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      Problems with multiple time
scales at Sandia: MP Salsa, CHARON

Applications:
    Catalysis

    Chemical Detectors

    Combustion

    CVD

    Semiconductors

    MEMS

Ethane Catalysis

Temperature

CH2HCO

0.0240
0.0237
0.0234
0.0231
0.0229
0.0226
0.0223
0.0220
0.0217
0.0214
0.0211
0.0209
0.0206
0.0203
0.0200

[H2O]

2.70E-03
2.66E-03
2.63E-03
2.59E-03
2.56E-03
2.52E-03
2.49E-03
2.45E-03
2.41E-03
2.38E-03
2.34E-03
2.31E-03
2.27E-03
2.24E-03
2.20E-03

[H2O][H2]

Thin Fuel Cell Structure:
Anode = 40µM
Electrolyte = 100µM
Cathode = 40µM

Gold current collector
D = 1.5mm

H2
Consumed

H2O
Generated

O2 Diffusion

Simulation of Experimental Solid Oxide
Fuel Cell

Turbulent Combustion Simulation Of
Methanol Pool Fire

Processes

 Chemical kinetics 
 Momentum diffusion
 Heat conduction  
 Convection 

GaAs  CVD
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Model equations and their discretization

  

€ 

ρ ˙ u −∇ ⋅T+ ρu ⋅ ∇u +∇p = ρg
∇ ⋅ (ρu) = 0

 
 
 

 
 
 

+
species fraction

thermal energy

 
 
 

 
 
 

PDE Model

Discrete equations

  

€ 

ρ ˙ u −∇ ⋅T+ ρu ⋅ ∇u +∇p( ) ⋅ vdΩ
Ω

∫ + q∇ ⋅ (ρu)dΩ
Ω

∫

+ τ (K) ρ˙ u −∇ ⋅T+ ρu ⋅ ∇u +∇p( ) ⋅ ρ˙ v −∇ ⋅S + ρu ⋅ ∇v +∇q( )dΩ
K
∫

K∈Ωh

∑

+ other equations( ) = ρg ⋅ vdΩ
Ω

∫ ∀ v,q( )∈ V × S

• Spatial Discretization  = Q1 -Q1 + inf-sup & upwind stabilization

• Temporal Discretization = generalized α-method

Hughes, Hulbert, Franca, Shakib, Jansen, Collis, Tezdyar, 1986 -€ 

τ =
2ρ
Δt
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+ ρ 2uigij u j + 9(2µ)2
gij gij
3
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• Stabilization parameter:
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Computational issues

Time scales

– Chemical kinetics: 10-12 to 10-5  
– Momentum diffusion: 10-6

– Heat conduction: 10-6  
– Convection: 10-3 to 10-1 

Scales not 
well-separated!

Time integration issues

– Application of operator-split methods  accompanied by instabilities due
to the complex multiphysics (Shadid, Ropp, Ober, JCP 2004)

– Fully implicit solvers and physics based preconditioners preferred for
stability and stiff diffusion terms

– Resolving non-equilibrium chemical reaction requires time steps orders
of magnitude smaller than those normally required for the flow solver

– Pressure instabilities and loss of convergence observed for Δt<<1
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Pressure instabilities: MP Salsa

Pressure instability:  was removed by using high wave number damping in time
integration (generalized – alpha method); short spurious transient remained

Pressure instability:  was removed by using high wave number damping in time
integration (generalized – alpha method); short spurious transient remained

C. Ober, J. Shadid, unpublished
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Convergence stagnation

Δt  included in τ Δt removed from τ

Analytic 3D Navier-Stokes Solution

Modification of τ helped to offset stagnation.
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Observations relevant to our study
– Size of Δt  governed by reaction rates, not accuracy

– Problems encountered are not due directly to reaction terms

– Pressure rather than velocity instabilities indicate that the nonlinear
   advective terms are not the cause of the problem

– Convergence stagnation is due to the limiting behavior of τ:
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τ m =
2ρ
Δt
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+ ρ 2uigij u j + 9(2µ)2
gij gij
3
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Δt→0 →   O Δt( )

Conjecture: combination of inf-sup stabilization, designed
to relax a spatial constraint, with implicit time integration

causes problems at small time steps

It suffices to consider the time-dependent
Stokes problem with τ=δh2 , θ-method

It suffices to consider the time-dependent
Stokes problem with τ=δh2 , θ-method
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Stabilized Stokes formulations

