# Is Lebesgue measure the only $\sigma$-finite invariant Borel measure? 

Márton Elekes ${ }^{\text {a,1 }}$, Tamás Keleti ${ }^{\text {b,*,2 }}$<br>${ }^{\text {a }}$ Rényi Alfréd Institute, PO Box 127, H-1364 Budapest, Hungary<br>${ }^{\text {b }}$ Department of Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary

Received 8 April 2005
Available online 13 September 2005
Submitted by B. Bongiorno


#### Abstract

S. Saks and recently R.D. Mauldin asked if every translation invariant $\sigma$-finite Borel measure on $\mathbb{R}^{d}$ is a constant multiple of Lebesgue measure. The aim of this paper is to investigate the versions of this question, since surprisingly the answer is "yes and no," depending on what we mean by Borel measure and by constant. According to a folklore result, if the measure is only defined for Borel sets, then the answer is affirmative. We show that if the measure is defined on a $\sigma$-algebra containing the Borel sets, then the answer is negative. However, if we allow the multiplicative constant to be infinity, then the answer is affirmative in this case as well. Moreover, our construction also shows that an isometry invariant $\sigma$-finite Borel measure (in the wider sense) on $\mathbb{R}^{d}$ can be non- $\sigma$-finite when we restrict it to the Borel sets.


© 2005 Elsevier Inc. All rights reserved.
Keywords: Lebesgue; Borel; Measure; Unique; Translation; Isometry; Invariant; $\sigma$-Finite

## Introduction

It is classical that, up to a nonnegative multiplicative constant, Lebesgue measure is the unique locally finite translation invariant Borel measure on $\mathbb{R}^{d}$. R.D. Mauldin [6] asked if we can replace

[^0]locally finiteness by $\sigma$-finiteness. Then he himself gave an affirmative answer in the case when Borel measure means a measure defined on the $\sigma$-algebra of Borel sets, and later noticed that this is actually a folklore result, see (in a more general form), e.g., [3, Section 60, Theorem B and Exercise 7]. In fact, the problem already appeared in [8] as an open question posed by Saks. For the sake of completeness we include a proof here. Let $\lambda_{d}$ denote $d$-dimensional Lebesgue measure and $B+t=\{b+t: b \in B\}$.

Theorem 0.1. Let $\mu$ be a $\sigma$-finite translation invariant measure defined on the Borel subsets of $\mathbb{R}^{d}$. Then there exists $c \in[0, \infty)$ such that $\mu(B)=c \lambda_{d}(B)$ for every Borel set $B$.

Proof. First we prove that $\mu_{\sim}$ is absolutely continuous with respect to $\lambda_{d}$. Let $B \subset \mathbb{R}^{d}$ be a Borel set with $\lambda_{d}(B)=0$. Define $\widetilde{B}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x+y \in B\right\}$. This set is clearly Borel, and as both $\lambda_{d}$ and $\mu$ are $\sigma$-finite measures, we can apply the Fubini theorem to $\left(\lambda_{d} \times \mu\right)(\widetilde{B})$. Note that the $x$-section $\widetilde{B}_{x}=\{y:(x, y) \in \widetilde{B}\}=B-x$, and similarly $\widetilde{B}^{y}=\{x:(x, y) \in \widetilde{B}\}=B-y$. So by Fubini $\lambda_{d}(B)=0$ implies $\left(\lambda_{d} \times \mu\right)(\widetilde{B})=0$. Hence $\mu(B-x)=0$ for $\lambda_{d}$-almost every $x$, but $\mu$ is translation invariant, so $\mu(B)=0$.

