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Abstract

S. Saks and recently R.D. Mauldin asked if every translation invariant σ -finite Borel measure on R
d

is a constant multiple of Lebesgue measure. The aim of this paper is to investigate the versions of this
question, since surprisingly the answer is “yes and no,” depending on what we mean by Borel measure and
by constant. According to a folklore result, if the measure is only defined for Borel sets, then the answer is
affirmative. We show that if the measure is defined on a σ -algebra containing the Borel sets, then the answer
is negative. However, if we allow the multiplicative constant to be infinity, then the answer is affirmative in
this case as well. Moreover, our construction also shows that an isometry invariant σ -finite Borel measure
(in the wider sense) on R

d can be non-σ -finite when we restrict it to the Borel sets.
© 2005 Elsevier Inc. All rights reserved.
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Introduction

It is classical that, up to a nonnegative multiplicative constant, Lebesgue measure is the unique
locally finite translation invariant Borel measure on R

d . R.D. Mauldin [6] asked if we can replace
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locally finiteness by σ -finiteness. Then he himself gave an affirmative answer in the case when
Borel measure means a measure defined on the σ -algebra of Borel sets, and later noticed that
this is actually a folklore result, see (in a more general form), e.g., [3, Section 60, Theorem B
and Exercise 7]. In fact, the problem already appeared in [8] as an open question posed by Saks.
For the sake of completeness we include a proof here. Let λd denote d-dimensional Lebesgue
measure and B + t = {b + t : b ∈ B}.

Theorem 0.1. Let μ be a σ -finite translation invariant measure defined on the Borel subsets
of R

d . Then there exists c ∈ [0,∞) such that μ(B) = cλd(B) for every Borel set B .

Proof. First we prove that μ is absolutely continuous with respect to λd . Let B ⊂ R
d be a Borel

set with λd(B) = 0. Define B̃ = {(x, y) ∈ R
d × R

d : x + y ∈ B}. This set is clearly Borel, and as
both λd and μ are σ -finite measures, we can apply the Fubini theorem to (λd × μ)(B̃). Note that
the x-section B̃x = {y: (x, y) ∈ B̃} = B − x, and similarly B̃y = {x: (x, y) ∈ B̃} = B − y. So by
Fubini λd(B) = 0 implies (λd × μ)(B̃) = 0. Hence μ(B − x) = 0 for λd-almost every x, but μ

is translation invariant, so μ(B) = 0.
Therefore by the Radon–Nikodým theorem there exists a Borel function f : Rd → [0,∞]

such that μ(B) = ∫
B

f dλd for every Borel set B . Clearly

μ(B) = μ(B + t) =
∫

B+t

f dλd =
∫
B

f (x − t)dλd(x)

for every t and every Borel set B . Hence the uniqueness of the Radon–Nikodým derivative im-
plies that for every t for Lebesgue almost every x the equation

f (x − t) = f (x) (1)

holds.
In order to complete the proof, it is clearly sufficient to show that there is a constant c ∈ [0,∞)

such that f (x) = c holds for λd-almost every x. Suppose on the contrary that there are real
numbers r1 < r2 such that the Borel sets {x: f (x) < r1} and {x: f (x) > r2} are of positive
Lebesgue measure. Let d1 and d2 be Lebesgue density points of the two sets, respectively, and
let t = d2 − d1. Then d2 is the Lebesgue density point of {x: f (x − t) < r1} as well, and so

λd

({
x: f (x − t) < r1

} ∩ {
x: f (x) > r2

})
> 0,

contradicting (1). �
However, in the literature there are at least two different notions that are referred to as Borel

measure. The first one is measures defined only for Borel sets (see, e.g., [3,7]), while the second
one is measures defined on σ -algebras containing the Borel sets (see, e.g., [1,5]).

In the rest of the paper we investigate the question of Saks and Mauldin in the case of the more
general notion. As a spin-off, we also show that σ -finiteness is also sensitive to the definition of
Borel measure. This question is related to [2] and was implicitly asked there.

1. The negative result

In this section we prove somewhat more than just a negative answer to our question.
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Theorem 1.1. There exists an isometry invariant σ -finite measure μ defined on an isometry
invariant σ -algebra A containing the Borel subsets of R

d such that, for every Borel set B , if
λd(B) = 0 then μ(B) = 0, while if λd(B) > 0 then μ(B) = ∞.

Before the proof we need a lemma, which resembles some results proven by various authors,
but we were unable to find this version in the literature.

