

On Stabilized Finite Element Methods for Transient Problems with Varying Time Scales

Pavel B. Bochev, Richard B. Lehoucq

Computational Mathematics and Algorithms Sandia National Laboratories

and

Max D. Gunzburger CSIT - Florida State University

Petropolis, August 9-13, 2004

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Problems with multiple time scales at Sandia: MP Salsa, CHARON

Applications:

- ✓ Catalysis
- ✓ Chemical Detectors
- ✓ Combustion
- ✓ CVD
- ✓ Semiconductors
- ✓ MEMS

Processes

- Chemical kinetics
- Momentum diffusion
- Heat conduction
- Convection

Model equations and their discretization

$$\begin{cases} \rho \dot{\mathbf{u}} - \nabla \cdot \mathbf{T} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \rho \mathbf{g} \\ \nabla \cdot (\rho \mathbf{u}) = 0 \end{cases} + \begin{cases} \text{species fraction} \\ \text{thermal energy} \end{cases}$$

Discrete equations

• Spatial Discretization = Q1 -Q1 + inf-sup & upwind stabilization

$$\int_{\Omega} (\rho \dot{\mathbf{u}} - \nabla \cdot \mathbf{T} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p) \cdot \mathbf{v} d\Omega + \int_{\Omega} q \nabla \cdot (\rho \mathbf{u}) d\Omega$$
$$+ \sum_{K \in \Omega_h} \int_{K} \tau(K) (\rho \dot{\mathbf{u}} - \nabla \cdot \mathbf{T} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p) \cdot (\rho \dot{\mathbf{v}} - \nabla \cdot \mathbf{S} + \rho \mathbf{u} \cdot \nabla \mathbf{v} + \nabla q) d\Omega$$
$$+ (\text{other equations}) = \int_{\Omega} \rho \mathbf{g} \cdot \mathbf{v} d\Omega \quad \forall (\mathbf{v}, q) \in \mathbf{V} \times S$$

• Stabilization parameter:
$$\tau = \left[\left(\frac{2\rho}{\Delta t} \right)^2 + \rho^2 u_i g_{ij} u_j + 9(2\mu)^2 \frac{g_{ij} g_{ij}}{3} \right]^{-1/2}$$

• *Temporal Discretization* = generalized α -method

Hughes, Hulbert, Franca, Shakib, Jansen, Collis, Tezdyar, 1986 -

Computational issues

Time scales

- Chemical kinetics: 10⁻¹² to 10⁻⁵
- Momentum diffusion: 10⁻⁶
- Heat conduction:
- Convection:

10⁻³ to 10⁻¹

10⁻⁶

Time integration issues

- Application of *operator-split* methods accompanied by *instabilities* due to the complex multiphysics (*Shadid, Ropp, Ober, JCP 2004*)
- Fully implicit solvers and physics based preconditioners preferred for stability and stiff diffusion terms
- Resolving non-equilibrium chemical reaction requires *time steps* orders of magnitude *smaller* than those normally required for the *flow solver*
- Pressure *instabilities* and loss of *convergence* observed for $\Delta t <<1$

Computational mathematics and algorithms

C. Ober, J. Shadid, unpublished

Pressure instabilities: MP Salsa

Pressure instability: was removed by using high wave number damping in time integration (generalized – alpha method); short spurious transient remained

Convergence stagnation

Analytic 3D Navier-Stokes Solution

Modification of τ helped to offset stagnation.

Observations relevant to our study

- Size of Δt governed by *reaction rates*, not *accuracy*
- Problems encountered are not due directly to reaction terms
- Pressure rather than velocity instabilities indicate that the nonlinear advective terms are not the cause of the problem
- Convergence stagnation is due to the *limiting* behavior of τ :

$$\tau_m = \left[\left(\frac{2\rho}{\Delta t} \right)^2 + \rho^2 u_i g_{ij} u_j + 9(2\mu)^2 \frac{g_{ij} g_{ij}}{3} \right]^{-1/2} \xrightarrow{\Delta t \to 0} O(\Delta t)$$

Conjecture: combination of inf-sup stabilization, designed to relax a spatial constraint, with implicit time integration causes problems at small time steps

It suffices to consider the time-dependent Stokes problem with $\tau = \delta h^2$, θ -method

