

0(Ω)

Discrete Problem:

{

a(θh, η) + (γh,∇v − Πη) = (f, v)

γh = t−2(∇wh − Πθh)

∀η ∈ Hh, v ∈ Wh

Error equation:

a(θ − θh, η) + (γ − γh,∇v − Πη)

= (γ, η − Πη) ∀η ∈ Hh, v ∈ Wh
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Lemma 1. Let θI ∈ Hh, wI ∈ Wh and
γI = t−2(∇wI − ΠθI) ∈ Γh.
Suppose

‖γ − Πγ‖0 ≤ Ch‖γ‖1
and

(γ − Πγ, η) = 0 ∀η ∈ P2
k−2

Let P be the L2 projection into P2
k−2. Then,

‖θ − θh‖1 + t‖γ − γh‖0
≤ C(‖θI−θ‖1 + t‖γI−γ‖0 +h‖γ−Pγ‖0

Proof.

a(θI − θh, η) + (γI − γh,∇v − Πη)

= a(θI−θ, η)+(γI−γ,∇v−Πη)+(γ, η−Πη)

∀η ∈ Hh, v ∈ Wh

Take η = θI − θh and v = wI − wh. So,

γI − γh = t−2(∇v − Πη)

Using the coercivity of a we obtain

‖θI − θh‖21 + t2‖γI − γh‖20
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= a(θI − θ, θI − θh) + t2(γI − γ, γI − γh)

+(γ − Pγ, θI − θh − Π(θI − θh))

and the lemma follows.

To apply the Lemma we need to find ap-
proximations θI and wI such that the asso-
ciated γI be also a good approximation. This
will follow from the existence of approxima-
tions satisfying the following property

∇wI − ΠθI = Π(∇w − θ)

and

‖θ − θI‖1 ≤ Chk‖θ‖k+1

‖γ − Πγ‖0 ≤ Chk‖γ‖k
This property can be seen as a generaliza-

tion of the known Fortin property basic in
the analysis of mixed methods. In fact, in-
troducing the operators

I(θ, w) = (θI , wI)

B(θ, w) = ∇w − θ
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and

Bh(θh, wh) = ∇wh − Πθ

the property can be summarized by the fol-
lowing commutative diagram:

(H1
0)2 ×H1

0
B−→ (L2)2

I




y





yΠ

Hh ×Wh
Bh−→ Γh

When Π is an L2 projection, this is ex-
actly the Fortin property, which is known to
be equivalent to the inf-sup condition. This
will be the case in one of our examples (the
Arnold-Falk elements). In that case error es-
timates for the shear stress γ can also be ob-
tained.

Remark 3. Indeed it is enough to have
the commutative diagram with Π replaced
by some operator with good approximation
properties.
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If approximations satisfying the properties
above (i.e, commutative diagram + approxi-
mation properties) exist, then it follows from
the Lemma:

ERROR ESTIMATES

‖θ − θh‖1 + t‖γ − γh‖0 + ‖w − wh‖1
≤ Chk(‖θ‖k+1 + t‖γ‖k + ‖γ‖k−1)

With constant C independent of h and t.

EXAMPLES

Example 1: MITC3 or DL element:

Hh : P2
1 ⊕ {λ2λ3t1, λ3λ1t2, λ1λ2t3}, C0

Degrees of freedom: θ(Vi),
∫

`i
θ · ti

Wh : P1 C0

Γh : (a− by, c + bx) C0 t. c.

Degrees of freedom:
∫

`i
γ · ti

Π defined by
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∫

`
Πγ · t =

∫

`
γ · t

Example 2: Arnold-Falk element:

Hh : P2
1 ⊕ {λ1λ2λ3}, C0

Degrees of freedom: θ(Vi),
∫

T θ

Wh : P1 Non Conforming

Degrees of freedom:
∫

`w

Γh : P2
0

Π defined by

∫

T
Πγ =

∫

T
γ

L2-projection!

