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      Problems with multiple time
scales at Sandia: MP Salsa, CHARON

Applications:
    Catalysis

    Chemical Detectors

    Combustion

    CVD

    Semiconductors

    MEMS

Ethane Catalysis

Temperature

CH2HCO

0.0240
0.0237
0.0234
0.0231
0.0229
0.0226
0.0223
0.0220
0.0217
0.0214
0.0211
0.0209
0.0206
0.0203
0.0200

[H2O]

2.70E-03
2.66E-03
2.63E-03
2.59E-03
2.56E-03
2.52E-03
2.49E-03
2.45E-03
2.41E-03
2.38E-03
2.34E-03
2.31E-03
2.27E-03
2.24E-03
2.20E-03

[H2O][H2]

Thin Fuel Cell Structure:
Anode = 40µM
Electrolyte = 100µM
Cathode = 40µM

Gold current collector
D = 1.5mm

H2
Consumed

H2O
Generated

O2 Diffusion

Simulation of Experimental Solid Oxide
Fuel Cell

Turbulent Combustion Simulation Of
Methanol Pool Fire

Processes

 Chemical kinetics 
 Momentum diffusion
 Heat conduction  
 Convection 

GaAs  CVD
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Model equations and their discretization

  

€ 

ρ ˙ u −∇ ⋅T+ ρu ⋅ ∇u +∇p = ρg
∇ ⋅ (ρu) = 0

 
 
 

 
 
 

+
species fraction

thermal energy

 
 
 

 
 
 

PDE Model

Discrete equations

  

€ 

ρ ˙ u −∇ ⋅T+ ρu ⋅ ∇u +∇p( ) ⋅ vdΩ
Ω

∫ + q∇ ⋅ (ρu)dΩ
Ω

∫

+ τ (K) ρ˙ u −∇ ⋅T+ ρu ⋅ ∇u +∇p( ) ⋅ ρ˙ v −∇ ⋅S + ρu ⋅ ∇v +∇q( )dΩ
K
∫

K∈Ωh

∑

+ other equations( ) = ρg ⋅ vdΩ
Ω

∫ ∀ v,q( )∈ V × S

• Spatial Discretization  = Q1 -Q1 + inf-sup & upwind stabilization

• Temporal Discretization = generalized α-method

Hughes, Hulbert, Franca, Shakib, Jansen, Collis, Tezdyar, 1986 -€ 

τ =
2ρ
Δt
 

 
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 
 
2

+ ρ 2uigij u j + 9(2µ)2
gij gij
3

 

 
 

 

 
 

−1/ 2

• Stabilization parameter:
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Computational issues

Time scales

– Chemical kinetics: 10-12 to 10-5  
– Momentum diffusion: 10-6

– Heat conduction: 10-6  
– Convection: 10-3 to 10-1 

Scales not 
well-separated!

Time integration issues

– Application of operator-split methods  accompanied by instabilities due
to the complex multiphysics (Shadid, Ropp, Ober, JCP 2004)

– Fully implicit solvers and physics based preconditioners preferred for
stability and stiff diffusion terms

– Resolving non-equilibrium chemical reaction requires time steps orders
of magnitude smaller than those normally required for the flow solver

– Pressure instabilities and loss of convergence observed for Δt<<1
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Pressure instabilities: MP Salsa

Pressure instability:  was removed by using high wave number damping in time
integration (generalized – alpha method); short spurious transient remained

Pressure instability:  was removed by using high wave number damping in time
integration (generalized – alpha method); short spurious transient remained

C. Ober, J. Shadid, unpublished
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Convergence stagnation

Δt  included in τ Δt removed from τ

Analytic 3D Navier-Stokes Solution

Modification of τ helped to offset stagnation.
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Observations relevant to our study
– Size of Δt  governed by reaction rates, not accuracy

– Problems encountered are not due directly to reaction terms

– Pressure rather than velocity instabilities indicate that the nonlinear
   advective terms are not the cause of the problem

– Convergence stagnation is due to the limiting behavior of τ:

€ 

τ m =
2ρ
Δt
 

 
 

 

 
 
2

+ ρ 2uigij u j + 9(2µ)2
gij gij
3

 

 
 

 

 
 

−1/ 2

Δt→0 →   O Δt( )