Stabilized Stokes formulations

Spatially stabilized semi-discrete equation

$$\begin{cases} \left(\dot{\mathbf{u}}_{h}, \mathbf{v}_{h}\right) \\ -\sum_{K} \tau_{K} \int_{K} \dot{\mathbf{u}}_{h} \cdot w(\mathbf{v}_{h}, q_{h}) dx \end{cases} + \begin{cases} a(\mathbf{u}_{h}, \mathbf{v}_{h}) - b(p_{h}, \mathbf{v}_{h}) - b(q_{h}, \mathbf{u}_{h}) \\ -\sum_{K} \tau_{K} \int_{K} (-\Delta \mathbf{u}_{h} + \nabla p_{h} - \mathbf{f}) \cdot w(\mathbf{v}_{h}, q_{h}) dx \end{cases} = (\mathbf{f}, \mathbf{v}_{h}) \end{cases}$$

Fulfill consistency
$$w(\mathbf{v}_{h}, q_{h}) = \begin{cases} \nabla q_{h} & \text{SGLS} \\ -\Delta \mathbf{v}_{h} + \nabla q_{h} & \text{GLS} \\ \Delta \mathbf{v}_{h} + \nabla q_{h} & \text{RGLS} \end{cases}$$

Fully discrete equation: θ-method

 $X^{\theta} = (1 - \theta)X^{k} + \theta X^{k+1}$

$$\begin{cases} \left(\mathbf{u}_{h}^{k+1}, \mathbf{v}_{h} \right) \\ -\sum_{K} \boldsymbol{\tau}_{K} \int_{K} \mathbf{u}_{h}^{k+1} \boldsymbol{\cdot} w(\mathbf{v}_{h}, q_{h}) dx \end{cases} + \Delta t \begin{cases} a(\mathbf{u}_{h}^{\theta}, \mathbf{v}_{h}) - b(p_{h}^{\theta}, \mathbf{v}_{h}) - b(q_{h}, \mathbf{u}_{h}^{\theta}) \\ -\sum_{K} \boldsymbol{\tau}_{K} \int_{K} (-\Delta \mathbf{u}_{h}^{\theta} + \nabla p_{h}^{\theta} - \mathbf{f}^{\theta}) \boldsymbol{\cdot} w(\mathbf{v}_{h}, q_{h}) dx \end{cases} = (\mathbf{f}_{h}^{\theta}, \mathbf{v}_{h})$$

Stability analysis of one implicit step

Bilinear form

Т

$$Q(\mathbf{u}_{h}, p_{h}; \mathbf{v}_{h}, q_{h}) = \begin{cases} \left(\mathbf{u}_{h}, \mathbf{v}_{h}\right) \\ -\sum_{K} \tau_{K} \int_{K} \mathbf{u}_{h} \cdot w(\mathbf{v}_{h}, q_{h}) dx \end{cases} + \Delta t \begin{cases} a(\mathbf{u}_{h}^{\theta}, \mathbf{v}_{h}) - b(p_{h}^{\theta}, \mathbf{v}_{h}) - b(q_{h}, \mathbf{u}_{h}^{\theta}) \\ -\sum_{K} \tau_{K} \int_{K} (-\Delta \mathbf{u}_{h}^{\theta} + \nabla p_{h}^{\theta}) \cdot w(\mathbf{v}_{h}, q_{h}) dx \end{cases}$$

heorem

$$\sup_{\mathbf{v}_{h},q_{h} \in V_{h} \times S_{h}} \frac{Q(\mathbf{u}_{h},p_{h};\mathbf{v}_{h},q_{h})}{\left\|\left\{\mathbf{v}_{h},q_{h}\right\}\right\|_{h}} \geq \left(\frac{h^{2}}{4\Delta tC_{I}} + C_{1}(\theta,\Delta t,\tau)\right)\left\|\mathbf{u}_{h}\right\|_{1} + C_{2}(\theta,\Delta t,\tau)\left\|\nabla p_{h}\right\|_{0}$$

$$C_{2}(\theta,\Delta t,\tau) = \frac{1}{2} \begin{cases} \tau(\theta - \tau\Delta t^{-1}) & \text{SGLS} \\ \tau(\theta - \tau\Delta t^{-1}/2) & \text{GLS} \\ \tau(\theta(1 - \gamma^{-1}) - \tau\Delta t^{-1}/2) & \text{RGLS} \end{cases} \qquad h^{2} \leq C(\theta) \frac{\Delta t}{\delta}$$