We also need some notation: Isom(Rd) is the group of isometries of R
d , the symbol |X|

denotes the cardinality of a set X, the continuum cardinality is denoted by 2ω, � stands for
symmetric difference of two sets, and a set P ⊂ R

d is perfect if it is nonempty, closed and has no
isolated points. Throughout the proof we use the fact that a countable union of sets of cardinality
< 2ω is itself of cardinality < 2ω (see, e.g., [4, Corollary I.10.41]).

Lemma 1.2. There exists a disjoint decomposition R
d = ⋃∞

n=0 An such that |ϕ(An)�An| < 2ω

for every n ∈ N and every ϕ ∈ Isom(Rd), and such that |An ∩P | = 2ω for every n ∈ N and every
perfect set P ⊂ R

d .

Proof. We say that a set A ⊂ R
d is < 2ω-invariant, if |ϕ(A)�A| < 2ω for every ϕ ∈ Isom(Rd).

As Isom(Rd) is closed under inverses, this is equivalent to |ϕ(A) \ A| < 2ω for every ϕ ∈
Isom(Rd).

It is enough to construct a sequence An of disjoint < 2ω-invariant sets such that |An ∩P | = 2ω

for every n ∈ N and every perfect set P ⊂ R
d , since then clearly R

d \ ⋃∞
n=0 An is also < 2ω-

invariant, hence we can simply replace A0 by A0 ∪ (Rd \ ⋃∞
n=0 An).

Now we construct such a sequence by transfinite induction. Let us enumerate Isom(Rd) =
{ϕα: α < 2ω} and define Gα to be the group generated by {ϕβ : β < α}. Note that |Gα| < 2ω.
For x ∈ R

d let Gα(x) = {ϕ(x): ϕ ∈ Gα}. Let us also enumerate the perfect subsets of R
d as

{Pα: α < 2ω} such that each perfect set P is listed 2ω many times.
Define A0

n = ∅ for every n ∈ N. At step α we recursively construct a sequence xα
n ∈ Pα (n ∈ N)

such that for every k 
= l,[ ⋃
β<α

A
β
k ∪ Gα

(
xα
k

)] ∩
[ ⋃

β<α

A
β
l ∪ Gα

(
xα
l

)] = ∅. (2)

To see that this is possible, note first that (2) holds whenever for every n the point xα
n is not in

the set

⋃
ϕ∈Gα

ϕ−1

( ⋃
m 
=n

⋃
β<α

Aβ
m ∪

n−1⋃
i=0

Gα

(
xα
i

))
,

which is of cardinality < 2ω. As every perfect set is of cardinality 2ω, this set cannot cover Pα ,
so we can find an xα

n with the required property and define Aα
n = ⋃

β<α A
β
n ∪ Gα(xα

n ). Clearly,
|Aα

n | < 2ω. Finally, define An = ⋃
α<2ω Aα

n for every n. These sets are clearly disjoint, they all
intersect every perfect set in a set of cardinality 2ω.

Finally, in order to check that the An’s are < 2ω-invariant, let ϕα be given. First note that Aα
n =⋃

β�α Gβ(x
β
n ) and An = ⋃

α<2ω Gα(xα
n ) for every n. Clearly, for α < β the set Gβ(x

β
n ) is ϕα-

invariant (for every n), hence if x ∈ An is such that ϕα(x) /∈ An, then x ∈ ⋃
β�α Gβ(x

β
n ) = Aα

n .
That is, ϕα(An) \ An ⊂ ϕα(Aα

n), so the An’s are < 2ω-invariant. This completes the proof. �
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,

Proof of Theorem 1.1. Let An be the sequence from the previous lemma. Define

A =
{[ ∞⋃

n=0

(An ∩ Bn)

]
�H : ∀n, Bn ⊂ R

d Borel, H ⊂ R
d , |H | < 2ω

}
.

Clearly A contains the Borel sets, as B = [⋃∞
n=0(An ∩ B)]�∅.

In order to check that A is closed under complements note that (X�H)C = XC�H , and
therefore ([⋃∞

n=0(An ∩ Bn)]�H)C = [⋃∞
n=0(An ∩ Bn)]C�H = [⋃∞

n=0(An ∩ BC
n )]�H .