Conjecture: combination of inf-sup stabilization, designed
to relax a spatial constraint, with implicit time integration

causes problems at small time steps

It suffices to consider the time-dependent
Stokes problem with τ=δh2 , θ-method

It suffices to consider the time-dependent
Stokes problem with τ=δh2 , θ-method
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Stabilized Stokes formulations

€ 

˙ u h,vh( )
− τK ˙ u h •w vh ,qh( )dx

Κ

∫
Κ

∑

 

 
 

  

 

 
 

  
+

a uh,vh( ) − b ph,vh( ) − b qh,uh( )
− τK −Δuh +∇ph − f( ) •w vh ,qh( )dx

K
∫

K
∑

 

 
 

  

 

 
 

  
= f,vh( )

Spatially stabilized semi-discrete equation

Fully discrete equation: θ-method

€ 

uhk+1,vh( )
− τK uhk+1

•w vh ,qh( )dx
Κ

∫
Κ

∑

 

 
 

 
 

 

 
 

 
 

+ Δt
a uhθ ,vh( ) − b ph

θ ,vh( ) − b qh,uhθ( )
− τK −Δuhθ +∇ph

θ − fθ( ) •w vh ,qh( )dx
K
∫

K
∑

 

 
 

 
 

 

 
 

 
 

= fhθ ,vh( )

€ 

w vh,qh( ) =

∇qh
−Δvh +∇qh
Δvh +∇qh

 

 
 

 
 

SGLS
  GLS
RGLS

Fulfill consistencyFulfill consistency

€ 

Xθ = 1−θ( )X k + θX k+1
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Stability analysis of one implicit step

€ 

Q uh, ph;vh,qh( ) =
uh,vh( )

− τK uh •w vh ,qh( )dx
Κ

∫
Κ

∑

 

 
 

 
 

 

 
 

 
 

+ Δt
a uhθ ,vh( ) − b ph

θ ,vh( ) − b qh,uhθ( )
− τK −Δuhθ +∇ph

θ( ) •w vh ,qh( )dx
K
∫

K
∑

 

 
 

 
 

 

 
 

 
 

Bilinear form

Theorem

€ 

sup
v h ,qh ∈Vh×Sh

Q uh , ph;vh ,qh( )
vh,qh{ }

h

≥
h2

4ΔtCI

+ C1 θ,Δt,τ( )
 

 
 

 

 
 uh 1

+ C2 θ,Δt,τ( ) ∇ph 0

Bochev,Gunzburger,Shadid, CMAME 193, 2004

€ 

C2 θ,Δt,τ( ) =
1
2

τ θ − τΔt−1( )
τ θ − τΔt−1 /2( )
τ θ 1− γ−1( ) − τΔt−1 /2( )

 

 
 
 

 
 
 

SGLS

  GLS

RGLS

€ 

h2 ≤ C θ( )Δt
δ

€ 

 

 
 

 
 

– Appears in context of other stabilized methods (Codina, CMAME 182, 2000)

– Sufficient but not necessary stability condition

– Does not reveal the mechanism that may corrupt the pressure
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Fully discrete equations

Algebraic system

Algebraic analysis

Linear algebra is messy, we restrict attention to

– Pressure-Poisson stabilization

– Uniform definition of the stabilization parameter: τ=δh2

– Implicit Euler time stepping: θ=0

€ 

M + ΔtA ΔtBT

τB −ΔtB − τΔtS τΔtK

 

 
 

 

 
 
uk+1

pk+1

 

 
 

 

 
 =

M 0
τB 0
 

 
 

 

 
 
uk

pk
 

 
 

 

 
 + Δt

F k+1

τGk+1

 

 
 

 

 
 

€ 

uhk+1,vh( )
−τ uhk+1

•∇qhdx
Κ

∫
Κ

∑

 

 
 

 
 

 

 
 

 
 

+ Δt
a uhk+1,vh( ) − b ph

k+1,vh( ) − b qh,uhk+1( )
− τ −Δuhk+1 +∇ph

k+1 − f k+1( ) •∇qhdx
K
∫

K
∑

 

 
 

 
 

 

 
 

 
 

= fhk+1,vh( )
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Solution

€ 

uk+1 = I −M−1BT BM−1BT( )
−1( )uk +O(Δt)

€ 

pk+1 =
1
Δt

BM−1BT( )
−1
Buk +O(1)

€ 

uk +1 = M + ΔtA( )−1
M − BT τK + ˆ G BT( )

−1 ˆ G M + τB( ) 
 