- Appears in context of other stabilized methods (Codina, CMAME 182, 2000)
- Sufficient but not necessary stability condition
- Does not reveal the *mechanism* that may *corrupt* the pressure

Algebraic analysis

Linear algebra is messy, we restrict attention to

- Pressure-Poisson stabilization
- Uniform definition of the stabilization parameter: $\tau = \delta h^2$
- Implicit Euler time stepping: θ =0

Fully discrete equations

$$\begin{cases} \left(\mathbf{u}_{h}^{k+1}, \mathbf{v}_{h}\right) \\ -\tau \sum_{K} \int_{K} \left(\mathbf{u}_{h}^{k+1}, \nabla q\right) dx \\ + \Delta t \begin{cases} a\left(\mathbf{u}_{h}^{k+1}, \mathbf{v}_{h}\right) - b\left(p_{h}^{k+1}, \mathbf{v}_{h}\right) - b\left(q_{h}, \mathbf{u}_{h}^{k+1}\right) \\ -\tau \sum_{K} \int_{K} \left(-\Delta \mathbf{u}_{h}^{k+1} + \nabla p_{h}^{k+1} + \nabla p_{h}^{k+1}\right) \cdot \nabla q_{h} dx \end{cases} = \left(\mathbf{f}_{h}^{k+1}, \mathbf{v}_{h}\right)$$

Algebraic system
$$\begin{pmatrix} M + \Delta tA \\ \tau B - \Delta tB - \tau \Delta tS \\ \tau \Delta tK \end{pmatrix} \begin{pmatrix} \mathbf{u}^{k+1} \\ p^{k+1} \end{pmatrix} = \begin{pmatrix} M & 0 \\ \tau B & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u}^{k} \\ p^{k} \end{pmatrix} + \Delta t \begin{pmatrix} F^{k+1} \\ \tau G^{k+1} \end{pmatrix}$$

Solution

After tedious manipulations

$$\mathbf{u}^{k+1} = (M + \Delta tA)^{-1} \begin{bmatrix} \left(M - B^T \left(\tau K + \hat{G}B^T \right)^{-1} (\hat{G}M + \tau B) \right) \mathbf{u}^k + \\ \Delta t \left(F^{k+1} - B^T \left(\tau K + \hat{G}B^T \right)^{-1} (\hat{G}F^{k+1} + \tau G^{k+1}) \right) \end{bmatrix}$$
$$p^{k+1} = \frac{1}{\Delta t} \left(\tau K + \hat{G}B^T \right)^{-1} \begin{bmatrix} (\hat{G}M + \tau B) \mathbf{u}^k + \Delta t \hat{G}F^{k+1} + \tau \Delta t G^{k+1} \end{bmatrix}$$

$$\hat{G} = \left[\left(\Delta t - \tau \right) B + \tau \Delta t S \right] \left(M + \Delta t A \right)^{-1}$$

Check: $\tau \rightarrow 0$ limit is as expected (Unstabilized Mixed Method)

$$\mathbf{u}^{k+1} = \left(I - M^{-1}B^T \left(BM^{-1}B^T\right)^{-1}\right) \mathbf{u}^k + O(\Delta t)$$
$$p^{k+1} = \frac{1}{\Delta t} \left(BM^{-1}B^T\right)^{-1} B\mathbf{u}^k + O(1)$$

Anatomy of the pressure-Poisson matrix

Velocity equation

 $(M + \Delta t A) \rightarrow$ Cannot cause any trouble

Pressure equation

$$\tau K + \hat{G}B^{T} = \Delta t B (M + \Delta t A)^{-1} B^{T} + \tau K$$

$$\rightarrow$$
 From Galerkin mixed form

$$\rightarrow$$
 Pressure-Poisson stabilization term

Sandia

$$-\tau B(M + \Delta t A)^{-1} B^T \longrightarrow \text{Consistency term}(\dot{\mathbf{u}}, \nabla q)$$

$$+\tau \Delta t S (M + \Delta t A)^{-1} B^T \longrightarrow \text{Consistency term} (-\Delta \mathbf{u}, \nabla q)$$