Error estimates for Examples 1 and 2:

‖θ − θh‖1 + ‖w − wh‖1 ≤ Ch

Example 3: Bathe-Brezzi second order rect-
angular elements:
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Hh : Q2, C0

Wh: Qr2 : {1, x, y, xy, x2, y2, x2y, xy2}, C0

Γh: {1, x, y, xy, y2} × {1, x, y, xy, x2}
Π defined by

{ ∫

`Πγ · tp1 =
∫

` γ · tp1
∫

RΠγ =
∫

R γ

Error estimates:

‖θ − θh‖1 + ‖w − wh‖1 ≤ Ch2

Remark 4. Here the constant C is NOT
independent of t because the right hand
side involves higher order norms of the so-
lution which depend on t.
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L2- ERROR ESTIMATES

‖θ − θh‖0 + ‖w − wh‖0 ≤ Ch2

Recall the error equation

a(θ−θh, η)+(γ−γh,∇v−Rη) = (γ, η−Rη)

∀(η, v) ∈ Hh ×Wh,

Duality argument: (ϕ, u) ∈ H1
0(Ω)2×H1

0(Ω)
solution of







a(η, ϕ) + (∇v − η, δ)
= (v, w − wh) + (η, θ − θh)

δ = t−2(∇u− ϕ).

∀(η, v) ∈ H1
0(Ω)2 ×H1

0(Ω),

A priori estimate (we assume Ω is convex)

‖ϕ‖2 + ‖u‖2 + ‖δ‖0 + t ‖δ‖1
≤ C(‖θ − θh‖0 + ‖w − wh‖0

)

,
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Take v = w − wh and η = θ − θh in the
dual problem and use the error equation with
(η, v) = (ϕI , uI):

‖w − wh‖20 + ‖θ − θh‖20
= a(θ − θh, ϕ− ϕI) + t2(γ − γh, δ − Πδ)

+ (θh −Rθh, δ) + (γ, ϕI − ΠϕI),

where we have used the commutative dia-
gram property Πδ = t−2(∇uI − ΠϕI).

PROBLEM: The last two terms.

For the MITC3 elements we have:

Lemma 2. If γ ∈ H(div,Ω), ψ ∈ H1
0(Ω)

and ψA is a piecewise-linear average in-
terpolant:

|(γ, ψA − ΠψA)| ≤ Ch2‖div γ‖0‖ψ‖1
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ISOPARAMETRIC ELEMENTS

FK : K̂ −→ K

K̂ = (0, 1)× (0, 1): reference element

K: shape regular quadrilateral

FK : Q2
1 transformation

Wh : Standard isoparametric Q1 elements:

v ◦ FK = (a + bx̂ + cŷ + dx̂ŷ)

Γh : Rotated Raviart-Thomas elements:

η ◦ FK = DF−TK (a + bŷ, c + dx̂)

The operator Π is defined by

∫

`
Πη · t` =

∫

`
η · t`

for all side ` of an element, where t` is the
unit tangent vector on `.
For Hh we consider two cases:
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MITC4: StandardQ2
1 isoparametric elements

DL4: Q2
1 ⊕ 〈p1, p2, p3, p4〉

pi = (p̂i ◦ F−1
K )ti

p̂i is a cubic polynomial vanishing on ˆ̀
j,

j 6= i.

ERROR ESTIMATES

‖θ − θh‖1 + t‖γ − γh‖0 + ‖w − wh‖1
≤ Ch(‖θ‖2 + t‖γ‖1 + ‖γ‖0)

ASSUMPTIONS: For DL4 general shape reg-
ular meshes. For MITC4 the mesh Th is a
refinement of a coarser T2h obtained by join-
ing the edge midpoints and T2h is obtained
in the same way from T4h.

L2- ERROR ESTIMATES

‖θ − θh‖0 + ‖w − wh‖0 ≤ Ch2

ASSUMPTION: Asymptotically parallelogram
meshes.