  

 
 uk +

Δt F k +1 − BT τK + ˆ G BT( )
−1 ˆ G F k +1 + τGk +1( ) 

 
  

 
 

 

 

 
 
 

 

 

 
 
 

€ 

pk +1 =
1
Δt

τK + ˆ G BT( )
−1 ˆ G M + τB( )uk + Δt ˆ G F k +1 + τΔtGk +1[ ]

€ 

ˆ G = Δt − τ( )B + τΔtS[ ] M + ΔtA( )−1

Check: τ→0 limit is as expected (Unstabilized Mixed Method)

After tedious manipulations 
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unstable stable

Anatomy of the pressure-Poisson matrix

€ 

τK + ˆ G BT = ΔtB M + ΔtA( )−1BT

+τK

−τB M + ΔtA( )−1BT

+τΔtS M + ΔtA( )−1BT

→  From Galerkin mixed form

→  Pressure-Poisson stabilization term

→  Consistency term

€ 

˙ u ,∇q( )

€ 

−Δu,∇q( )→  Consistency term

  

€ 

τK + ˆ G BT = Δt − τ( )
1 2 3 

B M + ΔtA( )−1BT

1 2 4 4 3 4 4 
+ τK{ + O(τΔt)

€ 

M + ΔtA( ) →   Cannot cause any trouble

Velocity equation

Pressure equation

Confirms earlier analysis (sufficient stability condition)

€ 

Δt − τ > 0

€ 

h2 ≤ Δt
δ

→  Sufficient stability condition   →
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The Δt→0 limit for fixed h

€ 

uk+1 = uk +O(Δt)

€ 

pk+1 = K − BM−1BT( )
−1 1
τ
Buk + S + BM−1A( )uk − BM−1F k+1 +Gk+1 

  
 

  
+O(Δt)

€ 

pk+1 ≈ K − BM−1BT( )
−1 1
τ
Buk 

  
 

  
+O(Δt)

stable - unstable

 Makes stability unpredictable  

€ 

Buk ≠ 0
Makes pressure dependent on δ!

Theorem

Corollary

– Velocity unaffected at the small time step limit

– Pressure can be corrupted in two possible ways
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Numerical studies

– Several values of δ, including an optimal one (Barth, Bochev, Gunzburger,Shadid SISC 2003)

– P2-P2 and P3-P3 elements on uniform and non-uniform grids 

SGLS/RGLS compared with Taylor-Hood

– For stationary equations both stable for any δ>0  (SGLS: Bochev, Gunzburger, SINUM 2004)

0.05 0.05
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Taylor-Hood

Steady-state solution

Elements  968 
Unknowns  4226 
Δt 10-7

time steps 10+3
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P2-P2 SGLS with optimal δ

Uniform mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 0.05

Random mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 0.05

– Pressure exhibits spurious transient, recovers in 30-40 steps
– Velocity approximation not affected at all 
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P2-P2 SGLS with δ<δopt

– Reducing δ takes the method back to mixed Galerkin formulation

– Pressure starts exhibiting node-to-node oscillations 

– Spurious transient is virtually eliminated 

Uniform mesh

Elements  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 0.005
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P2-P2 SGLS with δ>δopt

Uniform mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 5

Random mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 5

– Pressure spurious transient takes longer to recover
– Velocity approximation does not seem affected
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Is P3-P3 better?

Random mesh

Elements P3-P3   338
Unknowns            4487
Δt              10-7

time steps             10+3

δ              0.05

– High-frequency noise, induced by grid topology, persists!

SGLS
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P3-P3 SGLS with δ>δopt

Non-uniform mesh

Elements P3-P3   338
Unknowns            4487
Δt              10-7

time steps             10+3

δ               5

Random mesh

Elements P3-P3   338
Unknowns            4487
Δt              10-7

time steps             10+3

δ               5

– Spurious transient persists - pressure does not appear to recover
– For random mesh errors begin to grow, including in velocity!
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Conclusions

  Small time steps are a challenge for spatially stabilized formulations
  Computations sensitive to

–  Grid topology
–  Stabilization parameter

  Range of τ may have to be additionally restricted

  Time-space formulations (how to justify for Stokes where we
     deal with a purely spatial constraint?)

  Non-residual stabilization

A possible explanation:

Separated discretization applies multiscale effects to spatial

discretization only, time scales not treated consistently with

spatial scales

Possible remedies