Therefore by the Radon-Nikodým theorem there exists a Borel function $f: \mathbb{R}^{d} \rightarrow[0, \infty]$ such that $\mu(B)=\int_{B} f \mathrm{~d} \lambda_{d}$ for every Borel set $B$. Clearly

$$
\mu(B)=\mu(B+t)=\int_{B+t} f \mathrm{~d} \lambda_{d}=\int_{B} f(x-t) \mathrm{d} \lambda_{d}(x)
$$

for every $t$ and every Borel set $B$. Hence the uniqueness of the Radon-Nikodým derivative implies that for every $t$ for Lebesgue almost every $x$ the equation

$$
\begin{equation*}
f(x-t)=f(x) \tag{1}
\end{equation*}
$$

holds.
In order to complete the proof, it is clearly sufficient to show that there is a constant $c \in[0, \infty)$ such that $f(x)=c$ holds for $\lambda_{d}$-almost every $x$. Suppose on the contrary that there are real numbers $r_{1}<r_{2}$ such that the Borel sets $\left\{x: f(x)<r_{1}\right\}$ and $\left\{x: f(x)>r_{2}\right\}$ are of positive Lebesgue measure. Let $d_{1}$ and $d_{2}$ be Lebesgue density points of the two sets, respectively, and let $t=d_{2}-d_{1}$. Then $d_{2}$ is the Lebesgue density point of $\left\{x: f(x-t)<r_{1}\right\}$ as well, and so

$$
\lambda_{d}\left(\left\{x: f(x-t)<r_{1}\right\} \cap\left\{x: f(x)>r_{2}\right\}\right)>0,
$$

contradicting (1).
However, in the literature there are at least two different notions that are referred to as Borel measure. The first one is measures defined only for Borel sets (see, e.g., [3,7]), while the second one is measures defined on $\sigma$-algebras containing the Borel sets (see, e.g., $[1,5]$ ).

In the rest of the paper we investigate the question of Saks and Mauldin in the case of the more general notion. As a spin-off, we also show that $\sigma$-finiteness is also sensitive to the definition of Borel measure. This question is related to [2] and was implicitly asked there.

## 1. The negative result

In this section we prove somewhat more than just a negative answer to our question.

Theorem 1.1. There exists an isometry invariant $\sigma$-finite measure $\mu$ defined on an isometry invariant $\sigma$-algebra $\mathcal{A}$ containing the Borel subsets of $\mathbb{R}^{d}$ such that, for every Borel set $B$, if $\lambda_{d}(B)=0$ then $\mu(B)=0$, while if $\lambda_{d}(B)>0$ then $\mu(B)=\infty$.

Before the proof we need a lemma, which resembles some results proven by various authors, but we were unable to find this version in the literature.

We also need some notation: $\operatorname{Isom}\left(\mathbb{R}^{d}\right)$ is the group of isometries of $\mathbb{R}^{d}$, the symbol $|X|$ denotes the cardinality of a set $X$, the continuum cardinality is denoted by $2^{\omega}, \Delta$ stands for symmetric difference of two sets, and a set $P \subset \mathbb{R}^{d}$ is perfect if it is nonempty, closed and has no isolated points. Throughout the proof we use the fact that a countable union of sets of cardinality $<2^{\omega}$ is itself of cardinality $<2^{\omega}$ (see, e.g., [4, Corollary I.10.41]).

Lemma 1.2. There exists a disjoint decomposition $\mathbb{R}^{d}=\bigcup_{n=0}^{\infty} A_{n}$ such that $\left|\varphi\left(A_{n}\right) \Delta A_{n}\right|<2^{\omega}$ for every $n \in \mathbb{N}$ and every $\varphi \in \operatorname{Isom}\left(\mathbb{R}^{d}\right)$, and such that $\left|A_{n} \cap P\right|=2^{\omega}$ for every $n \in \mathbb{N}$ and every perfect set $P \subset \mathbb{R}^{d}$.

Proof. We say that a set $A \subset \mathbb{R}^{d}$ is $<2^{\omega}$-invariant, if $|\varphi(A) \Delta A|<2^{\omega}$ for every $\varphi \in \operatorname{Isom}\left(\mathbb{R}^{d}\right)$. As $\operatorname{Isom}\left(\mathbb{R}^{d}\right)$ is closed under inverses, this is equivalent to $|\varphi(A) \backslash A|<2^{\omega}$ for every $\varphi \in$ $\operatorname{Isom}\left(\mathbb{R}^{d}\right)$.