Confirms earlier analysis (sufficient stability condition)

$$\tau K + \hat{G}B^{T} = (\Delta t - \tau) \underbrace{B(M + \Delta tA)^{-1}B^{T}}_{\textbf{unstable}} + \underbrace{\tau K}_{\textbf{stable}} + O(\tau \Delta t)$$

$$\Delta t - \tau > 0 \quad \rightarrow \text{ Sufficient stability condition } \rightarrow h^{2} \leq \frac{\Delta t}{\delta}$$

The $\Delta t \rightarrow 0$ limit for fixed *h*

Theorem

$$\mathbf{u}^{k+1} = \mathbf{u}^{k} + O(\Delta t)$$

$$p^{k+1} = \left(K - BM^{-1}B^{T}\right)^{-1} \left[\frac{1}{\tau}B\mathbf{u}^{k} + \left(S + BM^{-1}A\right)\mathbf{u}^{k} - BM^{-1}F^{k+1} + G^{k+1}\right] + O(\Delta t)$$

Corollary

- Velocity *unaffected* at the small time step limit
- Pressure *can be corrupted* in two possible ways

Numerical studies

SGLS/RGLS compared with Taylor-Hood

- For stationary equations both stable for any $\delta > 0$ (SGLS: *Bochev, Gunzburger, SINUM 2004*)

– Several values of δ , including an optimal one (*Barth, Bochev, Gunzburger, Shadid SISC 2003*) – P2-P2 and P3-P3 elements on uniform and non-uniform grids

Taylor-Hood

Taylor-Hood dt=0.0000001

23x23 Random

Taylor-Hood dt=0.0000001

Steady-state solution

Elements	968
Unknowns	4226
Δt	10-7
time steps	10 ⁺³

P2-P2 SGLS with optimal δ

Stabilized Galerkin

20x20 Random

SGLS delta=0.05 dt=0.0000001

Uniform mesh

Elements P2-P2	722
Unknowns	4258
Δt	10 ⁻⁷
time steps	10 ⁺³
δ	0.05

Random mesh

Elements P2-P2	722
Unknowns	4258
Δt	10 ⁻⁷
time steps	10 ⁺³
δ	0.05

- Pressure exhibits spurious transient, recovers in 30-40 steps
- Velocity approximation not affected at all

P2-P2 SGLS with $\delta < \delta_{opt}$

Uniform mesh

Elements	722
Jnknowns	4258
At a start	10 ⁻⁷
me steps	10 ⁺³
)	0.005

- Reducing δ takes the method back to mixed Galerkin formulation
- Pressure starts exhibiting node-to-node oscillations
- Spurious transient is virtually eliminated

P2-P2 SGLS with $\delta > \delta_{opt}$

Uniform mesh

Elements P2-P2	722
Unknowns	4258
Δt	10-7
time steps	10 ⁺³
δ	5

Random mesh

Elements P2-P2	722
Unknowns	4258
Δt	10-7
time steps	10 ⁺³
δ	5

- Pressure spurious transient takes longer to recover
- Velocity approximation does not seem affected

Is P3-P3 better?

14x14 random

Random mesh

Elements P3-P3	338
Unknowns	4487
Δt	10 ⁻⁷
time steps	10 ⁺³
δ	0.05

SGLS

- High-frequency noise, induced by grid topology, persists!

P3-P3 SGLS with $\delta > \delta_{opt}$

Non-uniform mesh

Elements P3-P3	338
Unknowns	4487
Δt	10 ⁻⁷
time steps	10 ⁺³
δ	5

Random mesh

Elements P3-P3	338
Unknowns	4487
Δt	10 ⁻⁷
time steps	10 ⁺³
δ	5

SGLS delta=5 dt=0.0000001, nt=1000

- Spurious transient persists pressure does not appear to recover
- For random mesh errors begin to grow, including in *velocity*!

Conclusions

- □ Small time steps are a *challenge* for spatially stabilized formulations
- □ Computations *sensitive* to
 - Grid topology
 - Stabilization parameter
- $\hfill\square$ Range of τ may have to be additionally restricted

A possible explanation:

Separated discretization applies multiscale effects to spatial discretization only, *time scales* not treated *consistently* with *spatial scales*

Possible remedies

- □ Time-space formulations (how to justify for Stokes where we deal with a purely spatial constraint?)
- Non-residual stabilization