In order to show that A is closed under countable unions, we need to show
⋃∞

k=0(X
k�Hk) ∈A

where

Xk =
∞⋃

n=0

(
An ∩ Bk

n

)
. (3)

Using the identity

Z = W�W�Z (4)

(note that � is associative), we obtain
∞⋃

k=0

(
Xk�Hk

) =
[ ∞⋃

k=0

Xk

]
�

[ ∞⋃
k=0

Xk

]
�

[ ∞⋃
k=0

(
Xk�Hk

)] =
[ ∞⋃

k=0

Xk

]
�Y, (5)

where Y = [⋃∞
k=0 Xk]�[⋃∞

k=0(X
k�Hk)]. As

∞⋃
k=0

Xk =
∞⋃

n=0

(
An ∩

( ∞⋃
k=0

Bk
n

))
(6)

it is sufficient to check that

|Y | < 2ω, (7)

but this is clear, since Y = [⋃∞
k=0 Xk]�[⋃∞

k=0(X
k�Hk)] ⊂ ⋃∞

k=0 Hk , which is of cardinality
< 2ω.

To show that A is isometry invariant, let ϕ ∈ Isom(Rd). First note that

ϕ

([ ∞⋃
n=0

(An ∩ Bn)

]
�H

)
=

[ ∞⋃
n=0

(
ϕ(An) ∩ ϕ(Bn)

)]
�ϕ(H). (8)

Set

X =
∞⋃

n=0

(
ϕ(An) ∩ ϕ(Bn)

)
and Y =

∞⋃
n=0

(
An ∩ ϕ(Bn)

)
. (9)

We need to show that X�ϕ(H) ∈A. Using (4) again, write

X�ϕ(H) = [Y�Y�X]�ϕ(H) = Y�
[
(Y�X)�ϕ(H)

]
, (10)

where we use again the associativity of �. Hence it is enough to show that∣∣(Y�X)�ϕ(H)
∣∣ < 2ω, (11)

which follows from Y�X = [⋃∞
n=0(An ∩ ϕ(Bn))]�[⋃∞

n=0(ϕ(An) ∩ ϕ(Bn))] ⊂⋃∞
n=0(An�ϕ(An)), from |ϕ(H)| < 2ω, and the < 2ω-invariance of An.
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Let us now define

μ

([ ∞⋃
n=0

(An ∩ Bn)

]
�H

)
=

∞∑
n=0

λd(Bn).

First we have to show that μ is well defined. Let [⋃∞
n=0(An ∩ Bn)]�H = [⋃∞

n=0(An ∩
B ′

n)]�H ′. We claim that λd(Bn) = λd(B
′
n) for every n. Otherwise, without loss of general-

ity, there exists an n0 such that λd(Bn0) < λd(B
′
n0

), hence B ′
n0

\ Bn0 contains a perfect set P

(even of positive measure). But |P ∩ An0 | = 2ω and |H ∪ H ′| < 2ω, hence there exists an
x ∈ (P ∩ An0) \ (H ∪ H ′), and then x ∈ [⋃∞

n=0(An ∩ B ′
n)]�H ′ but x /∈ [⋃∞

n=0(An ∩ Bn)]�H ,
a contradiction. (Recall that the An’s are disjoint.)

In order to prove that μ is σ -additive, let
∞⋃

k=0

(
Xk�Hk

)
(12)

be a disjoint union, where Xk is as in (3). First we claim that for every n and every k 
= k′ we
have λd(B

k
n ∩ Bk′

n ) = 0. Otherwise, for some n0 there exists a perfect set P ⊂ Bk
n0

∩ Bk′
n0

, and we

can find x ∈ (P ∩ An0) \ (Hk ∪ Hk′
), hence x ∈ [⋃∞

n=0(An ∩ Bk
n)]�Hk and x ∈ [⋃∞

n=0(An ∩
Bk′

n )]�Hk′
, but then the union (12) is not disjoint, a contradiction. Therefore λd(

⋃∞
k=0 Bk

n) =∑∞
k=0 λd(B

k
n) for every n, so by (5)–(7) we obtain

μ

( ∞⋃
k=0

(
Xk�Hk

)) =
∞∑

n=0

λd

( ∞⋃
k=0

Bk
n

)
=

∞∑
n=0

∞∑
k=0

λd
(
Bk

n

) =
∞∑

k=0

∞∑
n=0

λd
(
Bk

n

)
=

∞∑
k=0

μ
(
Xk�Hk

)
.

Now we show that μ is isometry invariant. By (8)–(11) we obtain that μ(ϕ([⋃∞
n=0(An ∩

Bn)]�H)) = ∑∞
n=0 λd(ϕ(Bn)), which clearly equals

∑∞
n=0 λd(Bn), which is μ([⋃∞

n=0(An ∩
Bn)]�H) by definition.

The fact that μ is σ -finite follows from R
d = ⋃∞

n=0
⋃∞

K=0(An ∩ [−K,K]d), since μ(An ∩
[−K,K]d) = λd([−K,K]d) = (2K)d < ∞ for every n and K .