It is enough to construct a sequence $A_{n}$ of disjoint $<2^{\omega}$-invariant sets such that $\left|A_{n} \cap P\right|=2^{\omega}$ for every $n \in \mathbb{N}$ and every perfect set $P \subset \mathbb{R}^{d}$, since then clearly $\mathbb{R}^{d} \backslash \bigcup_{n=0}^{\infty} A_{n}$ is also $<2^{\omega_{-}}$ invariant, hence we can simply replace $A_{0}$ by $A_{0} \cup\left(\mathbb{R}^{d} \backslash \bigcup_{n=0}^{\infty} A_{n}\right)$.

Now we construct such a sequence by transfinite induction. Let us enumerate $\operatorname{Isom}\left(\mathbb{R}^{d}\right)=$ $\left\{\varphi_{\alpha}: \alpha<2^{\omega}\right\}$ and define $G_{\alpha}$ to be the group generated by $\left\{\varphi_{\beta}: \beta<\alpha\right\}$. Note that $\left|G_{\alpha}\right|<2^{\omega}$. For $x \in \mathbb{R}^{d}$ let $G_{\alpha}(x)=\left\{\varphi(x): \varphi \in G_{\alpha}\right\}$. Let us also enumerate the perfect subsets of $\mathbb{R}^{d}$ as $\left\{P_{\alpha}: \alpha<2^{\omega}\right\}$ such that each perfect set $P$ is listed $2^{\omega}$ many times.

Define $A_{n}^{0}=\emptyset$ for every $n \in \mathbb{N}$. At step $\alpha$ we recursively construct a sequence $x_{n}^{\alpha} \in P_{\alpha}(n \in \mathbb{N})$ such that for every $k \neq l$,

$$
\begin{equation*}
\left[\bigcup_{\beta<\alpha} A_{k}^{\beta} \cup G_{\alpha}\left(x_{k}^{\alpha}\right)\right] \cap\left[\bigcup_{\beta<\alpha} A_{l}^{\beta} \cup G_{\alpha}\left(x_{l}^{\alpha}\right)\right]=\emptyset \tag{2}
\end{equation*}
$$

To see that this is possible, note first that (2) holds whenever for every $n$ the point $x_{n}^{\alpha}$ is not in the set

$$
\bigcup_{\varphi \in G_{\alpha}} \varphi^{-1}\left(\bigcup_{m \neq n} \bigcup_{\beta<\alpha} A_{m}^{\beta} \cup \bigcup_{i=0}^{n-1} G_{\alpha}\left(x_{i}^{\alpha}\right)\right)
$$

which is of cardinality $<2^{\omega}$. As every perfect set is of cardinality $2^{\omega}$, this set cannot cover $P_{\alpha}$, so we can find an $x_{n}^{\alpha}$ with the required property and define $A_{n}^{\alpha}=\bigcup_{\beta<\alpha} A_{n}^{\beta} \cup G_{\alpha}\left(x_{n}^{\alpha}\right)$. Clearly, $\left|A_{n}^{\alpha}\right|<2^{\omega}$. Finally, define $A_{n}=\bigcup_{\alpha<2^{\omega}} A_{n}^{\alpha}$ for every $n$. These sets are clearly disjoint, they all intersect every perfect set in a set of cardinality $2^{\omega}$.

Finally, in order to check that the $A_{n}$ 's are $<2^{\omega}$-invariant, let $\varphi_{\alpha}$ be given. First note that $A_{n}^{\alpha}=$ $\bigcup_{\beta \leqslant \alpha} G_{\beta}\left(x_{n}^{\beta}\right)$ and $A_{n}=\bigcup_{\alpha<2^{\omega}} G_{\alpha}\left(x_{n}^{\alpha}\right)$ for every $n$. Clearly, for $\alpha<\beta$ the set $G_{\beta}\left(x_{n}^{\beta}\right)$ is $\varphi_{\alpha^{-}}$ invariant (for every $n$ ), hence if $x \in A_{n}$ is such that $\varphi_{\alpha}(x) \notin A_{n}$, then $x \in \bigcup_{\beta \leqslant \alpha} G_{\beta}\left(x_{n}^{\beta}\right)=A_{n}^{\alpha}$. That is, $\varphi_{\alpha}\left(A_{n}\right) \backslash A_{n} \subset \varphi_{\alpha}\left(A_{n}^{\alpha}\right)$, so the $A_{n}$ 's are $<2^{\omega}$-invariant. This completes the proof.