€ 

˙ u h,vh( )
− τK ˙ u h •w vh ,qh( )dx

Κ

∫
Κ

∑

 

 
 

  

 

 
 

  
+

a uh,vh( ) − b ph,vh( ) − b qh,uh( )
− τK −Δuh +∇ph − f( ) •w vh ,qh( )dx

K
∫

K
∑

 

 
 

  

 

 
 

  
= f,vh( )

Spatially stabilized semi-discrete equation

Fully discrete equation: θ-method

€ 

uhk+1,vh( )
− τK uhk+1

•w vh ,qh( )dx
Κ

∫
Κ

∑

 

 
 

 
 

 

 
 

 
 

+ Δt
a uhθ ,vh( ) − b ph

θ ,vh( ) − b qh,uhθ( )
− τK −Δuhθ +∇ph

θ − fθ( ) •w vh ,qh( )dx
K
∫

K
∑

 

 
 

 
 

 

 
 

 
 

= fhθ ,vh( )

€ 

w vh,qh( ) =

∇qh
−Δvh +∇qh
Δvh +∇qh

 

 
 

 
 

SGLS
  GLS
RGLS

Fulfill consistencyFulfill consistency

€ 

Xθ = 1−θ( )X k + θX k+1
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Stability analysis of one implicit step

€ 

Q uh, ph;vh,qh( ) =
uh,vh( )

− τK uh •w vh ,qh( )dx
Κ

∫
Κ

∑

 

 
 

 
 

 

 
 

 
 

+ Δt
a uhθ ,vh( ) − b ph

θ ,vh( ) − b qh,uhθ( )
− τK −Δuhθ +∇ph

θ( ) •w vh ,qh( )dx
K
∫

K
∑

 

 
 

 
 

 

 
 

 
 

Bilinear form

Theorem

€ 

sup
v h ,qh ∈Vh×Sh

Q uh , ph;vh ,qh( )
vh,qh{ }

h

≥
h2

4ΔtCI

+ C1 θ,Δt,τ( )
 

 
 

 

 
 uh 1

+ C2 θ,Δt,τ( ) ∇ph 0

Bochev,Gunzburger,Shadid, CMAME 193, 2004

€ 

C2 θ,Δt,τ( ) =
1
2

τ θ − τΔt−1( )
τ θ − τΔt−1 /2( )
τ θ 1− γ−1( ) − τΔt−1 /2( )

 

 
 
 

 
 
 

SGLS

  GLS

RGLS

€ 

h2 ≤ C θ( )Δt
δ

€ 

 

 
 

 
 

– Appears in context of other stabilized methods (Codina, CMAME 182, 2000)

– Sufficient but not necessary stability condition

– Does not reveal the mechanism that may corrupt the pressure
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Fully discrete equations

Algebraic system

Algebraic analysis

Linear algebra is messy, we restrict attention to

– Pressure-Poisson stabilization

– Uniform definition of the stabilization parameter: τ=δh2

– Implicit Euler time stepping: θ=0

€ 

M + ΔtA ΔtBT

τB −ΔtB − τΔtS τΔtK

 

 
 

 

 
 
uk+1

pk+1

 

 
 

 

 
 =

M 0
τB 0
 

 
 

 

 
 
uk

pk
 

 
 

 

 
 + Δt

F k+1

τGk+1
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uhk+1,vh( )
−τ uhk+1

•∇qhdx
Κ

∫
Κ

∑

 

 
 

 
 

 

 
 

 
 

+ Δt
a uhk+1,vh( ) − b ph

k+1,vh( ) − b qh,uhk+1( )
− τ −Δuhk+1 +∇ph

k+1 − f k+1( ) •∇qhdx
K
∫

K
∑

 

 
 

 
 

 

 
 

 
 

= fhk+1,vh( )
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Solution

€ 

uk+1 = I −M−1BT BM−1BT( )
−1( )uk +O(Δt)

€ 

pk+1 =
1
Δt

BM−1BT( )
−1
Buk +O(1)

€ 

uk +1 = M + ΔtA( )−1
M − BT τK + ˆ G BT( )

−1 ˆ G M + τB( ) 
 
  

 
 uk +

Δt F k +1 − BT τK + ˆ G BT( )
−1 ˆ G F k +1 + τGk +1( ) 