Finally, for a Borel set B we have μ(B) = μ(
⋃∞

n=0(An ∩ B)) = ∑∞
n=0 λd(B), which is zero

if λd(B) = 0 and ∞ otherwise. �
As an immediate corollary we obtain the following.

Corollary 1.3. There exists an isometry invariant σ -finite measure μ defined on an isometry
invariant σ -algebra A containing the Borel subsets of R

d such that μ restricted to the Borel sets
is not equal to cλd for every c ∈ [0,∞).

As R
d is not the union of countably many Lebesgue nullsets, the next statement is also a corol-

lary to Theorem 1.1.

Corollary 1.4. There exists an isometry invariant σ -finite measure μ defined on an isometry
invariant σ -algebra A containing the Borel subsets of R

d such that μ restricted to the Borel sets
is not σ -finite.
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2. The positive result

The measure μ constructed in the previous section behaves simply on Borel sets; if λd(B) = 0
then μ(B) = 0, while if λd(B) > 0 then μ(B) = ∞. So we can say that μ(B) = ∞λd(B) for
every Borel set B . The next theorem shows that this is the only possibility.

Theorem 2.1. Let μ be a σ -finite translation invariant measure defined on a translation invariant
σ -algebra containing the Borel subsets of R

d . Then there exists c ∈ [0,∞] such that μ(B) =
cλd(B) for every Borel set B .

Moreover, μ restricted to the Borel sets is σ -finite if and only if c is finite.

The proof of this theorem will be based on the following two lemmas, the second of which is
well known.

Lemma 2.2. Let μ be a σ -finite translation invariant measure defined on a translation invariant
σ -algebra containing the Borel subsets of R

d , and suppose that μ restricted to the Borel sets is
not σ -finite. Then for every Borel set B we have either μ(B) = 0 or μ(B) = ∞.

Proof. Let B be a maximal disjoint family of Borel sets of positive finite μ-measure. As μ is
σ -finite (on A), B is countable, hence B0 = ⋃

B is a Borel set. Define

μ′(B) = μ(B0 ∩ B) for every Borel set B.

Note that this measure is only defined for Borel sets. As μ′ is clearly σ -finite, we can apply the

Fubini theorem for μ′ × μ and the Borel set B̃C
0 = {(x, y) ∈ R

d × R
d : x + y ∈ BC

0 }, as in the
proof of Theorem 0.1. On the one hand,

(μ′ × μ)
(
B̃C

0

) =
∫

y∈Rd

μ′(BC
0 − y

)
dμ(y) =

∫
y∈Rd

μ
(
B0 ∩ (

BC
0 − y

))
dμ(y).

We claim that μ(B0 ∩ (BC
0 − y)) = 0 for every y, hence (μ′ × μ)(B̃C

0 ) = 0. Indeed, other-
wise (using that B0 = ⋃

B and B is countable) there is a Borel set B ∈ B such that 0 < μ(B ∩
(BC

0 − y)) < ∞. But then for D = B ∩ (BC
0 − y) we obtain that the Borel set D + y is dis-

joint from B0, hence from all elements of B, and is of positive and finite μ-measure (since μ is
translation invariant), contradicting the maximality of B.

On the other hand,

0 = (μ′ × μ)
(
B̃C

0

) =
∫

x∈Rd

μ
(
BC

0 − x
)

dμ′(x).

As μ restricted to the Borel sets is not σ -finite, μ(BC
0 −x) = μ(BC

0 ) = ∞ for every x. Therefore,
we obtain 0 = μ′(Rd) = μ(B0), so B = ∅ and we are done. �
Lemma 2.3. Let μ1and μ2 be σ -finite translation invariant measures defined on the (not nec-
essarily equal) translation invariant σ -algebras A1 and A2 containing the Borel subsets of R

d ,
and suppose that μ1(R

d),μ2(R
d) > 0. Then for every Borel set B , μ1(B) = 0 iff μ2(B) = 0.

Proof. Apply Fubini to μ1 × μ2 and B̃ = {(x, y) ∈ R
d × R

d : x + y ∈ B}. �
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Proof of Theorem 2.1. The last statement of the theorem is obvious, as countably many
Lebesgue nullsets cannot cover R

d .
Now we prove the first statement, namely that the constant c ∈ [0,∞] exists. If μ restricted to

the Borel sets is σ -finite, then we are done by Theorem 0.1. So we can assume that this is not the
case. Then applying Lemmas 2.2 and 2.3 with μ1 = μ and μ2 = λd the theorem follows. �
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