Proof of Theorem 1.1. Let $A_{n}$ be the sequence from the previous lemma. Define

$$
\mathcal{A}=\left\{\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right] \Delta H: \forall n, B_{n} \subset \mathbb{R}^{d} \text { Borel, } H \subset \mathbb{R}^{d},|H|<2^{\omega}\right\}
$$

Clearly $\mathcal{A}$ contains the Borel sets, as $B=\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B\right)\right] \Delta \emptyset$.
In order to check that $\mathcal{A}$ is closed under complements note that $(X \Delta H)^{C}=X^{C} \Delta H$, and therefore $\left(\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right] \Delta H\right)^{C}=\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right]^{C} \Delta H=\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}^{C}\right)\right] \Delta H$.

In order to show that $\mathcal{A}$ is closed under countable unions, we need to show $\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right) \in \mathcal{A}$, where

$$
\begin{equation*}
X^{k}=\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}^{k}\right) \tag{3}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
Z=W \Delta W \Delta Z \tag{4}
\end{equation*}
$$

(note that $\Delta$ is associative), we obtain

$$
\begin{equation*}
\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right)=\left[\bigcup_{k=0}^{\infty} X^{k}\right] \Delta\left[\bigcup_{k=0}^{\infty} X^{k}\right] \Delta\left[\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right)\right]=\left[\bigcup_{k=0}^{\infty} X^{k}\right] \Delta Y \tag{5}
\end{equation*}
$$

where $Y=\left[\bigcup_{k=0}^{\infty} X^{k}\right] \Delta\left[\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right)\right]$. As

$$
\begin{equation*}
\bigcup_{k=0}^{\infty} X^{k}=\bigcup_{n=0}^{\infty}\left(A_{n} \cap\left(\bigcup_{k=0}^{\infty} B_{n}^{k}\right)\right) \tag{6}
\end{equation*}
$$

it is sufficient to check that

$$
\begin{equation*}
|Y|<2^{\omega} \tag{7}
\end{equation*}
$$

but this is clear, since $Y=\left[\bigcup_{k=0}^{\infty} X^{k}\right] \Delta\left[\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right)\right] \subset \bigcup_{k=0}^{\infty} H^{k}$, which is of cardinality $<2^{\omega}$.

To show that $\mathcal{A}$ is isometry invariant, let $\varphi \in \operatorname{Isom}\left(\mathbb{R}^{d}\right)$. First note that

$$
\begin{equation*}
\varphi\left(\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right] \Delta H\right)=\left[\bigcup_{n=0}^{\infty}\left(\varphi\left(A_{n}\right) \cap \varphi\left(B_{n}\right)\right)\right] \Delta \varphi(H) \tag{8}
\end{equation*}
$$

Set

$$
\begin{equation*}
X=\bigcup_{n=0}^{\infty}\left(\varphi\left(A_{n}\right) \cap \varphi\left(B_{n}\right)\right) \quad \text { and } \quad Y=\bigcup_{n=0}^{\infty}\left(A_{n} \cap \varphi\left(B_{n}\right)\right) \tag{9}
\end{equation*}
$$

We need to show that $X \Delta \varphi(H) \in \mathcal{A}$. Using (4) again, write

$$
\begin{equation*}
X \Delta \varphi(H)=[Y \Delta Y \Delta X] \Delta \varphi(H)=Y \Delta[(Y \Delta X) \Delta \varphi(H)], \tag{10}
\end{equation*}
$$

where we use again the associativity of $\Delta$. Hence it is enough to show that

$$
\begin{equation*}
|(Y \Delta X) \Delta \varphi(H)|<2^{\omega} \tag{11}
\end{equation*}
$$

which follows from $Y \Delta X=\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap \varphi\left(B_{n}\right)\right)\right] \Delta\left[\bigcup_{n=0}^{\infty}\left(\varphi\left(A_{n}\right) \cap \varphi\left(B_{n}\right)\right)\right] \subset$ $\bigcup_{n=0}^{\infty}\left(A_{n} \Delta \varphi\left(A_{n}\right)\right)$, from $|\varphi(H)|<2^{\omega}$, and the $<2^{\omega}$-invariance of $A_{n}$.