 
  

 
 

 

 

 
 
 

 

 

 
 
 

€ 

pk +1 =
1
Δt

τK + ˆ G BT( )
−1 ˆ G M + τB( )uk + Δt ˆ G F k +1 + τΔtGk +1[ ]

€ 

ˆ G = Δt − τ( )B + τΔtS[ ] M + ΔtA( )−1

Check: τ→0 limit is as expected (Unstabilized Mixed Method)

After tedious manipulations 
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unstable stable

Anatomy of the pressure-Poisson matrix

€ 

τK + ˆ G BT = ΔtB M + ΔtA( )−1BT

+τK

−τB M + ΔtA( )−1BT

+τΔtS M + ΔtA( )−1BT

→  From Galerkin mixed form

→  Pressure-Poisson stabilization term

→  Consistency term

€ 

˙ u ,∇q( )

€ 

−Δu,∇q( )→  Consistency term

  

€ 

τK + ˆ G BT = Δt − τ( )
1 2 3 

B M + ΔtA( )−1BT

1 2 4 4 3 4 4 
+ τK{ + O(τΔt)

€ 

M + ΔtA( ) →   Cannot cause any trouble

Velocity equation

Pressure equation

Confirms earlier analysis (sufficient stability condition)

€ 

Δt − τ > 0

€ 

h2 ≤ Δt
δ

→  Sufficient stability condition   →
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The Δt→0 limit for fixed h

€ 

uk+1 = uk +O(Δt)

€ 

pk+1 = K − BM−1BT( )
−1 1
τ
Buk + S + BM−1A( )uk − BM−1F k+1 +Gk+1 

  
 

  
+O(Δt)

€ 

pk+1 ≈ K − BM−1BT( )
−1 1
τ
Buk 

  
 

  
+O(Δt)

stable - unstable

 Makes stability unpredictable  

€ 

Buk ≠ 0
Makes pressure dependent on δ!

Theorem

Corollary

– Velocity unaffected at the small time step limit

– Pressure can be corrupted in two possible ways
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Numerical studies

– Several values of δ, including an optimal one (Barth, Bochev, Gunzburger,Shadid SISC 2003)

– P2-P2 and P3-P3 elements on uniform and non-uniform grids 

SGLS/RGLS compared with Taylor-Hood

– For stationary equations both stable for any δ>0  (SGLS: Bochev, Gunzburger, SINUM 2004)

0.05 0.05
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Taylor-Hood

Steady-state solution

Elements  968 
Unknowns  4226 
Δt 10-7

time steps 10+3
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P2-P2 SGLS with optimal δ

Uniform mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 0.05

Random mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 0.05

– Pressure exhibits spurious transient, recovers in 30-40 steps
– Velocity approximation not affected at all 
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P2-P2 SGLS with δ<δopt

– Reducing δ takes the method back to mixed Galerkin formulation

– Pressure starts exhibiting node-to-node oscillations 

– Spurious transient is virtually eliminated 

Uniform mesh

Elements  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 0.005
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P2-P2 SGLS with δ>δopt

Uniform mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 5

Random mesh

Elements P2-P2  722 
Unknowns  4258 
Δt 10-7

time steps 10+3

δ 5

– Pressure spurious transient takes longer to recover
– Velocity approximation does not seem affected
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Is P3-P3 better?

Random mesh

Elements P3-P3   338
Unknowns            4487
Δt              10-7

time steps             10+3

δ              0.05

– High-frequency noise, induced by grid topology, persists!

SGLS
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P3-P3 SGLS with δ>δopt

Non-uniform mesh

Elements P3-P3   338
Unknowns            4487
Δt              10-7

time steps             10+3

δ               5

Random mesh

Elements P3-P3   338
Unknowns            4487
Δt              10-7

time steps             10+3

δ               5

– Spurious transient persists - pressure does not appear to recover
– For random mesh errors begin to grow, including in velocity!
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Conclusions

  Small time steps are a challenge for spatially stabilized formulations
  Computations sensitive to

–  Grid topology
–  Stabilization parameter

  Range of τ may have to be additionally restricted

  Time-space formulations (how to justify for Stokes where we
     deal with a purely spatial constraint?)

  Non-residual stabilization

A possible explanation:

Separated discretization applies multiscale effects to spatial

discretization only, time scales not treated consistently with

spatial scales

Possible remedies