Let us now define

$$
\mu\left(\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right] \Delta H\right)=\sum_{n=0}^{\infty} \lambda_{d}\left(B_{n}\right)
$$

First we have to show that $\mu$ is well defined. Let $\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right] \Delta H=\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap\right.\right.$ $\left.\left.B_{n}^{\prime}\right)\right] \Delta H^{\prime}$. We claim that $\lambda_{d}\left(B_{n}\right)=\lambda_{d}\left(B_{n}^{\prime}\right)$ for every $n$. Otherwise, without loss of generality, there exists an $n_{0}$ such that $\lambda_{d}\left(B_{n_{0}}\right)<\lambda_{d}\left(B_{n_{0}}^{\prime}\right)$, hence $B_{n_{0}}^{\prime} \backslash B_{n_{0}}$ contains a perfect set $P$ (even of positive measure). But $\left|P \cap A_{n_{0}}\right|=2^{\omega}$ and $\left|H \cup H^{\prime}\right|<2^{\omega}$, hence there exists an $x \in\left(P \cap A_{n_{0}}\right) \backslash\left(H \cup H^{\prime}\right)$, and then $x \in\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}^{\prime}\right)\right] \Delta H^{\prime}$ but $x \notin\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}\right)\right] \Delta H$, a contradiction. (Recall that the $A_{n}$ 's are disjoint.)

In order to prove that $\mu$ is $\sigma$-additive, let

$$
\begin{equation*}
\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right) \tag{12}
\end{equation*}
$$

be a disjoint union, where $X^{k}$ is as in (3). First we claim that for every $n$ and every $k \neq k^{\prime}$ we have $\lambda_{d}\left(B_{n}^{k} \cap B_{n}^{k^{\prime}}\right)=0$. Otherwise, for some $n_{0}$ there exists a perfect set $P \subset B_{n_{0}}^{k} \cap B_{n_{0}}^{k^{\prime}}$, and we can find $x \in\left(P \cap A_{n_{0}}\right) \backslash\left(H^{k} \cup H^{k^{\prime}}\right)$, hence $x \in\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap B_{n}^{k}\right)\right] \Delta H^{k}$ and $x \in\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap\right.\right.$ $\left.\left.B_{n}^{k^{\prime}}\right)\right] \Delta H^{k^{\prime}}$, but then the union (12) is not disjoint, a contradiction. Therefore $\lambda_{d}\left(\bigcup_{k=0}^{\infty} B_{n}^{k}\right)=$ $\sum_{k=0}^{\infty} \lambda_{d}\left(B_{n}^{k}\right)$ for every $n$, so by (5)-(7) we obtain

$$
\begin{aligned}
\mu\left(\bigcup_{k=0}^{\infty}\left(X^{k} \Delta H^{k}\right)\right) & =\sum_{n=0}^{\infty} \lambda_{d}\left(\bigcup_{k=0}^{\infty} B_{n}^{k}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{d}\left(B_{n}^{k}\right)=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \lambda_{d}\left(B_{n}^{k}\right) \\
& =\sum_{k=0}^{\infty} \mu\left(X^{k} \Delta H^{k}\right)
\end{aligned}
$$

Now we show that $\mu$ is isometry invariant. By (8)-(11) we obtain that $\mu\left(\varphi\left(\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap\right.\right.\right.\right.$ $\left.\left.\left.\left.B_{n}\right)\right] \Delta H\right)\right)=\sum_{n=0}^{\infty} \lambda_{d}\left(\varphi\left(B_{n}\right)\right)$, which clearly equals $\sum_{n=0}^{\infty} \lambda_{d}\left(B_{n}\right)$, which is $\mu\left(\left[\bigcup_{n=0}^{\infty}\left(A_{n} \cap\right.\right.\right.$ $\left.\left.B_{n}\right)\right] \Delta H$ ) by definition.

The fact that $\mu$ is $\sigma$-finite follows from $\mathbb{R}^{d}=\bigcup_{n=0}^{\infty} \bigcup_{K=0}^{\infty}\left(A_{n} \cap[-K, K]^{d}\right)$, since $\mu\left(A_{n} \cap\right.$ $\left.[-K, K]^{d}\right)=\lambda_{d}\left([-K, K]^{d}\right)=(2 K)^{d}<\infty$ for every $n$ and $K$.

Finally, for a Borel set $B$ we have $\mu(B)=\mu\left(\bigcup_{n=0}^{\infty}\left(A_{n} \cap B\right)\right)=\sum_{n=0}^{\infty} \lambda_{d}(B)$, which is zero if $\lambda_{d}(B)=0$ and $\infty$ otherwise.

As an immediate corollary we obtain the following.
Corollary 1.3. There exists an isometry invariant $\sigma$-finite measure $\mu$ defined on an isometry invariant $\sigma$-algebra $\mathcal{A}$ containing the Borel subsets of $\mathbb{R}^{d}$ such that $\mu$ restricted to the Borel sets is not equal to $c \lambda_{d}$ for every $c \in[0, \infty)$.

As $\mathbb{R}^{d}$ is not the union of countably many Lebesgue nullsets, the next statement is also a corollary to Theorem 1.1.

Corollary 1.4. There exists an isometry invariant $\sigma$-finite measure $\mu$ defined on an isometry invariant $\sigma$-algebra $\mathcal{A}$ containing the Borel subsets of $\mathbb{R}^{d}$ such that $\mu$ restricted to the Borel sets is not $\sigma$-finite.

## 2. The positive result

The measure $\mu$ constructed in the previous section behaves simply on Borel sets; if $\lambda_{d}(B)=0$ then $\mu(B)=0$, while if $\lambda_{d}(B)>0$ then $\mu(B)=\infty$. So we can say that $\mu(B)=\infty \lambda_{d}(B)$ for every Borel set $B$. The next theorem shows that this is the only possibility.

Theorem 2.1. Let $\mu$ be a $\sigma$-finite translation invariant measure defined on a translation invariant $\sigma$-algebra containing the Borel subsets of $\mathbb{R}^{d}$. Then there exists $c \in[0, \infty]$ such that $\mu(B)=$ $c \lambda_{d}(B)$ for every Borel set B.

Moreover, $\mu$ restricted to the Borel sets is $\sigma$-finite if and only if $c$ is finite.
The proof of this theorem will be based on the following two lemmas, the second of which is well known.

Lemma 2.2. Let $\mu$ be a $\sigma$-finite translation invariant measure defined on a translation invariant $\sigma$-algebra containing the Borel subsets of $\mathbb{R}^{d}$, and suppose that $\mu$ restricted to the Borel sets is not $\sigma$-finite. Then for every Borel set $B$ we have either $\mu(B)=0$ or $\mu(B)=\infty$.

Proof. Let $\mathcal{B}$ be a maximal disjoint family of Borel sets of positive finite $\mu$-measure. As $\mu$ is $\sigma$-finite (on $\mathcal{A}$ ), $\mathcal{B}$ is countable, hence $B_{0}=\bigcup \mathcal{B}$ is a Borel set. Define

$$
\mu^{\prime}(B)=\mu\left(B_{0} \cap B\right) \quad \text { for every Borel set } B .
$$

Note that this measure is only defined for Borel sets. As $\mu^{\prime}$ is clearly $\sigma$-finite, we can apply the Fubini theorem for $\mu^{\prime} \times \mu$ and the Borel set $\widetilde{B_{0}^{C}}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x+y \in B_{0}^{C}\right\}$, as in the proof of Theorem 0.1. On the one hand,

$$
\left(\mu^{\prime} \times \mu\right)\left(\widetilde{B_{0}^{C}}\right)=\int_{y \in \mathbb{R}^{d}} \mu^{\prime}\left(B_{0}^{C}-y\right) \mathrm{d} \mu(y)=\int_{y \in \mathbb{R}^{d}} \mu\left(B_{0} \cap\left(B_{0}^{C}-y\right)\right) \mathrm{d} \mu(y)
$$

We claim that $\mu\left(B_{0} \cap\left(B_{0}^{C}-y\right)\right)=0$ for every $y$, hence $\left(\mu^{\prime} \times \mu\right)\left(\widetilde{B_{0}^{C}}\right)=0$. Indeed, otherwise (using that $B_{0}=\bigcup \mathcal{B}$ and $\mathcal{B}$ is countable) there is a Borel set $B \in \mathcal{B}$ such that $0<\mu(B \cap$ $\left.\left(B_{0}^{C}-y\right)\right)<\infty$. But then for $D=B \cap\left(B_{0}^{C}-y\right)$ we obtain that the Borel set $D+y$ is disjoint from $B_{0}$, hence from all elements of $\mathcal{B}$, and is of positive and finite $\mu$-measure (since $\mu$ is translation invariant), contradicting the maximality of $\mathcal{B}$.

On the other hand,

$$
0=\left(\mu^{\prime} \times \mu\right)\left(\widetilde{B_{0}^{C}}\right)=\int_{x \in \mathbb{R}^{d}} \mu\left(B_{0}^{C}-x\right) \mathrm{d} \mu^{\prime}(x)
$$

As $\mu$ restricted to the Borel sets is not $\sigma$-finite, $\mu\left(B_{0}^{C}-x\right)=\mu\left(B_{0}^{C}\right)=\infty$ for every $x$. Therefore, we obtain $0=\mu^{\prime}\left(\mathbb{R}^{d}\right)=\mu\left(B_{0}\right)$, so $\mathcal{B}=\emptyset$ and we are done.

Lemma 2.3. Let $\mu_{1}$ and $\mu_{2}$ be $\sigma$-finite translation invariant measures defined on the (not necessarily equal) translation invariant $\sigma$-algebras $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ containing the Borel subsets of $\mathbb{R}^{d}$, and suppose that $\mu_{1}\left(\mathbb{R}^{d}\right), \mu_{2}\left(\mathbb{R}^{d}\right)>0$. Then for every Borel set $B, \mu_{1}(B)=0$ iff $\mu_{2}(B)=0$.

Proof. Apply Fubini to $\mu_{1} \times \mu_{2}$ and $\widetilde{B}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x+y \in B\right\}$.

Proof of Theorem 2.1. The last statement of the theorem is obvious, as countably many Lebesgue nullsets cannot cover $\mathbb{R}^{d}$.

Now we prove the first statement, namely that the constant $c \in[0, \infty]$ exists. If $\mu$ restricted to the Borel sets is $\sigma$-finite, then we are done by Theorem 0.1. So we can assume that this is not the case. Then applying Lemmas 2.2 and 2.3 with $\mu_{1}=\mu$ and $\mu_{2}=\lambda_{d}$ the theorem follows.

## References

[1] A.M. Bruckner, J.B. Bruckner, B.S. Thomson, Real Analysis, Prentice Hall, 1997.
[2] M. Elekes, T. Keleti, Borel sets which are null or non- $\sigma$-finite for every translation invariant measure, Adv. Math., in press.
[3] P.R. Halmos, Measure Theory, Springer-Verlag, 1974.
[4] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, 1983.
[5] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995.
[6] R.D. Mauldin, personal communication, 2004.
[7] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987.
[8] E. Szpilrajn, On problems of measure theory, Uspekhi Mat. Nauk 1 (1946) 179-188 (in Russian), English transl. in: E. Marczewski, Collected Mathematical Papers, Polish Academy of Sciences, 1996, pp. 276-287.


[^0]:    * Corresponding author.

    E-mail addresses: emarci@renyi.hu (M. Elekes), elek@cs.elte.hu (T. Keleti).
    URLs: http://www.renyi.hu/~emarci (M. Elekes), http://www.cs.elte.hu/anal/keleti (T. Keleti).
    ${ }^{1}$ Partially supported by Hungarian Scientific Foundation Grant Nos. 37758, 049786 and F 43620.
    2 Partially supported by Hungarian Scientific Foundation Grant Nos. 049786 and F 43620.

